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We consider the multiple time period short-term production scheduling problem for a network of multiple

open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of

ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated

in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer

scheduling problems in which producers are able to generate a range of products, a combination of which are

required by consumers to meet specified demands. In practice, short-term schedules are formed independently

at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Due to

uncertainty in the data available to a medium-term planner, and the dynamics of the mining environment,

such targets may not be feasible in the short-term. We present, in this paper, an algorithm in which the

grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending

constraints at each port, while generating schedules for each mine that maximise resource utilisation.
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1. Introduction

We consider the Multiple Time Period, Multiple Mine Planning Problem (MTP-MMPP) of schedul-

ing the production of multiple open-pit mines, across a horizon of multiple time periods, to supply

several ports with ore that can be blended to form products of a desired composition. This problem

belongs to a class of multiple producer/consumer scheduling problems in which producers (mines)

are able to generate a range of products (ore of varying grade and quality), and consumers (ports)

require a combination (a blend) of these products to meet deterministic (known a priori) demands.

We extend existing work by Blom et al. (2014) in which a decomposition-based algorithm for the

single time period MMPP was developed. In this paper, we consider the significantly more complex

multiple time period setting, in which multiple time period schedules must be generated for each

mine that are both feasible to enact, and lead to correct blending at the ports. We incorporate

additional constraints into our modelling of the MMPP, not present in the single time period model

of Blom et al. (2014), to develop a higher fidelity representation of operational behaviour at each
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mine. Moreover, we describe a general class of multiple producer/consumer problems to which our

solving approach can be applied, instances of which appear in a wide range of domains.

The MTP-MMPP is significantly more complex than the single period MMPP solved by Blom

et al. (2014). This is primarily due to the combinatorial complexity of selecting regions of material

to extract across multiple time periods, and several mines – where many extraction schedules are

possible – to optimise an objective that is dependent on the activity at each mine, in each period.

A solution to the short-term MTP-MMPP schedules the movement of material, from available

sources of ore and waste at each mine, to appropriate destinations, and the transport of ore between

each mine and port, in each time period of a scheduling horizon. In the short-term, for the case

study we consider in this paper, this horizon is 13 weeks long, split into weekly periods. During each

time period, at each mine, ore from a variety of sources is processed and blended in a stockyard,

producing ore of a specific grade and quality. Ore is reclaimed from this stockyard onto trains, railed

to a port, and blended with ore from other mines to form desired products. An optimal solution to

the MTP-MMPP requires coordination across mines. The grade and quality of production at each

mine, in each period, must support the formation of correctly blended products at each port.

In practice, short-term planning in a network of open-pit mines proceeds with the independent

construction of block extraction schedules at each mine, by individual short-term planners. In this

process, the short-term planner at each mine is guided by a five year, or medium-term, plan. This

plan sets monthly grade and quality targets on mine production – assumed to be both achievable

given the estimated composition of material in pit benches, and supportive of port blending con-

straints. In the short-term, such targets may not be achievable (in conjunction with full usage of

processing plants) at one or more mine sites, during one or more time periods, jeopardising the

production of blended products at each port. The collaborative adjustment of grade and quality

targets assigned to a set of mines, in the generation of short-term plans, can ensure that each mine

is assigned goals that can be met, while achieving maximal use of processing facilities.

We present a non-linear mixed integer program (MINLP) modelling of the MTP-MMPP. This

model is a bilinear program – involving the product of two continuous variables in its constraints. At

the short-term horizon, a schedule for a mine site evaluates the average grade of processed material

in each time period, and assumes that each train departing the mine in that period carries this

grade. We can imagine that all material processed at the site feeds into linearly blended ‘virtual’

stockpiles, from which trains are loaded. This abstract view of mining operations is considered to

be a reasonable approximation for the purposes of short-term scheduling. Bilinear constraints are

required to ensure that the grade of material leaving each virtual stockpile is equivalent to the

combined grade of the material entering it. The relaxation of these bilinear constraints, in terms of

McCormick (1976) envelopes, results in solutions with significant deviations present between actual
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port product composition and desired bounds (as shown in Section 6). Tighter piecewise-linear

relaxations of these constraints were considered for the single period MMPP, and were unable to

satisfactorily reduce the resulting deviations (Blom et al. 2014).

The MTP-MMPP, as modelled in this paper, is similar in structure to a pooling problem (Haverly

1978). Such problems model the blending of materials in a feed forward network of source nodes

(sources of ore at each mine), intermediate blending pools (virtual stockpiles), and terminal nodes

(products formed at each port), under the assumption of linear blending at pools and terminals.

Optimisation of the network assigns a rate of flow along each arc, such that profit is maximised

and correctly blended products formed at terminals (Misener and Floudas 2009). The principal

source of non-linearity in the MTP-MMPP is the modelling of the composition of port products.

The assumption that ore produced by each mine is uniformly blended is reasonable in light of

the way this material is stacked in the mine’s stockyard, and reclaimed onto trains. Each stockyard

contains one or more chevron stacked stockpiles. Material is spread across these stockpiles in layers,

each layer containing material of a similar composition. Each stockpile is reclaimed, once built to

a desired size, in slices, extracting material from each layer in a roughly equal proportion. The

blending efficiency of a stacking and reclaiming method is defined as the ratio of variance in the

grade of material leaving the stockpile (σ2
out) to that entering (σ

2
in) (Kumral 2006). Modern methods

can achieve blending ratios of 1 : 10, reducing variance in grade by a factor of 10 (Müller 2010). For

the mines and ports in the case study we consider in this paper, a 1 : 5 blending effect is achieved. In

both planning and practice, running averages are used to represent stockpile composition (Everett

1996). Grade targets to be met by the blended products formed at the ports are placed on average

grades. As ore moves through the supply chain in large quantities (trainloads are tens of kilotons,

and each shipload ranging from tens to hundreds of kilotons), it is safe to assume that the average

composition of reclaimed material does not differ appreciably from that of built stockpiles. We

compute, in Section 6, the average variance in grade in the blends formed at each port in our case

study network, across solutions generated over multiple runs of our decomposition-based algorithm.

At each mine site in our case study, ore that is mined, but not processed, in a time period, is

placed on one of a number of stockpiles. Material on these stockpiles can be reclaimed, and pro-

cessed, in a later period. Tracking the composition of stockpiles over multiple time periods is known

to introduce non-linearities into the modelling of a mine (Bley et al. 2012). Additional bilinear

constraints, of the form introduced by Bley et al. (2012), are included in our MINLP to model the

changing composition of stockpiles at each mine. We show, in this paper, that stockpiles cannot

be modelled as maintaining a constant grade across the scheduling horizon without introducing

significant errors in the estimated (versus actual) composition of blended port products.
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Figure 1 An overview of the decomposition-based algorithm for the MTP-MMPP.
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Blom et al. (2014) introduce an algorithm for discovering high quality solutions to a MINLP

model of the single period MMPP. In this algorithm, the open-pit production scheduling task is

decomposed into multiple subproblems: a set of optimisation problems solved on behalf of a set

of mines (generating a set of candidate production schedules for each mine); and an optimisation

problem solved on behalf of a network of ports (selecting a candidate schedule to be enacted at

each mine, and routing trains of ore between mines and ports). The solving of these subproblems

is iterated, with the solution of each mine-side optimisation providing an input to the port-side

problem, and the port-side optimisation informing the decisions made at each mine, in subsequent

iterations. In this paper, we adapt this algorithm to find high quality solutions to the MTP-MMPP

MINLP. The key differences between the single period algorithm of Blom et al. (2014), and the

multiple time period algorithm of this paper, lies in the nature and implementation of the mine- and

port-side optimisation problems, and the feedback mechanism that exists between these problems

in each iteration. A diagram of the main components of the algorithm is shown in Figure 1.

The algorithm presented in this paper, to the best of our knowledge, is the first work to solve

an integrated production scheduling problem, involving multiple open-pit mines and a horizon of

multiple periods, where the grade and quality of ore to be produced by each mine is not known

a priori, but determined as part of the optimisation. We show that the algorithm of Blom et al.

(2014) can be successfully adapted to the more complex multiple time period setting. Most crucial

in this transition is the existence of a sufficiently fast and reliable method to generate multiple

time period schedules for each mine in our network. Each schedule must achieve acceptable levels

of equipment utilisation in each period, while producing ore that is close to a desired grade and

quality. The decision of what to mine in each period has a direct influence on what regions of ore

will be accessible later in the horizon. These complexities do not arise in the single period problem

of Blom et al. (2014). Full utilisation of available processing capacity is not enforced in this earlier

work. Moreover, the need to ensure adequate availability of ore in future periods, or model the
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changing state of stockpiles, is not considered. Given the absence of appropriate techniques in the

literature, we develop and present a novel heuristic approach for constructing such schedules.

In the multiple time period setting, each mine-side problem is solved via the use of hierarchical

planning methods (Bitran and Hax 1977, Hax and Meal 1973), namely: decomposition; aggregation

(of units of extraction – known as ‘blocks’); and a rolling horizon solution strategy. The task of

generating a multiple time period extraction schedule for a mine is decomposed into two subprob-

lems: a high-level planning task in which blocks are grouped into aggregates, and the mining of

these aggregates is scheduled; and a detailed scheduling problem in which we consider the mining

of individual blocks. Both problems are solved with a rolling horizon heuristic. The latter prob-

lem is restricted to extracting blocks that form part of an aggregate mined in the solution to the

high-level planning task. The result is an efficient heuristic for schedule generation at a mine. In

the single time period setting of Blom et al. (2014), such schedules can be quickly found by solving

a single mixed integer program (MIP). Given multiple time periods, and the presence of bilinear

constraints, generating a schedule by solving a monolithic MINLP is prohibitively time consuming,

motivating the need for a heuristic method. Our rolling horizon heuristic monitors the changing

state of each stockpile at a mine site, without the need for non-linear constraints. It is important to

emphasise, however, that a MIP model of this scheduling task, under the assumption of constant

stockpile grades, is also prohibitively time consuming to solve. This is the result of combinatorial

complexities that arise with the introduction of multiple inter-dependent time periods.

Each mine-side problem is designed to generate a set of (up to) N mineable schedules per mine,

with the grade of the ore produced across these schedules clustered about a given grade and quality

profile. The multiple-time period port-side subproblem is designed to accept a set of (up to) N

mineable block extraction schedules from each mine-side optimisation. Formulated as a MIP, a

solution characterises the flow of ore between each mine and port, in each time period, and selects

a schedule, of the N schedules available for each mine, to be enacted. The objective in this blending

problem is to form products at each port whose composition, in each time period, does not deviate

from desired bounds on grade and quality. Ore available in the stockyards of each mine, in any

given period t, includes that produced by the mine in t, and left-over material (ore produced but

not railed to a port) of prior periods. The resulting MIP is more complex than the port-side MIP

of Blom et al. (2014). The state of the stockyard of each mine, in each period, is no longer a known

constant, but a variable dependent on the decisions of prior time periods. The port-side problem

provides, as an output, grade targets forming the input to each mine-side optimisation in the next

iteration. These targets are based on the grade and quality of ore produced by each mine, in each

period, in the best solution found to the port-side MIP across all prior iterations. The schedules

formed by each mine-side optimisation, in the next iteration, will produce ore whose grade is
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clustered about these new targets. Each mine is, in this way, guided toward finding solutions to its

optimisation problem that allow each port to form correctly blended products.

The MTP-MMPP is an instance of a multiple period, multiple producer/consumer scheduling

problem in which a set of independently operating producers supply a set of consumers with

products to meet deterministic demands. Each consumer combines products sourced from multiple

producers to generate their own products for export to an external market. We present two examples

of such problems in the domain of food production – the harvesting, transport, and processing of

grapes in a wine production supply chain; and the preservation of fruit across a set of producers for

supply to exporters, supermarkets, and other consumers. We describe how our decomposition-based

approach to the scheduling of supply networks can be applied in these examples.

The key contributions of this paper are: the presentation of a MINLP model of the MTP-MMPP;

a decomposition-based algorithm for solving the MTP-MMPP, significantly extending that of Blom

et al. (2014); an efficient heuristic for the generation of 13 week schedules at individual mine sites

(with stockpiles), forming a core component of our approach; the investigation of several methods

for the generation of feedback between the port- and mine-side subproblems in our algorithm; an

evaluation of our algorithm on a real, and currently operating, network of open-pit mines, using

industry supplied data; and the identification of a general class of problems to which our approach

can be applied. Our case study in this paper is a currently operating network of 8 mines and 2

ports, producing over 200 million tons of ore annually at the time of data collection.

The remainder of this paper is structured as follows. In Section 2, we highlight existing work

related to the MTP-MMPP. We describe the MTP-MMPP domain in Section 3, presenting a

MINLP representation of the problem in Section 4. We describe, and evaluate, our decomposition-

based algorithm in Sections 5 and 6. In Section 7, we describe a class of multiple producer/consumer

production planning problems to which the methodology we describe in this paper can be applied.

2. Related Work

Weintraub et al. (2008) propose the idea of aggregating MIP models, each designed to schedule a

mine in a network of copper mines, for the purpose of making integrated decisions. Two types of

aggregation are considered: the grouping of blocks into larger units of extraction; and the aggre-

gation of columns in a MIP representation of the scheduling problem. Both types of aggregation

are applied to a single-mine scheduling problem, and the extent to which problem size is reduced

is analysed. These techniques were not, however, applied to a case-study involving multiple mines.

While there exists work in which the mine-to-port transport problem, in a network of multiple

mines and ports, is optimised (Thomas et al. 2012, 2013, Singh et al. 2013), the composition and

tons of ore produced at each mine, in each time period, is known a priori, in contrast to the
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problem we tackle in this paper. Epstein et al. (2012) present an approach to integrate long-term

production scheduling across multiple copper mines (both open-pit and underground) that share

downstream processing plants. Each mine produces one or more commercial products, each with

defined characteristics (copper grade and contaminant levels). Decision variables determine the

tons of each product produced at each mine, and the flow of this material through a network of

stockpiles and plants. The grade and quality of production at each mine in this network is known

a priori, with the tons of each type of product formed determined as part of the optimisation. The

problem can thus be modelled as a MIP, in contrast to the MTP-MMPP, which we model as a

MINLP, with decision variables denoting the grade and quality of production at each mine.

Our method of generating single-mine extraction schedules, forming a key component of our

algorithm, embodies the concepts of hierarchical production planning (Hax and Meal 1973, Bitran

and Hax 1977). We first aggregate blocks into larger units of extraction, and schedule the mining

of these aggregates over our planning horizon. The original problem is then solved, removing from

consideration all blocks not part of an aggregate scheduled for extraction.

The use of aggregation – of data or time – is commonly used to reduce the complexity of an

optimisation problem (Rogers et al. 1991). Newman and Kuchta (2007) aggregate time periods

into phases in an approach for long-term production scheduling at an underground mine. The

key decision variable is machine placement – when to place machines in, and consequently mine,

specific regions in the orebody. The phases in which machine placements are started in a solution to

this aggregated model, are used to restrict machine placements when solving the original problem.

Tabesh and Askari-Nasab (2011) cluster blocks into larger units of mining, on the basis of material

type, grade, and location, to reduce the complexity of long-term scheduling in a single open-pit

mine. Ramazan (2007) aggregate blocks, in a long-term production scheduling problem, to form

‘fundamental trees’ – minimal collections of blocks that have a positive total economic value,

and can be extracted without violating slope constraints – significantly reducing the number of

integer variables required in MIP formulations of such problems. Boland et al. (2009) schedule the

extraction of block aggregates, in the long-term scheduling of an open-pit mine, while allowing

decisions regarding what material is sent to a processing plant to be made at a sub-aggregate level.

For pooling problems involving time, such as the scheduling of crude oil refineries (Shah 1996,

Wenkai et al. 2002, Màs and Pinto 2003, Reddy et al. 2004, Bengtsson et al. 2013) and the planning

or design of oilfield infrastructure (Iyer and Grossmann 1998, van den Heever and Grossmann 2000,

Carvalho and Pinto 2006), solution techniques are commonly hierarchical or decomposition-based

in nature. Shah (1996) consider a crude oil scheduling problem in which oil arriving on ships is

allocated into port tanks, piped into storage tanks at a refinery, and allocated to crude distillation

units (CDUs) for processing. This problem is decomposed into two parts, solved sequentially: an
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upstream problem responsible for the allocation, over time, of crude oil arriving on ships to port

tanks, and the sequence in which port tanks are discharged to feed a pipeline to the refinery; and

a downstream problem in which the refinery tanks being supplied by the pipeline, and the tanks

being discharged to specific CDUs, in each time period, is determined. We take a similar approach

in our decomposition of the mining supply chain into a (downstream) mine-port transportation

and blending problem, and a series of (upstream) scheduling problems at each mine.

Sundar and Acharya (1995) present a two-stage approach for short-term scheduling at an open-

pit mine, first determining the set of blocks to be blasted over the planning horizon, and secondly

scheduling the extraction of material in some (or all) of these blocks, in each period. Our method

of schedule generation, and the approach of Sundar and Acharya (1995), both select a subset of

blocks to be excluded from any schedule formed. We aim to maximise the number of blocks in this

set, to reduce the complexity of the scheduling problem, while Sundar and Acharya (1995) aim to

minimise the size of this set, maximising the number of blocks blasted in the blasting schedule.

We make use of a rolling horizon technique to generate extraction schedules for individual mines.

In this approach, the short-term horizon is discretised into two periods of length 1 and T − 1

where T denotes the length of the horizon. A two-period scheduling problem is solved, in which

the grade of stockpiles is assumed to remain constant, while their volume is permitted to vary,

and the activity of period 1 fixed. The grade of each stockpile at the mine, at the end of period

1, is calculated. The remainder of the horizon (periods 2 to T ) is re-discretised, and this process

repeated (using the updated grades for each stockpile), until all T periods are scheduled. The use

of a rolling horizon allows us to monitor the changing composition of stockpiles over time, while

avoiding the need for non-linear constraints. Goodwin et al. (2006) solve a long-term mine planning

problem using a similar approach, termed receding horizon control. Time is discretised into periods

of non-uniform size, with the quantisation becoming increasingly coarse toward the end of the

horizon. The scheduling problem is solved, and the activities of the first period fixed. The remaining

periods are re-discretised, and the scheduling problem solved on the reduced horizon. This process

continues, and a schedule – whose time periods are uniformly discretised – is generated.

Cullenbine et al. (2011) describe a sliding time window heuristic (STWH) for solving a long term,

multiple period, open-pit block sequencing problem, in which a series of integer programs (IPs) are

generated and solved. In the first IP, the full set of problem constraints are enforced in the first τ

time periods, and a Lagrangian relaxation of the model in the remainder. The solution to this IP

is used to fix the variables in the first time period, after which the window of τ periods is moved

forward by one, and a second IP enforcing all constraints between periods 2 and 1+ τ , is solved.

The heuristic repeats this process, and terminates once the last period is scheduled. Lambert and

Newman (2013) use the STWH to find an initial feasible solution to a constrained ultimate pit and
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block sequencing problem. Where Cullenbine et al. (2011) use Lagrangian relaxation to reduce the

complexity of the generated IPs, our approach aggregates time periods, while enforcing all problem

constraints in those periods. Our heuristic, and the STWH, do not guarantee that a schedule will

be found. However, we demonstrate in Section 6 that the frequency with which our heuristic fails

to form a solution, for mines in our case study network, is extremely small. Moreover, we show that

a less aggressive aggregation of time periods, forming subproblems of more than two periods, does

not result in an improvement to the quality of solutions found to the MTP-MMPP, and incurs a

significant computational penalty. Similarly, the increase in solve time resulting from setting τ > 1

in the work of Cullenbine et al. (2011) was found to outweigh any improvement in solution quality.

Beyond the domain of mine planning, the use of aggregation, disaggregation, and rolling horizon-

like techniques, is prevalent in the production scheduling literature (see Rodrigues et al. (1996),

Bassett et al. (1996), Dimitriadis et al. (1997), Elkamel et al. (1997), Iyer and Grossmann (1998),

van den Heever and Grossmann (2000), Màs and Pinto (2003), Reddy et al. (2004), Méndez et al.

(2006), Janak et al. (2006), and Maravelias and Sung (2009), for examples). We refer the reader

to Osanloo et al. (2008), Newman et al. (2010), Espinoza et al. (2012), and Lambert et al. (2014),

for thorough reviews on the use of optimisation in open-pit mining, a description of common

problems arising in the scheduling and operation of open-pit mines, unaddressed challenges for

future research, and techniques for expediting the solving of block sequencing formulations.

3. Modelling the Multiple Mine Network

Let M denote a set of mines, connected by rail to a set of ports, Π. We consider the open-pit

mining of ores that are sold in two granularities – lump and fines – distinguished by their particle

size. At each mine m∈M, in each period t, t∈ {1,2, .., T}, ore and waste is extracted, by dig units

(eg. loaders, shovels, and excavators), from geological regions (known as ‘blocks’), processed into

lump (6 to 31 mm) and fines (< 6 mm) granularities, and loaded onto trains to be railed to a port

π ∈Π. Ore arriving at each port is blended onto stockpiles, from which it is loaded onto ships for

delivery to customers. Appendix A outlines the meaning of notation used throughout this paper.

Each mine m contains a set of grade, Bg
m, and blast blocks, Bb

m. A short-term plan selects a

number of blocks, from either set, to be extracted, and the destination of this material (stockpiles

or processing plants), in each time period. Grade blocks are regions of similar composition, and

form the broken stock of a mine – ore and waste that has been primed for extraction (blasted).

Each blast block is a region of material that has not yet been blasted, and divided into grade

blocks. For each block b ∈ Bm = Bg
m ∪Bb

m, A∧
m,b denotes the set of blocks that lie directly above b,

all of which must be mined before b can be accessed. A∨
m,b denotes the set of blocks adjacent to

b∈Bm, in the same bench, only one of which must be mined before b can be accessed.
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Each block b ∈ Bm, at t = 1, contains one or more types of material – T t=1
hi (b) tons of high

grade, T t=1
lo (b) tons of low grade, and T t=1

w (b) tons of waste – distributed throughout the block.

For each grade block b ∈ Bg
m, T

t=1
k (b) is non-zero for only one value of k. The composition of the

high, low grade, and waste material in b ∈ Bm is defined in terms of the percentage of a number

of elements, Q, denoting metal grade and impurities, in its lump and fines components (Gm,k
b,l,q for

q ∈Q, l ∈L, and k= hi, lo, and w). The split of material k in a block b∈Bm, denoted Sm,k
b,l , defines

the percentage of material k in b that will split (upon processing) into granularity l ∈L.

The waste in a block is hauled, by truck, to a waste dump (δ ∈∆m). High grade ore is hauled

to a dry processing plant (κ), or a high grade stockpile (θ ∈Θm). Low grade ore is hauled to a low

grade stockpile (λ ∈ Λm), or a wet processing plant (ω), if one exists at m. Material on high and

low grade stockpiles is fed, if needed, to the dry and wet processing plants, respectively. The tons

of material on each stockpile s ∈Θm ∪Λm ∪∆m at t= 1 is denoted T t=1(s). The split of ore in a

stockpile s∈Θm ∪Λm is denoted Sm,t=1
s,l , and its composition by Gm,t=1

s,l,q for q ∈Q and l ∈L.

A wet processing plant upgrades low grade ore, producing a stream of (rejected) tailings and a

concentrate, as described by Blom et al. (2014). The tons of valuable metal (and other attributes)

in this concentrate is proportional to the tons of input feed (as per a recovery factor Rm,ω
l,q for

q ∈Q). The tons of concentrate produced is proportional to the tons of input feed (as per a yield

factor Y m,ω
l ). This concentrate is blended with lump and fines ore produced by the dry plant.

Capacities exist on the: extraction of material at each mine, Cm
e tons per period, on the basis

of available dig units; tons of material hauled by truck, Cm
τ tons per period; tons of ore processed

by the dry and wet plants, Cm
κ and Cm

ω tons per period; the tons of material permitted on each

stockpile s ∈ Θm ∪ Λm ∪∆m, C
m
s tons; and the tons of ore handled at each port π, per period,

Cπ. The capacity of each plant must be fully utilised to maximise production across the network.

To maximise productivity, dig and trucking resources must also be fully utilised. In practice, full

utilisation of both types of resource is not possible, as the dig and truck fleets will differ in capacity.

Ore produced by each mine is transported in TR ton trainloads to a port π ∈ Π. Ore arriving

at each port π is blended to form a set Nπ,l of products of each granularity l ∈ L. Each product

n ∈Nπ,l is associated, in each time period t, with bounds on its grade and quality, expressed in

terms of a lower (Lπ,l,t
n,q ) and upper (Uπ,l,t

n,q ) bound on the percentage of each q ∈Q.

The set of ore and waste sources at minem is denoted Sm =Bm∪Θm∪Λm. The set of destinations

to which such sources can be transported is denoted Dm = {κ,ω}∪∆m ∪Θm ∪Λm. Variables x
m,t
s,d

for s∈ Sm and d∈Dm denote the tons of each source s extracted and hauled to each of its possible

destinations d, at m, in period t. Variable rl,n,t
′

m,π,t denotes the floating point number of trainloads

of granularity l ∈ L, produced by mine m in period t′, and transported by rail from m to port π,

in period t, to be blended into product n ∈Nπ,l. The port system need not rail the entirety of a
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mine’s production to a port in any given time period. We assume that any remaining ore in the

stockyard of a mine at the end of a time period t, must be transported to a port in period t+1.

Our modelling of the MTP-MMPP differs from the single period problem of Blom et al. (2014)

in that: scheduling decisions are indexed by time; blocks contain multiple types of material, each of

which must be sent to different destinations; wet and dry plants are constrained to be fully utilised

in each period; high and low grade stockpile composition is tracked over time (via the addition of

non-linear constraints); and the integrality of trainloads is relaxed. The transport of ore between

mines and ports is not modelled in great detail, with emphasis placed on mapping ore produced at

each mine to the products shipped from each port. Relaxing trainload integrality allows us to model

the distribution of trainloads of ore to multiple products at a port, and the transport of partial

trainloads of ‘left over’ ore, produced at a mine in prior periods, but not railed to a port. While,

in practice, ‘left over’ material is blended with new production and transported in full trainloads,

this approximation avoids the need for additional non-linear constraints modelling the changing

composition of stockyard stockpiles. A higher fidelity modelling of the transport network between

mines and ports, and the operational processes of each port, is planned as future work.

The addition of time periods, in conjunction with the mining precedences that exist between

blocks, significantly increases the complexity of the MMPP. Each mining decision has an influence

on what can be accomplished in remaining time periods, and whether an adequate supply of

processable ore, available for extraction, will exist to meet the future needs of each plant.

4. A MINLP Model of the MTP-MMPP

Given a network of mines M, ports Π, and parameters (of Appendix A), the MTP-MMPP is

defined as finding an instantiation of variables: xm,t
s,d , for each m ∈M, t ∈ {1,2, .., T}, s ∈ Sm, and

d ∈Dm; and rl,n,t
′

m,π,t for each m ∈M, π ∈Π, t, t′ ∈ {1,2, .., T}, l ∈L, and n ∈Nπ,l. A solution to the

MTP-MMPP defines the flow of ore and waste across each mine, and the transport of ore between

each mine and port, in each of the T time periods in our planning horizon.

Our objective in the MTP-MMPP is to minimise the total deviation present between the compo-

sition of products formed at each port, over the given horizon, and desired upper and lower bounds,

while maximising the productivity of each mine. We define productivity in terms of the ‘desirable

utilisation’ of dig and trucking resources. Dig and trucking capacity not used in the extraction of

ore to supply processing plants, should be used for other purposes – for example, the removal of

waste to expose ore for future extraction. The transfer of ore to a stockpile, and then from that

stockpile to a plant – a process known as ‘double handling’ – is to be avoided, unless required to

ensure that processing plants are able to be run continuously at full capacity. This may occur if a

mine needs to enter a phase of increased waste removal, reducing the portion of resource capacities
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devoted to mining processable ore. In this instance, ore from stockpiles, located near processing

plants, can be used to offset the reduction in processable ore being supplied from each pit.

4.1. The Objective

Let variable rvm,l,q,t′

π,n,t denote the tons of attribute q ∈ Q, from granularity l produced at mine

m in period t′, blended into product n ∈ Nπ,l at port π in period t; β1 and β2 constants such

that β1≫ β2; x⃗ and r⃗ the set of all xm,t
s,d and rm,l,t′

π,n,t variables, respectively, where m ∈M, s ∈ Sm,

d∈Dm, π ∈Π, l ∈L, n∈Nπ,l, and t, t′ ∈ {1,2, .., T}; η(x⃗, r⃗, t) a measure of the extent to which port

products deviate from desired bounds, in period t (Equation 2); and ρm(x⃗, t) the productivity of

mine m in period t (Equation 3). The objective of the MINLP, ZMTP−MMPP in Equation (1), is to

minimise deviation that exists between the composition of port products and desired bounds, and

to maximise the productivity achieved at each mine, across all time periods.

ZMTP−MMPP =min
T∑

t=1

[
β1η(x⃗, r⃗, t)−β2

∑
m∈M

ρm(x⃗, t)

]
(1)

In the following: ∆+
q denotes a significant change in the percentage of attribute q ∈Q in a body

of ore;1 Φm
ω a binary parameter whose value is 1 if mine m has facilities to process low grade ore

(and 0, otherwise); f(t) =max(1, t− 1); and g(t) =min(t+1, T ).

η(x⃗, r⃗, t) =
∑
π∈Π

∑
l∈L

∑
n∈Nπ,l

∑
q∈Q

1

∆+
q

max

0, ∑
m∈M

t∑
t′=f(t)

rvm,l,q,t′

π,n,t −Uπ,l,t
n,q

∑
m∈M

t∑
t′=f(t)

TR rm,l,t′

π,n,t


+
∑
π∈Π

∑
l∈L

∑
n∈Nπ,l

∑
q∈Q

1

∆+
q

max

0, Lπ,l,t
n,q

∑
m∈M

t∑
t′=f(t)

TR rm,l,t′

π,n,t −
∑
m∈M

t∑
t′=f(t)

rvm,l,q,t′

π,n,t

 (2)

Equation (3), below, calculates the productivity of a mine in terms of the tons of waste hauled

to a dump, and the occurrence of undesirable stockpiling. Hauling low grade ore to a stockpile is

considered undesirable only if the mine has facilities for its upgrade.

ρm(x⃗, t) =
∑
s∈Sm

[ ∑
δ∈∆m

xm,t
s,δ −

∑
θ∈Θm

xm,t
s,θ +(1− 2Φm

ω )
∑
λ∈Λm

xm,t
s,λ

]
(3)

1 The value of ∆+
q may be 0.1%, for example, if q denotes metal percentage, or on the order of 0.001% for an impurity.
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4.2. Constraints

For brevity, we present the subset of constraints in the MTP-MMPP that either do not appear in

the single period MINLP of Blom et al. (2014), or differ significantly in the multiple period setting.

The full set of constraints in our MINLP model of the MTP-MMPP is presented in Appendix B.

Let τm,t
l denote the tons of granularity l produced at m in t; vm,t

l,q the (fractional) percentage of

q ∈Q in the ore of granularity l produced at m in t; yσ,b
m,t a binary variable with value 1 if and only

if block b is, at least, partially mined by the end of period t; yτ,b
m,t a binary variable with value 1 if

and only if b is completely mined by the end of t; at,s,d
m,l the tons of granularity l in the material on

stockpile s∈Θm∪Λm sent to destination d∈ {κ,ω} in t; at,s,d
m,l,q the tons of attribute q in the ore of

granularity l sent to destination d, from stockpile s, in t; om,t
s the tons of material on stockpile s

at the start of t; om,t
s,l the tons of granularity l in the material on stockpile s at the start of t; and

om,t
s,l,q the tons of attribute q in the ore of granularity l on stockpile s at the start of t. The values

of all variables, excepting binaries yτ,b
m,t and yσ,b

m,t, are restricted to non-negative reals.

Constraint (4) ensures that, in each period, the processing of ore at each plant is equal, within

a tolerance ϵ, to Cm
d for d ∈ {κ,ω}. Constraint (5) ensures that all ore produced by each mine m

in each period t is transported to a port by the end of period t+1.

Cm
d − ϵ≤

∑
s∈Sm

xm,t
s,d ≤Cm

d + ϵ ∀ m∈M, d∈ {κ,ω}, t∈ {1,2, .., T} (4)

g(t′)∑
t=t′

∑
π∈Π

∑
n∈Nπ,l

TR rm,l,t′

π,n,t = τm,t′

l ∀ m, l, t′ ∈ {1,2, .., T} (5)

For k ∈ {hi, lo,w}, Constraint (6) sets the value of binaries yσ,b
m,t (1 if the mining of b ∈ Bm has

been scheduled by, or during, t) and yτ,b
m,t (1 if b is to be entirely extracted by, or during, t).

yτ,b
m,t

∑
k

T t=1
k (b)≤

t∑
t′=1

∑
d∈Dm

xm,t′

b,d ≤ yσ,b
m,t

∑
k

T t=1
k (b) ∀ m∈M, b∈Bm, t∈ {1,2, .., T}, (6)

Constraint (7) ensures that no blast blocks are mined prior to a specific time period, TBm, at

each mine m ∈M. Prior to TBm, only grade blocks can be extracted at m. Constraints (8)–(11)

ensure that stockpile capacities are respected and that no more than om,t
s tons (the tons of ore on

stockpile s at the start of t) can be extracted from any stockpile s∈Θm ∪Λm in any period t.

yσ,b
m,t = 0 ∀ m∈M, b∈Bb

m, t < TBm, (7)
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om,t
s = T t=1(s) ∀ m∈M, s∈Θm ∪Λm, t= 1, (8)

om,t
s = om,t−1

s −
∑

d∈{κ,ω}

xm,t−1
s,d +

∑
b∈Bm

xm,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (9)

om,t
s −

∑
d∈{κ,ω}

xm,t
s,d +

∑
b∈Bm

xm,t
b,s ≤Cm

s ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (10)

om,t
s −

∑
d∈{κ,ω}

xm,t
s,d ≥ 0 ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (11)

Constraints (12)–(15) define the tons of each granularity l ∈ L and attribute q ∈Q residing on

each stockpile s∈Θm ∪Λm at the start of period t.

om,t
s,l = Sm,t=1

s,l T t=1(s) ∀ m∈M, s∈Θm ∪Λm, l ∈L, t= 1, (12)

om,t
s,l = om,t−1

s,l −
∑

d∈{κ,ω}

am,t−1,d
s,l +

∑
b∈Bm

Sm
b,l x

m,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, l ∈L, (13)

t∈ {2,3, .., T},

om,t
s,l,q = Sm,t=1

s,l Gm,t=1
s,l,q T t=1(s) ∀ m∈M, s∈Θm ∪Λm, l ∈L, (14)

q ∈Q, t= 1,

om,t
s,l,q = om,t−1

s,l,q −
∑

d∈{κ,ω}

am,t−1,d
s,l,q +

∑
b∈Bm

Sm
b,lG

m
b,l,q x

m,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, l ∈L, q ∈Q, (15)

t∈ {2,3, .., T},

Constraints (16)–(17) ensure that the composition of material leaving each stockpile s∈Θm∪Λm

for a processing plant d∈ {κ,ω} in each period t is equal to that of the stockpile at the start of t.

These bilinear constraints, introduced in the work of Bley et al. (2012), add
∑
m

T |L| |Θm∪Λm| and∑
m

T |L| |Q| |Θm ∪Λm| bilinear terms to the model, respectively. Each stockpile can supply either

the dry (κ) or wet (ω) processing plants, but not both. Constraints restricting the movement of

material along valid source to destination pathways are provided in Appendix B.

am,t,d
s,l om,t

s = xm,t
s,d om,t

s,l ∀ m∈M, s∈Θm ∪Λm, d∈ {κ,ω}, l ∈L, t∈ {1,2, .., T} (16)

am,t,d
s,l,q om,t

s,l = am,t,d
s,l om,t

s,l,q ∀ m∈M, s∈Θm ∪Λm, d∈ {κ,ω}, l ∈L, q ∈Q, t∈ {1,2, .., T} (17)

Variables τm,t
l and vm,t

l,q are linked by Constraint 18, where νm,t
l,q denotes the tons of q ∈Q in the

ore of granularity l ∈L produced by mine m in t. The equations defining variables τm,t
l , vm,t

l,q , and

the quantity νm,t
l,q , are provided in Appendix B. Constraint (19) defines variable rvm,l,q,t′

π,n,t , used in
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Equation (2). Constraints (18)–(19) introduce T |M| |L |Q| and
∑
π∈Π

∑
l∈L

(2T − 1) |Q| |Nπ,l| bilinear

terms to the model, respectively.

vm,t
l,q τm,t

l = νm,t
l,q ∀m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q, (18)

TR rm,l,t′

π,n,t vm,t′

l,q = rvm,l,q,t′

π,n,t ∀ m∈M, t∈ {1,2, .., T}, t′ ∈ {f(t), t}, l ∈L, q ∈Q, n∈Nπ,l. (19)

5. A Decomposition-Based Algorithm

Blom et al. (2014) present an iterative, decomposition-based algorithm for the single time period

MMPP. The steps of this algorithm, shown in Algorithm 1, remain the same in the case of multiple

time periods. The mine- and port-side subproblems solved in each iteration, however, are signifi-

cantly more complex in the multiple time period setting. The key elements of this algorithm are

the decomposition of the MTP-MMPP into mine- and port-side subproblems, denoted Om and OΠ,

respectively; the solving of each Om and OΠ in succession to produce a solution to the MTP-MMPP

(Steps 7–8); the recording of the best found solution, denoted s⃗best, after each iteration (Step 9);

and the passing of feedback, by OΠ, to each Om, at the end of each iteration (Step 10).

Each Om subproblem is responsible for generating a set of (up to) N block extraction schedules

for mine m∈M (Step 7). A grade and quality target, denoted ϕ⃗m, stating the desired percentage

of each attribute q ∈ Q in each granularity l ∈ L to be produced by m, in each time period, is

provided as input. A set of (up to) N schedules, whose production lies in the vicinity of this target,

is formed. Recall that each schedule defines the movement of material across mine m – from each

source s∈ Sm (blocks and stockpiles) to each destination d∈Dm (stockpiles and plants) – in each

time period t, instantiating variables xm,t
s,d for all t∈ {1,2, .., T}.

Diversity in the grade of ore produced, across the N schedules formed by Om, is controlled by a

vector of standard deviations σ⃗m, containing one standard deviation for each combination of q ∈Q,

l ∈ L, and t ∈ {1,2, .., T}, forming a second input to each Om. Smaller standard deviations lead

to a set of schedules, across which, the grade of produced ore is more tightly clustered about the

assigned target, ϕ⃗m. Section 5.1 describes, in more detail, how each Om is formulated and solved.

The OΠ subproblem is given a set of (up to) N schedules, from each Om, and must select one

schedule in each set to be enacted (Step 8). The goal of OΠ is to form correctly blended products

at each port, from the ore produced at each mine. If OΠ cannot find such a selection of schedules,

one for each mine, for which port products are correctly formed, the selection that allows it to

minimise deviation between the grade and quality of port products and desired bounds is made.



:
16 Management Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Algorithm 1 A decomposition-based algorithm for the MTP-MMPP, where: ∆+
q and ∆−

q denote significant

and insignificant changes in q ∈ Q percentage, respectively; Ξm a medium-term grade and quality target

assigned to mine m∈M; and MAXi a cap on the number of iterations of the algorithm executed.

1: s⃗best←∅

2: σ⃗+←{σ+
l,q =∆+

q |l ∈L, q ∈Q}

3: σ⃗−←{σ−
l,q =∆−

q |l ∈L, q ∈Q}

4: i← 1

5: Initialise expected mine targets and standard deviation sets: ϕ⃗i
m←Ξm and σ⃗i

m← σ⃗+, for all m∈M.

6: repeat

7: Solve each Om to find (up to) N schedules for mine m, Ωi
m, producing ore whose composition is

clustered about ϕ⃗i
m with a spread determined by the standard deviations in σ⃗i

m.

8: Solve OΠ given sets Ωi
m ∪{s⃗best,m} from each m ∈M, where s⃗best,m ∈ s⃗best is the schedule to be

enacted by m in the best solution found thus far. Select a schedule to be enacted at each mine,
and a routing of ore between mines and ports, forming a solution s⃗i to the MTP-MMPP.

9: Update best solution s⃗best if and only if ZMTP−MMPP (s⃗i)<ZMTP−MMPP (s⃗best).

10: Generate feedback to each Om by adapting ϕ⃗i
m and σ⃗i

m to form ϕ⃗i+1
m and σ⃗i+1

m .

11: i← i+1

12: until [ZMTP−MMPP (s⃗i)≥ZMTP−MMPP (s⃗best)∧ ̸ ∃m∈M. σ⃗i
m ̸= σ⃗−] ∨ i >MAXi

13: return s⃗best

In doing so, the remaining variables in our MINLP are instantiated, forming a solution to the

MTP-MMPP. Section 5.3 describes, in more detail, how OΠ is formulated and solved.

Our decomposition-based algorithm repeats the solving of each Om and OΠ, in sequence, gener-

ating a series of monotonically improving solutions to the MTP-MMPP. The quality of solution s⃗i,

found by OΠ in iteration i, is given by its objective value, ZMTP−MMPP (s⃗i), as per Equation (1).

A record of the best solution found by OΠ, s⃗best, is maintained over the course of the algorithm.

A new solution, s⃗i, replaces s⃗best if and only if ZMTP−MMPP (s⃗i)<ZMTP−MMPP (s⃗best) (Step 9). In

each iteration i > 1, OΠ is able to select the schedule chosen for mine m in s⃗best, denoted s⃗best,m, in

place of those newly generated, ensuring that ZMTP−MMPP (s⃗i)≤ZMTP−MMPP (s⃗best), for all i > 1.

Our algorithm encourages each Om to construct schedules that will allow OΠ to form correctly

blended products at each port. This is accomplished via the use of feedback, passed from OΠ to

each Om, at the end of each iteration (Step 10). The composition of production at each mine m,

in s⃗best, forms a new grade target, given to Om as input in the next iteration.

The set of standard deviations given to each Om, in each iteration, serves a dual purpose. OΠ

will increase and decrease these deviations over the course of the algorithm to encourage more, or

less diversity in the composition of produced ore, across the schedule sets generated by each Om.

When these standard deviations reach a minimum size, termination of the algorithm is triggered, at

which point the best found solution, s⃗best is returned (Steps 12-13). This termination mechanism,
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and the feedback that takes place between OΠ and each Om, influencing production across the

schedules formed by Om, in successive iterations, are described in more detail in Section 5.4.

The algorithm presented in this section is an anytime approach, forming a solution to the MTP-

MMPP in each iteration. A cap on the number of iterations performed, MAXi, can be specified to

keep run-time within an acceptable range. In practice, we have found the algorithm to terminate

within 200 iterations in each of the experiments of Section 6.

5.1. Optimisation at the Mines: The Om Problem

A solution to each Om, in iteration i, is a set of (up to) N extraction schedules, denoted Ωi
m. Each

schedule instantiates variables xm,t
s,d , from the MINLP of Section 4, for all t ∈ {1,2, .., T}, s ∈ Sm,

and d ∈ Dm. A grade and quality target ϕ⃗i
m = {ϕm,t,i

l,q |t ∈ {1,2, .., T}, l ∈ L, q ∈ Q} and standard

deviation vector σ⃗i
m = {σm,t,i

l,q |t∈ {1,2, .., T}, l ∈L, q ∈Q} is given to Om as input. We have devised

a heuristic to generate Ωi
m, across which the percentage of q ∈Q in the ore of granularity l produced

by m in each t is clustered about ϕm,t,i
l,q with a spread determined by the standard deviation σm,t,i

l,q .

Let s⃗ i
m,j ∈Ωi

m denote the jth schedule generated by Om, in iteration i, and vm,t
l,q (s⃗ i

m,j) the value

of variable vm,t
l,q in schedule s⃗ i

m,j. Given a mine m′ ∈M, a grade and quality target ϕ⃗ i=1
m′ , and a

vector of standard deviations σ⃗ i=1
m′ , Example 5.1 presents the first schedule generated by Om′ in

iteration i= 1, s⃗ i=1
m′,j=1. Examples 5.3–5.7 demonstrate how this schedule is formed.

Example 5.1 Mine m′ produces ore of a single granularity l, characterised by a single attribute q

(metal grade), over three periods t= 1,2,3. For all t, ϕm′,t,i=1
l,q is 62.5%, and σm,t,i=1

l,q is 0.4. Mine m′

contains grade blocks Bg
m′ = {b0, b1, b2, b3, b4}, blast blocks Bb

m′ = {b5, b6, .., b14}, and a waste dump

δ. For each block b∈Bm \{b7, b8, b9}, T hi
b = 10kt. Moreover, Gm′,hi

b,l,q = 63% for b= b0, b5, b6; G
m′,hi
b,l,q =

62% for b = b1, b2, b10; Gm′,hi
b,l,q = 62.5% for b = b3, b11, b12; and Gm′,hi

b,l,q = 63.5% for b = b4, b13, b14.

Blocks b7, b8, and b9, each contain 20kt of waste, and no low or high grade ore. The capacity of the

dry plant κ at m′ is 20kt (per period). Mine m′ can extract up to 20kt of material in t= 1, and 30kt

in periods t= 2,3. The first schedule generated by Om′ in iteration i= 1 is shown below. Schedule

s⃗ i=1
m′,j=1 produces ore of grade 62.88%, 62.4%, and 62.98%, in periods 1, 2, and 3, respectively.

s⃗ i=1
m′,j=1 =


xm,t=1
b0,κ

= 2kt xm,t=2
b0,κ

= 8kt xm,t=3
b2,κ

= 7kt

xm,t=1
b2,κ

= 1kt xm,t=2
b1,κ

= 10kt xm,t=3
b4,κ

= 3kt

xm,t=1
b3,κ

= 10kt xm,t=2
b2,κ

= 2kt xm,t=3
b13,κ

= 10kt

xm,t=1
b4,κ

= 7kt xm,t=2
b7,δ

= 10kt xm,t=3
b8,δ

= 10kt

For i= 1, ϕ⃗i=1
m is initialised with an expected target, denoted Ξm, derived from a medium-term

(five year) plan. This plan provides a target composition for the ore mine m should produce in

each period t of the short-term horizon, to ensure correct blending at the ports. We initialise σ⃗i=1
m

with large enough values to ensure significant diversity, across Ωi
m, in the grade of produced ore.
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Figure 2 A set of N = 10 schedules for mine m′, producing a single granularity l, characterised by one quality

attribute q, over two periods, formed with varying ϕ⃗i
m′ and σ⃗i

m′ . For ϕ
m′,t=1,i
l,q = 63%, and ϕm′,t=2,i

l,q = 63.5%, (a) &

(d) plot the value of variable vm
′,t

l,q , across schedules, when σm′,t,i
l,q = 1, for all t. Similarly, (b) & (e), and (c) & (f),

depict the value of vm
′,t

l,q , across schedules, when σm′,t,i
l,q = 1.5, and σm′,t,i

l,q = 0.5, respectively, for all t.
(a)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63

63 + 1

63 - 1

(b)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63

63 + 1.5

63 - 1.5

(c)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63

63 + 0.5

63 - 0.5

(d)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63.5

63.5 + 1

63.5  - 1

(e)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63.5

63.5 + 1.5

63.5  - 1.5

(f)

1 2 3 4 5 6 7 8 9 10

0

63

61

65

63.5  - 0.5

63.5 + 0.5

63.5

Example 5.2 Consider mine m′ of Example 5.1, in periods t = 1,2. Figure 2 shows the value

of vm
′,t

l,q (s⃗ i
m′,j), across 10 possible schedules, for differing targets ϕ⃗i

m′ and standard deviations σ⃗ i
m′.

Larger values for each σm′,t,i
l,q encourages the creation of a schedule set, across which, the percentage

of q in produced ore exhibits a greater range of values. Smaller values for each σm′,t,i
l,q results in

schedules, across which, the percentage of q in produced ore is more tightly clustered about ϕ⃗i
m′.

To construct s⃗ i
m,j, for each j = 1..N , we first define desired upper and lower bounds on each

vm,t
l,q (s⃗ i

m,j), denoted [Lm,t,j
l,q ,Um,t,j

l,q ], via Algorithm 2. A normally distributed random value ∆j,t
l,q, for

each j ∈ {1..N}, t ∈ {1,2, .., T}, l ∈ L, and q ∈ Q, is generated from a distribution with mean 0

and standard deviation σm,t,i
l,q (Step 4). Shifting ϕm,t,i

l,q by ∆j,t
l,q, and subtracting (adding) a small

quantity, ∆−
q , to the result,2 computes our lower Lm,t,j

l,q (and upper Um,t,j
l,q ) bound (Steps 5–6). By

forming a set of varying bounds on the grade and quality of production in each period t, we are

able to generate multiple schedules that produce varying grades of ore in each period t.

2 ∆−
q denotes an insignificant change in the percentage of q ∈Q in an orebody.
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Algorithm 2 Generation of bounds on the blend of produced ore at mine m∈M.

1: for j ← 1 to N do

2: for t ← 1 to T do

3: for each l ∈L and q ∈Q do

4: ∆j,t
l,q ← RandNormal(0, σm,t

l,q ) where σm,t
l,q ∈ σ⃗m

5: Lm,t,j
l,q ← ϕm,t

l,q + ∆j,t
l,q −∆−

q

6: Um,t,j
l,q ← ϕm,t

l,q + ∆j,t
l,q +∆−

q

7: end for

8: end for

9: end for

Example 5.3 (Example 5.1 cont.) Let ∆−
q = 0.01%. Algorithm 2, for j = 1, computes ∆j,t=1

l,q =

0.3, ∆j,t=2
l,q =−0.2, and ∆j,t=3

l,q = 0.5. The following bounds on the percentage of q in ore produced

by m′ in periods t= 1,2,3 are formed. Recall that ϕm′,t,i=1
l,q = 62.5% and σm′,t,i=1

l,q = 0.4 for all t.

Lm′,t=1,j=1
l,q = 62.7% Lm′,t=2,j=1

l,q = 62.2% Lm′,t=3,j=1
l,q = 62.9%

Um′,t=1,j=1
l,q = 62.9% Um′,t=2,j=1

l,q = 62.4% Um′,t=3,j=1
l,q = 63.1%

We apply a two-stage process to generate a schedule, s⃗ i
m,j, for which the deviation between each

vm,t
l,q (s⃗ i

m,j) and bounds [Lm,t,j
l,q ,Um,t,j

l,q ] is minimised, as a first priority, and total productivity at

mine m maximised, as a second. The productivity achieved at mine m in period t of s⃗ i
m,j, denoted

ρm(s⃗
i
m,j, t), is computed as per Equation 3. In the first stage of this process, we aggregate blocks

in the grade and blast block models of each mine into larger units of extraction, given a maximum

aggregate size of MA blocks. The set of block aggregates at mine m is denoted BA
m, where IN(a)

denotes the subset of Bm in aggregate a ∈ BA
m (IN(a)⊂ Bm). The procedure used to create these

block aggregates is, for brevity, omitted from this paper. A rolling horizon heuristic, described in

Algorithm 3 and Section 5.2, generates a block extraction schedule – identifying which of these

aggregated blocks are to be mined in each period t, and the destination of this mined material.

Let s̃ i
m,j and BA

m respectively denote the schedule generated by our rolling horizon heuristic, given

blocks BA
m, and the set of aggregates in BA

m that have been mined (partially or completely) in s̃ i
m,j. In

the second stage of our method of mine schedule generation, we reapply the rolling horizon heuristic

of Section 5.2 with respect to a new set of blocks, B∗
m = Bg

m ∪ {b|b ∈ Bb
m ∧ ∃a ∈ BA

m . b ∈ IN(a)} to

generate schedule s⃗ i
m,j. The set B∗

m denotes the union of the set of grade blocks Bg
m, with the set of

all blast blocks in Bb
m that appear in a mined aggregate a∈BA

m. Our first application of the rolling

horizon heuristic seeks to reduce the complexity of the problem of generating s⃗ i
m,j, by reducing



:
20 Management Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

the number of blocks that can be considered for mining. The result is an efficient method for the

generation of extraction schedules, given a large number of available blocks.

We show in Section 6 that the use of an initial scheduling pass to reduce the number of blocks

under consideration in the generation of schedules by each Om, substantially reduces the runtime

of our algorithm, while preserving, on average, the quality of solutions found.

Example 5.4 (Example 5.3 cont.) Let MA = 2. We form the following aggregates of blocks in

Bm′: a0 = {b0, b3}; a1 = {b1, b2}; a2 = {b4}; a3 = {b5, b6}; a4 = {b10}; a5 = {b11, b12}; a6 = {b13,

b14}; and waste aggregates a7 = {b7, b8}, and a8 = {b9}. The percentage of q in a0−6 is 62.75%,

62%, 63.5%, 63%, 62%, 62.5%, and 63.5%, respectively. Examples 5.5–5.7 show how our rolling

horizon heuristic generates s̃ i=1
m′,j=1, scheduling the mining of aggregates BA

m′ = {a0, . . . , a8} given the

bounds on grade shown in Example 5.3. In s̃ i=1
m′,j=1, aggregates a0−2 and a6−7 are mined. Thus, BA

m′

= {a0, a1, a2, a6, a7} and B∗
m′ = {b0, b1, b2, b3, b4, b7, b8, b13, b14}. Reapplication of the rolling

horizon heuristic, restricted to the mining of blocks in B∗
m′ yields s⃗ i=1

m′,j=1, shown in Example 5.1.

5.2. A Rolling Horizon Heuristic

Algorithm 3 presents a rolling horizon heuristic for the generation of an extraction schedule, s̃m, for

a single minem∈M. Given a set of sources S, containing blocks B ⊂S and stockpiles Θm∪Λm ⊂S,

a set of destinations Dm, T time periods, and bounds on the composition of production, [Lm,t
l,q ,Um,t

l,q ]

for all l ∈ L, q ∈Q, and t ∈ {1,2, .., T}, s̃m is formed by solving T − 1 two-time-period MIPs, and

a final one-time-period MIP. Starting at t′ = 1, the horizon is decomposed into two periods, h1

and h2, of size 1 and T − t′ (Steps 1–2). A two-time-period extraction schedule is formed (Steps

7–11), and the activities of h1 become part of schedule s̃m (Step 12). This process is repeated for

t′ ∈ {2,3, .., T} (Steps 15–16). The heuristic terminates, returning s̃m, after period T is scheduled.

Given time periods, h1 and h2, a two-time-period extraction schedule is constructed as follows.

In Step 7, the bounds [Lm,t
l,q ,Um,t

l,q ], for each l ∈L, q ∈Q, and t ∈ {t′, .., T}, are averaged across the

periods represented by h1 and h2, to form new bounds [Lm,h
l,q ,Um,h

l,q ] for all combinations of l ∈ L,

q ∈Q, and h∈ {h1, h2}. For t′ = 1, h1 denotes period 1, and h2 periods {2,3, .., T}. Let x̃m,h
s,d denote

the tons of source s ∈ S hauled to destination d ∈Dm in period h and x̃m = {x̃m,h
s,d |s ∈ S, d ∈Dm,

h∈ {h1, h2}}. A schedule for periods h1 and h2 is formed by solving two MIPs, Om,1 and Om,2, in

succession, the objectives of which, denoted ZOm,1
and ZOm,2

, are defined in Equations (20)–(21).

Example 5.5 (Example 5.4 cont.) To generate s̃ i=1
m′,j=1 in Example 5.4 we first assign period

t= 1 to h1, and periods t= 2,3 to h2. The bounds shown in Example 5.3 for periods t= 2,3 are

averaged to form bounds on the percentage of q in the ore produced at m′ in h1 and h2.
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Algorithm 3 Generation of schedule s̃m for mine m ∈ M, given a set of material sources S
(including a set of blocks B ⊂S), material destinations Dm, T time periods, and bounds [Lm,t

l,q ,Um,t
l,q ],

on each q ∈Q in granularity l ∈L produced at m in each period t∈ {1,2, .., T}.
1: h1 ← 1

2: h2 ← {2,3, .., T}

3: Initialise block tonnages T t=1
k (b) for all k ∈ {hi, lo,w} and b∈B.

4: Initialise stockpile tonnages T t=1(s), ore splits St=1
s,l , and grades Gt=1

s,l,q for all s ∈ Θm ∪ Λm, l ∈ L, and

q ∈Q.

5: s̃m ← ∅

6: while h1 ≤ T do

7: Compute bounds on the percentage of q ∈Q in granularity l ∈L to be produced at m in periods
h1 and h2, denoted [Lm,h

l,q ,Um,h
l,q ], by averaging [Lm,t

l,q ,Um,t
l,q ] over t= h1, and (if h1 < T ) t= h1+1

to t= T .

8: Solve a MIP, denoted Om,1, to schedule the extraction of blocks in B across time periods h1 and
h2, while minimising deviation between the chemistry of produced ore and desired bounds.

9: If a solution to Om,1 could not be found, terminate and return ∅.

10: Minimally shift Lm,h
l,q or Um,h

l,q for each q ∈Q, l ∈L, and h∈ {h1, h2} to cover the solution obtained
to Om,1. Incorporate these bounds into Om,1, as hard constraints, forming a new MIP, Om,2.

11: Alter the objective of Om,2 to maximise productivity at mine m, and solve Om,2 to schedule the
extraction of blocks in B across time periods h1 and h2.

12: Fix the values of variables x̃m,t=h1
s,d in schedule s̃m, for each s ∈ S and d ∈ Dm, to those of

corresponding variables x̃m,h1
s,d in the solution obtained to Om,2, if found, and to Om,1, otherwise.

13: Compute remaining block tonnages T t=h1+1
k (b) for all k ∈ {hi, lo,w} and b∈B.

14: Compute updated stockpile tonnages T t=h1+1(s), ore splits St=h1+1
s,l , and grades Gt=h1+1

s,l,q for all
s∈Θm ∪Λm, l ∈L, and q ∈Q.

15: h1 ← h1 +1

16: h2 ← {h1 +1, .., T} if h1 < T and ∅ otherwise.

17: end while

18: return s̃m

Lm′,h1
l,q = 62.7% Lm′,h2

l,q = 62.55%

Um′,h1
l,q = 62.9% Um′,h2

l,q = 62.75%

The objective ofOm,1, denoted ZOm,1
, acts to minimise deviation between the composition of each

granularity l ∈L formed at mine m in each period h∈ {h1, h2} and desired bounds [Lm,h
l,q ,Um,h

l,q ], for

all q ∈Q (Step 8). A measure of the extent of this deviation is denoted ηm(x̃m, h), and is computed

as shown in Equation (22), where νm
l,q(x̃m, h) denotes the tons of attribute q ∈ Q in the ore of

granularity l formed by m in period h (see Equation 25), and τm
l (x̃m, h) the tons of granularity l
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formed by m in h (see Equation 24). Constraints (39)–(41), (44)–(51), (58)–(62), and (67), from

the MINLP of Appendix B, form the constraints of Om,1, redefined for a single mine m in terms of

variables x̃m. In both Om,1 and Om,2, the composition of each low and high grade stockpile s at m

is assumed to have a constant split and grade, denoted St=h1
s,l and Gt=h1

s,l,q , for granularity l ∈L and

attribute q ∈Q, across periods h1 and h2. We place a time limit on the solving of Om,1 and Om,2,

accepting the best solution found by the time this limit is reached. If Om,1 is found to be infeasible,

or no solution is found within the prescribed time limit, the heuristic terminates in failure (Step

9). Across the experiments conducted in Section 6, our rolling horizon heuristic fails 3.7% (with a

standard deviation of 1.4%) of the time, on average.

ZOm,1
=min [ηm(x̃m, h1)+ ηm(x̃m, h2)] (20)

ZOm,2
=max [ρm(x̃m, h1)+ ρm(x̃m, h2)] (21)

ηm(x̃m, h) =
∑
l∈L

∑
q∈Q

1

∆+
q

max
[
0, νm

l,q(x̃m, h)−Um,h
l,q τm

l (x̃m, h)
]

(22)

+
∑
l∈L

∑
q∈Q

1

∆+
q

max
[
0, Lm,h

l,q τm
l (x̃m, h)− νm

l,q(x̃m, h)
]

ρm(x̃m, t) =
∑
s∈S

[ ∑
δ∈∆m

x̃m,h
s,δ −

∑
θ∈Θm

x̃m,h
s,θ +(1− 2Φm

ω )
∑
λ∈Λm

x̃m,h
s,λ

]
(23)

τm
l (x̃m, h) =

∑
λ∈Λm

St=h1
λ,l Y m,ω

l x̃m,h
λ,ω +

∑
θ∈Θm

St=h1
θ,l x̃m,h

θ,κ ∀ h∈ {h1, h2}, l ∈L, (24)

+
∑
b∈B

Sm,hi
b,l x̃m,h

b,κ +Sm,lo
b,l Y m,ω

l x̃m,h
b,ω

νm
l,q(x̃m, h) =

∑
λ∈Λm

St=h1
λ,l Gt=h1

λ,l,q Rm,ω
l,q x̃m,h

λ,ω ∀ h∈ {h1, h2}, l ∈L, q ∈Q. (25)

+
∑
θ∈Θm

St=h1
θ,l Gt=h1

θ,l,q x̃m,h
θ,κ

+
∑
b∈B

Sm,hi
b,l Gm,hi

b,l,q x̃h
b,κ +Sm,lo

b,l Gm,lo
b,l,q R

m,ω
l,q x̃h

b,ω

The objective of Om,2, denoted ZOm,2
, acts to maximise the productivity of minem across periods

h1 and h2, denoted by ρm(x̃m, h1) + ρm(x̃m, h2) in Equation (21), given hard constraints on the

percentage of each attribute q ∈Q in the ore of each granularity l ∈L produced at m in each period

(Steps 10–11). Let Q̃m,h
l,q denote the percentage of q in granularity l produced in period h by m in
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the solution found to Om,1. The Om,2 MIP applies the constraints of Om,1, with the addition of

Constraints (26)–(27), shown below (Step 10). With these additional constraints, Om,2 ensures that

the solution found to Om,1 remains a solution of Om,2, and that deviation between the composition

of production and desired bounds is limited to that present in the solution to Om,1.

νm
l,q(x̃m, h) ≥ min[Q̃m,h

l,q ,Lm,h
l,q ] τm

l (x̃m, h) ∀ h∈ {h1, h2}, l ∈L, q ∈Q, (26)

νm
l,q(x̃m, h) ≤ max[Q̃m,h

l,q ,Um,h
l,q ] τm

l (x̃m, h) ∀ h∈ {h1, h2}, l ∈L, q ∈Q. (27)

Example 5.6 (Example 5.5 cont.) Consider the set of aggregates, BA
m′, in Example 5.4. Solving

Om′,1, with respect to the bounds of Example 5.5, leads to the following instantiation of x̃m′.

x̃m′ = {x̃m′,h1
a0,κ

= 20kt, x̃m′,h2
a1,κ

= 20kt, x̃m′,h2
a2,κ

= 10kt, m′,h2
a6,κ

= 10kt}

In this solution to Om′,1, Q̃
m′,h1
l,q = Q̃m′,h2

l,q = 62.75%. Constraints (26)–(27) in Om′,2 are instan-

tiated as shown in Equations (28)–(29).

0.627 τm′

l (x̃m′ , h1)≤ νm′

l,q (x̃m′ , h1)≤ 0.629 τm′

l (x̃m′ , h1) (28)

0.6255 τm′
l (x̃m′ , h2)≤ νm′

l,q (x̃m′ , h2)≤ 0.6275 τm′
l (x̃m′ , h2) (29)

The solution to problem Om′,2 extracts and processes the same high grade material in periods h1

and h2 as does that of Om′,1. To maximise productivity, waste aggregate a7 is extracted in h2.

x̃m′ = {x̃m′,h1
a0,κ

= 20kt, x̃m′,h2
a1,κ

= 20kt, x̃m′,h2
a2,κ

= 10kt, x̃m′,h2
a6,κ

= 10kt, x̃m′,h2
a7,δ

= 20kt}

For each s∈ S and d∈Dm, we fix x̃m,t=1
s,d to the value of x̃m,h1

s,d in the solution found to Om,2 (Step

12). If no such solution is found in the time limit allocated to Om,2, each x̃m,t=1
s,d is fixed to the

value of x̃m,h1
s,d in the solution found to Om,1. We set h1 = 2 and h2 = {3,4, .., T} (Steps 15–16), and

reconstruct Om,1 and Om,2. Each T t=1
k (b), for k= {hi, lo,w} and b∈B, appearing in the constraints

of Om,1 and Om,2 is replaced with T t=2
k (b) (computed in Step 13). Constants T t=1(s), Sm,t=1

s,l , and

Gm,t=1
s,l,q , for each stockpile s ∈Θm ∪Λm, granularity l ∈ L, and attribute q ∈ Q, are replaced with

T t=2(s), St=2
s,l , and Gt=2

s,l,q (computed in Step 14). The computation of updated block tonnages, and

stockpile compositions, is straightforward, and thus explicit equations are omitted from this paper.
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Example 5.7 (Example 5.6 cont.) We fix the mining and processing of aggregate a0 in period

t= 1 of schedule s̃ i=1
m′,j=1, and set T t=2

hi (a0) = 0. Periods h1 and h2 are redefined (h1 = 2 and h2 = {3})

and problems Om′,1 and Om′,2 solved to complete schedule s̃ i=1
m′,j=1.

s̃ i=1
m′,j=1 =


x̃m,t=1
a0,κ

= 20kt x̃m,t=2
a1,κ

= 17kt x̃m,t=3
a1,κ

= 3kt
x̃m,t=2
a2,κ

= 3kt x̃m,t=3
a2,κ

= 7kt

x̃m,t=2
a7,δ

= 10kt x̃m,t=3
a6,κ

= 10kt

x̃m,t=3
a7,δ

= 10kt

5.3. The OΠ Problem

In each iteration i, OΠ is given a set of (up to) N block extraction schedules for each mine m∈M,

denoted Ωi
m. OΠ selects one schedule in the set Ωi

m ∪{s⃗best,m}, to be enacted, where s⃗best,m ∈ s⃗best
denotes the schedule to be implemented at mine m in the best solution found by the algorithm,

s⃗best, across all iterations prior to i. The jth schedule available for selection at mine m is denoted

s⃗m,j ∈ Ωi
m ∪ {s⃗best,m}. Ore railed from each mine m to each port π must originate from only one

s⃗m,j. Let v
m,t
l,q (s⃗m,j) denote the percentage of attribute q ∈Q in granularity l ∈L produced by mine

m in period t of schedule s⃗m,j; ρm(s⃗m,j, t) the productivity of m in period t of schedule s⃗m,j, as per

Equation (3); Pm
j the total productivity achieved at m by s⃗m,j (the sum of ρm(s⃗m,j, t) over all t);

τm
l (s⃗m,j, t) the tons of l ∈L produced by mine m in period t of s⃗m,j; and Nm = |Ωi

m ∪{s⃗best,m}|.

We now present a MIP formulation of the OΠ subproblem. In contrast to the instantiation of OΠ

presented by Blom et al. (2014), a continuous variable rm,l,j,t′

π,n,t denotes the number of trainloads of

granularity l ∈L, produced by mine m in period t′ of schedule s⃗m,j ∈Ωi
m∪{s⃗best,m}, contributing to

product n∈Nπ,l at port π in period t. Variable sm,j is assigned a value of 1 if and only if schedule

s⃗m,j is chosen for implementation at mine m, and 0 otherwise. The objective of the port-side MIP is

twofold. As a first priority, deviation between the composition of port products and desired bounds,

denoted [Lπ,l,t
n,q ,Uπ,l,t

n,q ] for product n ∈Nπ,l of granularity l ∈ L at port π in period t, is minimised.

The total productivity achieved across the network of mines is maximised, over the scheduling

horizon, as a second priority. The objective of the port-side MIP, ZOΠ
, is defined in Equation (30),

where: β1 and β2 are constants such that β1≫ β2; f(t) = max(1, t− 1) and g(t) = min(T, t+ 1)

for t ∈ {1,2, .., T}; r⃗′ denotes the set of all rm,l,j,t′

π,n,t variables for m ∈M, l ∈ L, j ∈ {1,Nm}, π ∈Π,

n ∈ Nπ,l, t ∈ {0,1, .., T}, and t′ ∈ {f(t), t}; and η(r⃗′, t) the total deviation present between port

products and desired bounds, in period t, as defined in Equation (31).

The domains of variables rm,l,j,t′

π,n,t and sm,j are respectively restricted to non-negative reals, and

binary values.
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ZOπ =min
T∑

t=1

[
β1η(r⃗

′, t)−β2

∑
m∈M

Nm∑
j=1

sm,j P
m
i

]
(30)

η(r⃗′, t) =
∑

π∈Π,l∈L
n∈Nπ,l
q∈Q

TR

∆+
q

max

0, ∑
m∈M

Nm∑
j=1

t∑
t′=f(t)

rm,l,j,t′

π,n,t vm,t′

l,q (s⃗m,j)−Uπ,l,t
n,q

∑
m∈M

Nm∑
j=1

t∑
t′=f(t)

rm,l,j,t′

π,n,t



+
∑

π∈Π,l∈L
n∈Nπ,l
q∈Q

TR

∆+
q

max

0, Lπ,l,t
n,q

∑
m∈M

Nm∑
j=1

t∑
t′=f(t)

rm,l,j,t′

π,n,t −
∑
m∈M

Nm∑
j=1

t∑
t′=f(t)

rm,l,j,t′

π,n,t vm,t′

l,q (s⃗m,j)

 (31)

Constraint (32) ensures that only one schedule is selected to be implemented at each mine m.

Port capacities are enforced by Constraint (33). Constraint (34) ensures that all ore produced by

each mine m, in each period t, is railed to a port by period t+1. We assume that the stockyards

at each mine are empty at the start of t= 1, and that they must be emptied by the end of t= T .

Nm∑
j=1

sm,j = 1 ∀ m∈M, (32)

∑
l∈L

∑
n∈Nπ,l

∑
m∈M

Nm∑
j=1

t∑
t′=f(t)

TR rm,l,j,t′

π,n,t ≤Ct
π ∀ π ∈Π, t∈ {1,2, .., T}, (33)

∑
π∈Π

∑
n∈Nπ,l

g(t′)∑
t=t′

TR rm,l,j,t′

π,n,t = sm,j τ
m
l (s⃗m,j, t

′) ∀ m∈M, l ∈L, t′ ∈ {1,2, .., T} (34)

5.4. Port to Mine Feedback

Feedback passed between OΠ, and each Om, drives our algorithm toward a solution to the MTP-

MMPP that minimises ZMTP−MMPP (Equation 1). In each iteration i, OΠ provides each Om with

feedback in the form of a grade and quality target ϕ⃗i+1
m , and a vector of standard deviations σ⃗i+1

m ,

to be used as its input in iteration i+1. We investigate three methods for the generation of these

new targets and standard deviation vectors, one of which (F3) extends the mechanism of Blom

et al. (2014) to the multiple period setting. We evaluate each of these methods in Section 6.

5.4.1. Method 1 (F1) Equations (35)–(36) present the first of these methods. Equation (35)

states that ifOΠ does not find a solution better than s⃗best, in iteration i, the grade and quality target

provided to each mine m does not change, ϕ⃗i+1
m = ϕ⃗i

m. Each standard deviation in σ⃗i
m, however, is

reduced by a predetermined factor γ, where 0< γ < 1. The intuition behind F1 is that there may

be a target in the vicinity of ϕ⃗i
m that, if produced by m, will allow OΠ to improve upon s⃗best. If such
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schedules were not proposed in iteration i, it is possible that each Om has focused on achieving too

large a spread in the composition of produced ore about ϕ⃗i
m. Reducing σ⃗i

m encourages each Om to

generate schedules, across which, ore compositions are more tightly clustered about ϕ⃗i+1
m .

F1 : ZMTP−MMPP (s⃗i)≥ZMTP−MMPP (s⃗best)→

ϕ⃗i+1
m = ϕ⃗i

m ∧ σ⃗i+1
m =max(σ⃗−, γ σ⃗i

m) ∀m∈M (35)

Equation (36) states that if OΠ finds a solution s⃗i that is better than the current best, s⃗best,

in iteration i, the grade and quality target given to mine m in iteration i + 1 is equal to the

composition of the ore produced by m in s⃗i, where vm,t
l,q (s⃗i) denotes the percentage of q ∈ Q in

granularity l ∈L produced by m in period t of schedule s⃗i.

F1 : ZMTP−MMPP (s⃗i)<ZMTP−MMPP (s⃗best)→

σm,t,i+1
l,q = σm,t,i

l,q ∧ ϕm,t,i+1
l,q = vm,t

l,q (s⃗i) ∀ m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q (36)

5.4.2. Method 2 (F2) We generalise F1 to form a second feedback method, F2, in which

standard deviations are reduced, by γ, only after Nf successive iterations have been performed in

which OΠ was unable to improve upon s⃗best, where Nf ≥ 1. If Nf = 1, F2 reduces to F1.

5.4.3. Method 3 (F3) Equations (37)–(38), together with Equation (35), form our third

feedback method, F3. If OΠ finds a solution, s⃗i, that is better than s⃗best, we consider each σm,t,i
l,q

in σ⃗i
m and increase it by a predetermined factor γ, 0<γ < 1, if vm,t

l,q (s⃗i) is sufficiently distant from

the given target ϕm,t,i
l,q (|vm,t

l,q (s⃗i)−ϕm,t,i
l,q | > σm,t,i

l,q ). The intuition is that prior reductions in the size

of σm,t,i
l,q may have been premature. Increasing σm,t,i

l,q , for iteration i+1, will encourage Om to form

schedules, denoted s⃗i+1
m,j for j = 0,1, ..,N , across which there is more diversity in vm,t

l,q (s⃗i+1
m,j).

F3 : ZMTP−MMPP (s⃗i)<ZMTP−MMPP (s⃗best)∧ |vm,t
l,q (s⃗i)−ϕm,t,i

l,q | ≤ σm,t,i
l,q →

σm,t,i+1
l,q = σm,t,i

l,q ∀ m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q (37)

F3 : ZMTP−MMPP (s⃗i)<ZMTP−MMPP (s⃗best)∧ |vm,t
l,q (s⃗i)−ϕm,t,i

l,q |>σm,t,i
l,q →

σm,t,i+1
l,q =min(σ+

l,q, γ
−1 σm,t,i

l,q ) ∀ m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q (38)
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Table 1 MIP relaxation of the MTP-MMPP MINLP: Time taken (s) to first feasible solution (and it’s duality

gap), and to solve to optimality, for each test #. The maximum deviation in metal grade present (in a product

formed at a port across the time horizon, from desired bounds) in the best found solution is stated. ‘–’ denotes a

failure to find an integer feasible, or optimal, solution within a 12 hr time limit.

# Time to Gap (%) Time to Max. deviation # Time to Gap (%) Time to Max. deviation
1st (s) opt (s) (metal grade, %) 1st (s) opt (s) (metal grade, %)

1 9539 0.61 23904 2.12 11 – – – –
2 6672 0 6672 1.40 12 8846 0.26 – 1.76
3 5077 0.09 6807 1.27 13 8825 0.10 9929 1.62
4 3087 0 3087 1.29 14 13306 0 13306 1.49
5 – – – – 15 13427 0 13427 1.51
6 2693 0.28 2751 1.67 16 11818 0.38 16364 1.79
7 4520 0.11 4899 1.79 17 29833 0.04 – 1.15
8 14198 0.07 27177 1.89 18 6415 0.35 6569 1.71
9 6261 0.29 9020 1.67 19 24917 0.42 34968 1.69
10 5181 0 5181 2.52 20 39761 0.39 – 1.47

6. Computational Results

To evaluate our decomposition-based algorithm, for the MTP-MMPP, we consider a currently

operating system of 8 mines, connected to 2 ports, producing over 200 million tons of ore annually.

Our planning horizon spans 13 weeks, divided into weekly time periods. We construct a set of test

cases, each test characterising each mine in terms of: a set of grade blocks, sufficient to supply the

mine’s processing plants for 2-3 weeks; a set of blast blocks, sufficient to supply these plants for at

least 4 months; the composition, and tonnage of each block and stockpile; the mining precedences

that exist between blocks; and all relevant capacities. Capacities at each mine and port, and bounds

on the composition of port products, are constant across the set of test cases. Varied across test

instances is the set, and number, of grade and blast blocks available for extraction at each mine.

In each test, each port forms one product of each granularity (|Nπ,l|= 1 for all π ∈Π and l ∈L).
The number of blocks available for scheduling at each mine ranges from 102 to 437 across the test

suite. The total number of blocks in the network ranges from 1967 to 2095. Test cases were formed

using data provided by an industry partner, following the approach used by Blom et al. (2014)

in the single time period setting. All experiments have been run on a machine with 12 Intel(R)

Xeon(R) E5-2440 cpus and 64GB RAM, and afforded 12 hours of (wall) clock time to complete.

All MIPs have been solved with CPLEX 12.6.

We first consider whether the MINLP of Section 4 can be solved directly, or if good solutions

can be discovered by solving a MIP relaxation. For each test, we find a lower bound on the value of

ZMTP−MMPP (Equation 1) by solving a MIP relaxation of the MINLP. This relaxation is formed

by replacing each bilinear term in Constraints (16)–(17) and (18)–(19) with its McCormick (1976)

envelope. We use this lower bound to evaluate the quality of solutions found by our decomposition-

based algorithm. Table 1 states, for each test: the time required (in seconds) to find the first
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Table 2 Best solution s⃗best found by our algorithm for N = 3,5, and 7, γ = 0.25, and MA = 4, in each test #,

recording: elapsed time to solve (s); and the gap (%) between ZMTP−MMPP (s⃗best) and the best known lower

bound. An average (µ) and standard deviation (σ) for all quantities, over 10 seeded runs, is recorded.

N = 3, γ = 0.25, MA = 4 N = 5, γ = 0.25, MA = 4 N = 7, γ = 0.25, MA = 4

Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG

1 5317 747 2.36 1.21 6261 1434 1.87 0.48 9273 1179 1.74 1.00
2 4035 962 11.65 29.48 6502 1263 1.12 0.49 8994 1247 0.88 0.21
3 5739 906 1.72 0.91 7089 1450 0.96 0.62 10843 1772 0.89 0.58
4 5572 981 1.54 0.52 6601 1108 1.12 0.6 9792 1380 1.03 0.54
5 4362 934 12.29 29.29 7912 1098 0.88 0.27 10030 1712 0.77 0.43
6 4948 945 1.48 0.74 6068 1320 1.08 0.54 9815 2201 0.4 0.27
7 4062 321 2.37 1.08 6350 1323 0.94 0.75 8736 2469 0.71 0.46
8 5309 1471 2.65 1.98 6858 1245 2.09 1.32 9103 1862 1.5 1.08
9 5029 1270 2.1 1.18 6132 956 0.99 0.61 10145 2067 0.57 0.23
10 4607 1541 3.18 1.43 6770 1285 1.35 0.62 11736 1806 0.77 0.29
11 4849 690 11.4 29.55 6792 1362 0.65 0.27 9715 1203 0.59 0.55
12 5105 994 13.11 29.07 6822 1156 1.89 1.98 11006 2826 1.27 0.76
13 4872 1056 2.77 1.31 7474 1368 1.2 0.81 9108 1208 1.32 0.48
14 4973 1253 22.18 38.94 8078 1588 1.64 0.76 9851 2076 0.96 0.58
15 4642 1584 22.61 38.72 7522 809 1.48 0.53 8952 2155 0.93 0.44
16 4538 653 1.44 0.26 7208 729 1.11 0.53 9222 2094 0.85 0.40
17 5366 1162 12.57 29.18 8637 1475 1.43 0.69 9205 2035 1.44 0.56
18 4165 558 2.36 1.12 7543 1820 1.22 0.83 9335 1054 1.28 0.77
19 5240 919 31.26 45.03 8203 1221 1.34 0.4 10734 1307 0.74 0.34
20 5135 1127 21.84 39.1 6893 574 0.93 0.57 9490 1749 0.77 0.58

feasible solution of the MIP relaxation (alongside the gap between its objective value and the best

known lower bound); the time required to solve the MIP to optimality; and the maximum deviation

present, in the best solution obtained, between the actual (metal) grade of port products formed

across the scheduling horizon, and desired bounds. Constraints (16)–(17) track the composition of

stockpiles at each mine, while Constraints (18)–(19) define the grade of ore produced by each mine,

and transported to each port, in each time period. Their relaxation leads to discrepancies between

the actual grade of products formed at each mine and port, and that inferred by the relaxed MIP.

Due to the size of these discrepancies, it is not possible to solve the MIP relaxation with narrowed

bounds on the composition of port products, and obtain solutions in which these products are

correctly blended. Blom et al. (2014) consider piecewise-linear relaxations (Gounaris et al. 2009) of

the bilinear constraints present in the single period MMPP to generate a MIP relaxation of greater

fidelity. For each bilinear term, the domain of one variable is partitioned into several intervals, and

its value constrained to lie within one of these intervals. Given a 12 hour timeout, a solution to

the relaxed single period MMPP could not be found without significant deviations in port product

compositions present.
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Table 3 Best solution s⃗best found by our algorithm for N = 5, MA = 4, γ = 0.25,0.50,0.75. Columns are defined

as in Table 2. An average (µ) and standard deviation (σ) for all quantities, over 10 seeded runs, is recorded.

N = 5, γ = 0.25 N = 5, γ = 0.50 N = 5, γ = 0.75

Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG

1 6261 1434 1.87 0.48 7208 1185 1.72 0.71 10633 1874 1.04 0.42
2 6502 1263 1.12 0.49 6923 1287 0.63 0.2 10877 1763 0.4 0.22
3 7089 1450 0.96 0.62 8355 1580 0.84 0.38 12465 1531 0.54 0.29
4 6601 1108 1.12 0.6 7802 1288 0.7 0.27 11021 1367 0.59 0.35
5 7912 1098 0.88 0.27 7887 1612 0.74 0.25 10929 1628 0.4 0.22
6 6068 1320 1.08 0.54 7194 1322 0.47 0.25 10656 1375 0.32 0.29
7 6350 1323 0.94 0.75 7222 915 0.63 0.52 10471 1095 0.5 0.26
8 6858 1245 2.09 1.32 8162 1933 1.01 0.51 12533 3146 0.8 0.38
9 6132 956 0.99 0.61 7548 1503 0.65 0.5 13753 1194 0.44 0.23
10 6770 1285 1.35 0.62 7697 799 1.02 0.56 13433 1318 0.77 0.31
11 6792 1362 0.65 0.27 7614 935 0.8 0.67 14366 1550 0.28 0.17
12 6822 1156 1.89 1.98 7876 1684 1.17 0.52 13039 1877 0.8 0.57
13 7474 1368 1.2 0.81 7837 1407 1.1 0.42 13097 2188 1.16 0.66
14 8078 1588 1.64 0.76 8309 1174 0.77 0.3 12907 1973 0.84 0.76
15 7522 809 1.48 0.53 7734 1253 1.25 0.6 12977 1302 0.75 0.71
16 7208 729 1.11 0.53 7550 369 0.67 0.35 13609 991 0.44 0.25
17 8637 1475 1.43 0.69 7921 1126 1.11 0.73 14782 2124 0.87 0.47
18 7543 1820 1.22 0.83 7251 983 0.99 0.23 12672 1247 0.84 0.42
19 8203 1221 1.34 0.4 8286 1093 1.36 0.47 13635 1337 0.88 0.47
20 6893 574 0.93 0.57 7075 995 0.62 0.36 11976 1485 0.56 0.29

Blom et al. (2014) demonstrate that their decomposition-based algorithm was able to find

solutions to the single period MMPP that were as good, or better, than a range of alternative

approaches, commonly applied to problems with a pooling component, in orders of magnitude less

time. The best performing of these approaches was the ALT heuristic of Audet et al. (2004). ALT

fixes the value of one variable in each bilinear term, producing a MIP that is solved to find values

for the remaining bilinear variables. Fixing these alternate variables forms a second MIP that is

solved to find new values for the first variable set. This process is repeated until a fixed point is

reached. We have applied ALT to the MINLP of Section 4, partitioning and alternately fixing the

its bilinear variables. Given a time limit of 12 hrs and 2000s afforded to each MIP solve, ALT could

not find a solution, in any of our tests, in which port products were correctly blended.

We now consider the performance of our decomposition-based algorithm in varying settings. We

first examine the impact of varying the N and γ parameters on the quality of solutions found by our

algorithm (Tables 2–3). Recall that N denotes the number of schedules formed during the solving of

each Om, γ the degree to which the standard deviations given to each Om as input are increased or

decreased (a larger γ results in smaller changes) during feedback generation, and MA the maximum

size of block aggregates formed during the generation of schedules by eachOm. We next demonstrate

the need to monitor evolving stockpile states, by evaluating the difference between expected and
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Table 4 Best solution s⃗best found by our algorithm for N = 5, γ = 0.25, MA = 4, and a single application of the

rolling horizon heuristic of Section 5.2 (1-Stage) used by each Om to generate schedules. Results obtained using

two applications of this heuristic (2-Stage, from Table 2) are listed for comparison. Columns are defined as in

Table 2. An average (µ) and standard deviation (σ) for all quantities, over 10 seeded runs, is recorded.

1-Stage 2-Stage 1-Stage 2-Stage

Gap to (%) Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb # Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG µT σT µG σG

1 9629 1991 1.93 1.23 6261 1434 1.87 0.48 11 7430 1252 1.08 0.4 6792 1362 0.65 0.27
2 10147 3300 1.52 0.97 6502 1263 1.12 0.49 12 8363 1647 2.23 1.3 6822 1156 1.89 1.98
3 8859 1142 1.43 0.78 7089 1450 0.96 0.62 13 9110 2084 1.91 1.33 7474 1368 1.2 0.81
4 9201 2157 1.07 0.46 6601 1108 1.12 0.6 14 7480 2033 0.92 0.47 8078 1588 1.64 0.76
5 8743 1975 1.15 0.93 7912 1098 0.88 0.27 15 8908 3599 2.28 1.09 7522 809 1.48 0.53
6 8480 1876 0.97 0.49 6068 1320 1.08 0.54 16 8034 1548 1.18 1.01 7208 729 1.11 0.53
7 7882 1776 1.54 1.04 6350 1323 0.94 0.75 17 7426 2196 2.25 1.49 8637 1475 1.43 0.69
8 9509 3231 1.95 1.01 6858 1245 2.09 1.32 18 8660 1470 1.52 0.62 7543 1820 1.22 0.83
9 9520 1892 1.21 0.55 6132 956 0.99 0.61 19 8293 1567 1.46 0.99 8203 1221 1.34 0.4
10 7507 935 0.9 0.62 6770 1285 1.35 0.62 20 8647 1969 0.8 0.37 6893 574 0.93 0.57

achieved port product composition under the assumption of constant stockpile grades. The merits

of our two stage approach for the generation of single mine schedules (see Section 5.1), relative to a

single application of the rolling horizon heuristic of Section 5.2, are highlighted in Table 4. We then

examine the relative performance of the algorithm when instantiated with each of the feedback

methods of Section 5.4. Feedback method F3 is used in all other experiments. We conclude by

examining the impact of splitting the scheduling horizon into more than two time periods in the

application of our rolling horizon heuristic. In the remainder of this section, each average value is

reported with an associated standard deviation following it in brackets.

Table 2 records the results of our decomposition-based algorithm, averaged over 10 seeded runs,

on each of our benchmark tests, with: N = 3, 5, and 7; γ = 0.25; MA = 4; and feedback method

F3 implemented. We record, for the best solution found by the algorithm, s⃗best: the elapsed time

to termination (s); and the gap (%) between ZMTP−MMPP (s⃗best) and its best known lower bound.

Quantities have been averaged over 10 seeded runs, with the average (µ) and standard deviation

(σ) recorded. Across all tests, our decomposition-based algorithm was able to find solutions in

which plant capacities, at each mine, are fully utilised. For N = 5 and 7, port products are formed

to specification, in all solutions, in each period of the scheduling horizon. The bold entries in Table

2, for N = 3, indicate that one or more of the 10 runs of our algorithm on the associated test case

did not result in correctly blended port products, in one or more periods. Across these instances,

small deviations in one contaminant were present, and the duality gaps of solutions found, across

all tests, ranged between 0.6% and 100%. Increasing N from 3 to 5 increases solve times by 2192s

(847s) on average and solution quality by 7.88% (9.11%). For N = 5, duality gaps range between

0.2% and 5.6%. Increasing N from 5 to 7 increases solve times by 2668s (1071s) on average, with

a 0.29% (0.27%) average improvement in quality, and duality gaps ranging between 0.1% and

3.5%. These results demonstrate that a value of N that is too small prevents the algorithm from

sufficiently exploring the space of producible grades at each mine site before it terminates.
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Reducing the gap between ZMTP−MMPP (s⃗best) and its lower bound by 1% can be achieved by

mining on the order of 10kt more waste, at each mine, across the horizon, or hauling 10kt less

material, at each mine, to stockpiles. The large optimality gaps present in some entries of Table 2,

for N = 3, are the result of port product deviations, which are heavily penalised.

Table 3 records the results of our decomposition-based algorithm, averaged over 10 seeded runs,

in each of our benchmark tests, with: N = 5; MA = 4; γ = 0.25,0.50, and 0.75; and feedback method

F3 implemented. Increasing γ from 0.25 to 0.50 increases solve times by 587s (589s) on average

while increasing solution quality by only 0.35% (0.30%). For γ = 0.50, duality gaps range between

0% and 3%. Increasing γ from 0.50 to 0.75 increases solve times and solution quality by an average

of 4819s (1158), and 0.25% (0.19%), respectively, with a range in duality gaps of 0.1% to 3%. A

larger γ results in smaller changes to standard deviation parameters at each iteration, and as a

result, more iterations are performed prior to termination of the algorithm. Smaller values of γ

(γ = 0.25) are sufficient, however, for consistently generating solutions of reasonable quality.

The impact of varying N and γ on the quality of solutions found by our algorithm in the multiple

time period setting is consistent with the results of the same experiment performed in the single

period case (Blom et al. 2014). In both settings, increasing both N and γ improves, in general, the

quality of solutions found by the algorithm, but at a cost of longer solve times.

In our modelling of the MTP-MMPP, we keep track of the composition of stockpiles at each

mine, across the scheduling horizon. We have used a modified version of our algorithm (with N = 5,

γ = 0.50, and MA = 4), in which Step 14 of our rolling horizon heuristic (Algorithm 3) does not

update the composition of stockpiles, to solve each of our tests. For each test, and each solution

obtained from 10 differently seeded runs of our algorithm, we compute the actual state of each

stockpile, at each mine, in each period, and the actual deviation that exists (if any) between the

composition of port products formed in each time period (based on actual stockpile states) and

desired bounds. We find that while the average deviations reported are small, across the set of

relevant quality attributes, the maximum deviations experienced, over all obtained solutions, are

significant. The average deviation in the metal grade of port products (from desired bounds), across

all time periods and tests, is 0.01% (0.03%), with a maximum experienced deviation of 0.67%. The

distance between the upper and lower bound on metal grade, in each port product, is 1%. These

results demonstrate the importance of monitoring the state of stockpiles over time.

We have calculated, via experiment, the variance in the grade of ore produced by each mine

and port, providing an indication of how grade varies between reclaimed slices of stockpiles. We

consider the schedules produced for each mine, across our test suite, in the first iteration of our

decomposition-based algorithm. We calculate the average variance in each quality attribute, across

each schedule formed, in 10 seeded runs of the algorithm with N = 5, MA = 4, and γ = 0.25.
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Table 5 Best solution s⃗best found by our algorithm for N = 5, γ = 0.25, MA = 2,4, and 8. Columns are defined

as in Table 2. An average (µ) and standard deviation (σ) for all quantities, over 10 seeded runs, is recorded.

MA = 2 MA = 4 MA = 8

Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG

1 10146 1856 1.88 0.87 6261 1434 1.87 0.48 6627 1210 1.81 1.38
2 9410 1538 0.68 0.29 6502 1263 1.12 0.49 5688 860 1.57 0.77
3 10471 1535 1.14 0.82 7089 1450 0.96 0.62 7370 984 0.96 0.3
4 10617 1629 0.79 0.48 6601 1108 1.12 0.6 6308 1626 1.8 1.31
5 9331 1190 1.19 0.65 7912 1098 0.88 0.27 6856 843 0.99 0.62
6 8989 1550 0.92 0.92 6068 1320 1.08 0.54 7005 863 1.29 0.59
7 10044 1241 0.81 0.3 6350 1323 0.94 0.75 5856 1434 3.23 2.4
8 10689 1718 1.4 0.76 6858 1245 2.09 1.32 7528 1736 1.41 0.32
9 9265 1093 0.88 0.19 6132 956 0.99 0.61 7426 1508 1.19 0.88
10 7765 2514 0.94 0.41 6770 1285 1.35 0.62 7436 1246 2.1 1.36
11 9646 1485 1.07 0.65 6792 1362 0.65 0.27 6429 665 1.41 0.53
12 11062 2295 2.26 2.55 6822 1156 1.89 1.98 6873 1159 1.4 0.72
13 10482 2025 1.02 0.38 7474 1368 1.2 0.81 6414 1123 2.58 1.07
14 9992 1238 1.33 0.56 8078 1588 1.64 0.76 7134 1692 2.62 1.45
15 9632 2011 1.67 0.76 7522 809 1.48 0.53 7188 1743 2.6 2.65
16 9283 1707 1.23 0.62 7208 729 1.11 0.53 7072 901 1.28 0.73
17 8897 2105 1.4 0.88 8637 1475 1.43 0.69 7031 1398 1.95 1.04
18 8620 1547 1.96 1.24 7543 1820 1.22 0.83 7023 915 1.11 0.32
19 7783 2317 0.98 0.69 8203 1221 1.34 0.4 7507 1417 1.33 0.9
20 9411 2153 1.05 0.77 6893 574 0.93 0.57 5975 715 1.12 0.55

The average variance in metal content, over the scheduling horizon, was 0.23 (0.12), indicating

that samples of ore produced at each mine will be distributed about the average with a standard

deviation of 0.48%. As ore arrives at each port, it is blended onto stockpiles, and reclaimed onto

ships. Given a 1 : 5 blending effect arising from stacking and reclaiming at the ports, the variance

in metal content of shipped ore is, on average, 0.25 (0.03). Samples of the shipped ore will be

distributed about the average grade with a standard deviation of 0.50%. Such variability in blended

products of this type lies within expectations (Everett et al. 2002, Minnitt and Pitard 2008).

To generate a single schedule, s⃗m for a mine m, Om applies the two stage process described

in Section 5.1. First, the set of available grade and blast blocks are aggregated to form a smaller

number of larger units. The rolling horizon heuristic of Section 5.2 determines how these aggregates

are to be mined over the course of the scheduling horizon. The original set of blocks is culled by

removing all blocks that do not appear in an aggregate mined in the resulting schedule. A second

application of this heuristic, in which only blocks in this restricted set, and the set of grade blocks,

can be mined, generates our schedule, s⃗m. The intuition is that this two-stage process is likely to

be less time consuming than a single application of the rolling horizon heuristic to the unrestricted,

original block set. Table 4 records the results of our algorithm with N = 5, γ = 0.25, MA = 4, and

each Om instructed to generate schedules with only one application of our rolling horizon heuristic
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Table 6 Best solution s⃗best found by our algorithm for N = 5, γ = 0.25, MA = 4, and feedback method F1, F2

with Nf = 2, and F3 implemented. Columns are defined as in Table 2. An average (µ) and standard deviation (σ)

for all quantities, over 10 seeded runs, is recorded.

F1 F2 with Nf = 2 F3

Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG

1 3438 592 21.82 39.13 11721 2362 1.37 0.72 6261 1434 1.87 0.48
2 3786 522 1.14 0.54 11354 1443 0.65 0.4 6502 1263 1.12 0.49
3 4702 709 1.04 0.33 12442 2905 1.01 0.72 7089 1450 0.96 0.62
4 4409 853 1.54 0.89 11013 1255 0.89 0.51 6601 1108 1.12 0.6
5 3370 501 21.13 39.48 12129 1996 1.03 0.91 7912 1098 0.88 0.27
6 3449 457 1.71 0.6 13038 2454 0.59 0.26 6068 1320 1.08 0.54
7 3652 606 1.64 0.96 12244 2299 0.72 0.51 6350 1323 0.94 0.75
8 4219 874 2.25 1.31 14611 2647 0.85 0.45 6858 1245 2.09 1.32
9 4195 665 1.08 0.32 12918 2371 0.6 0.27 6132 956 0.99 0.61
10 4150 720 1.48 0.77 13332 2464 0.85 0.42 6770 1285 1.35 0.62
11 3987 500 1.22 0.79 12862 2454 0.6 0.28 6792 1362 0.65 0.27
12 4288 570 11.76 29.44 12767 2250 1.58 0.98 6822 1156 1.89 1.98
13 3711 397 11.92 29.42 11773 1869 1.23 0.6 7474 1368 1.2 0.81
14 3955 580 2.15 1.08 11643 2216 0.73 0.38 8078 1588 1.64 0.76
15 3779 796 2.33 1.77 9018 1854 0.98 0.43 7522 809 1.48 0.53
16 4114 500 1.15 0.29 10518 1700 0.56 0.14 7208 729 1.11 0.53
17 4015 770 21.71 39.2 10860 1954 0.83 0.51 8637 1475 1.43 0.69
18 4158 879 1.6 1.17 12146 1178 0.63 0.25 7543 1820 1.22 0.83
19 4282 688 2.53 1.24 10686 1909 1.02 0.65 8203 1221 1.34 0.4
20 3673 685 1.89 1.15 9756 1875 0.64 0.33 6893 574 0.93 0.57

(1-Stage). In this setting, the duality gaps of solutions found, across all tests, range between 0.1%

to 5.6%. For comparison, Table 4 replicates the results of Table 2 for N = 5, γ = 0.25, and MA = 4,

where two applications of the rolling horizon heuristic were completed (2-Stage), and duality gaps

ranged between 0.2% and 5.6%. In the 1-Stage setting, our algorithm solves, on average, 1505s

(1284s) slower, while producing solutions that are 0.2% (0.40%) further from lower bounds.

We examine the performance of our decomposition-based algorithm for different values of max-

imum aggregate size MA. Table 5 reports the results of our algorithm given N = 5, γ = 0.25, and

MA = 2,4, and 8. For MA = 2, solution duality gaps range between 0.2% and 9.3%. Increasing MA

from 2 to 4 reduces solve times by 2491s (1298s), on average, with no significant change in average

solution quality. The maximum duality gap observed, however, reduces to 5.6%. Increasing MA

from 4 to 8 reduces solve times by 248s (760s), with an average reduction in solution quality of

0.42% (0.68%). Duality gaps range between 0.2% and 9.9%. Reducing MA allows our algorithm

to be more selective in the blocks it discards from consideration in the first scheduling stage, but

results in a greater number of blocks available for scheduling in the second, increasing solve times.

Table 6 reports the results of our algorithm when instantiated with feedback methods F1, F2

with Nf = 2, and F3, for N = 5, γ = 0.25, and MA = 4. Each of these methods is described in
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Table 7 Best solution s⃗best found by our algorithm for N = 5, γ = 0.25, MA = 4, F3 implemented, and the

horizon split into 3 periods when the rolling horizon heuristic of Section 5.2 is applied. Columns are defined as in

Table 2. An average (µ) and standard deviation (σ) for all quantities, over 10 seeded runs, is recorded.

2-period split 3-period split 2-period split 3-period split

Gap to (%) Gap to (%) Gap to (%) Gap to (%)
# Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb Time (s) MINLPlb

µT σT µG σG µT σT µG σG µT σT µG σG µT σT µG σG

1 6261 1434 1.87 0.48 18539 2945 2.24 0.77 11 6792 1362 0.65 0.27 17572 2273 1.43 0.8
2 6502 1263 1.12 0.49 18592 3386 2.35 1.26 12 6822 1156 1.89 1.98 18411 2813 2.68 0.97
3 7089 1450 0.96 0.62 18914 3234 2.91 1.3 13 7474 1368 1.2 0.81 20308 2065 2.56 0.99
4 6601 1108 1.12 0.6 17921 3507 2.88 0.97 14 8078 1588 1.64 0.76 18966 4134 1.65 0.61
5 7912 1098 0.88 0.27 19880 3608 1.46 0.71 15 7522 809 1.48 0.53 20937 2317 2.56 1.49
6 6068 1320 1.08 0.54 20021 2720 1.05 0.67 16 7208 729 1.11 0.53 19270 2164 1.51 0.81
7 6350 1323 0.94 0.75 15923 2698 1.66 0.77 17 8637 1475 1.43 0.69 22140 4634 2.83 1.4
8 6858 1245 2.09 1.32 14156 2926 3.75 1.02 18 7543 1820 1.22 0.83 19740 4821 1.75 0.52
9 6132 956 0.99 0.61 17786 2626 1.31 0.84 19 8203 1221 1.34 0.4 18328 3082 2.74 0.96
10 6770 1285 1.35 0.62 17732 1984 2.07 1.44 20 6893 574 0.93 0.57 18618 3690 1.62 0.65

Section 5.4. Using F1, solve times are 7875s (1295s) and 3120s (768s) faster, on average, than

when using F2 (Nf = 2) and F3, respectively. In five test cases, however, our algorithm (with F1

implemented) did not find solutions in which port products were correctly blended (these instances

are highlighted in bold in Table 6). The duality gaps of solutions, across all tests, range from 0.1%

to 100%. Using F3, in place of F2 (Nf = 2) results in solve times that are 4756s (1725s) faster, and

solutions with duality gaps that are 0.78% (0.37%) higher, on average. Duality gaps range from

0% to 3.4% when F2 is implemented, and 0.2% to 5.6% for F3. While solution quality improves,

in general, with method F2, it does so at the expense of longer solve times.

The rolling horizon heuristic that we use to generate mine-side schedules (Section 5.2) splits

the horizon into two periods, solves a two-period problem to schedule the first period, and then

repeats this process on the remaining periods in the horizon. Table 7 records the results of our

algorithm when this heuristic splits the horizon into three periods. The results obtained using the

original two-period split are also shown. In the 3-period setting, our algorithm is 11602s (1485s)

slower, on average, finding solutions with duality gaps that are, on average, 0.89% (0.57%) higher

– ranging from 0.3% to 5.9%. In the 2-period setting, duality gaps range between 0.2% and 5.6%.

Recall that time limits are placed on the solving of all MIPs by the rolling horizon heuristic. While

dividing the horizon into 3 periods, in place of 2, is a better approximation of the horizon, each

3-period MIP is more time-consuming to solve. The resulting solutions have higher duality gaps,

with respect to the relevant objectives, than those found by solving 2-period MIPs.

7. Multi-Period, Multi-Producer/Consumer Production Planning

The MTP-MMPP is an instance of a general class of multiple period, multiple producer/consumer

production planning problems. Consider a network of independently operating production sites,

PS, and multiple distribution centres, DC, as shown in Figure 3. Each production site s ∈PS, in

each time period t ∈ T , is able to produce a set of products, Ps, each characterised by a vector

of numerical attributes, a⃗t
p,s, p ∈ Ps. These attributes may include the quantity of p produced in
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Figure 3 A network of production sites, si ∈PS, and distribution centres, dj ∈DC.
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period t and/or its quality. Each distribution centre d∈DC, in each period t∈ T , combines products

formed across the set of sites to form its own products, Pd, similarly characterised by a vector of

attributes, a⃗t
p,d, p∈Pd, to be shipped to external markets. Each of these products, in each period,

is associated with deterministic demands on the values of its associated attributes (for example,

on the quantity and quality of production). In the open-pit supply network, each production site

is a mine, each distribution centre is a port, lump and fines products are formed at each mine and

port, and the attributes of mine and port products are metal percentage and impurity levels.

Such problems can be decomposed into |PS+1| subproblems, one subproblem for each produc-

tion site s∈PS, denoted Os, and one distribution subproblem involving the set of production sites

and distribution centres, denoted OD. Our decomposition-based algorithm, as defined in Section

5, can be readily applied to problems of this form. In the application of this algorithm, each Os is

designed to accept, as input, a vector of target attributes, and an associated standard deviation for

each attribute, for each of the products it is capable of producing. A solution to subproblem Os is

a set of schedules for site s, each schedule producing a set of products, in each period, with varying

attributes. The OD subproblem accepts these schedule sets, selects one schedule to be implemented

at each site, and solves a distribution problem in which products are transported between sites

and centres. The attributes of the products formed at each centre are dependent on the attributes

of those produced at each site. A feedback mechanism, such as those described in Section 5.4,

must be defined to give each Os a new vector of target attributes, and standard deviations, for

each product p∈Ps. The successive solving of each Os and OD, in conjunction with the standard

deviations supplied to each Os reducing in size over the course of the algorithm, yields a sequence

of monotonically improving solutions to the original multi-period, multi-site planning problem.

General production planning problems of this form can be found in a range of domains, including

the natural resources sector, food production, and the chemical process industry. While our model

of the MTP-MMPP exhibits the structure of a pooling problem, our approach is not restricted

to solving problems that involve pooling. We require only that the problem be decomposable into

several optimisation problems for the upstream components of the supply chain, and a single
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optimisation problem representing the downstream component. The application of our approach

to problems in this general class is planned as future work.

8. Concluding Remarks

In this paper we have presented a decomposition-based algorithm for a challenging multiple mine,

multiple time period, open-pit production scheduling problem. Non-linear in nature, this problem

can be formulated as a MINLP with on the order of 100,000 variables in realistic instances. In a

simpler instantiation of this problem – the single time period MMPP – this decomposition-based

algorithm was able to find solutions that were, in a majority of cases, higher in quality than those

discovered by a range of alternative techniques (Blom et al. 2014). Where this was not the case, the

algorithm was able to find good quality solutions for which the alternative methods required orders

of magnitude more time to match. We have shown, in this paper, that this algorithm is able to scale

to the significantly more complex multiple time period setting, generating solutions with optimality

gaps within 6% of known lower bounds on the objective of the MINLP problem representation, in

less than 2 hours, on average. The best performing alternative approach considered by Blom et al.

(2014) in the solving of the single period MMPP could not scale to the multiple period setting.

The extension of the algorithm to the multiple time period setting required the development of

a new heuristic for the generation of multiple time period extraction schedules for each mine and a

new MIP model to represent the port-side optimisation problem. The modelling of time significantly

increases the complexity of the MMPP. The composition of stockpiles at each mine must be tracked,

over time, to avoid errors in the evaluation of port product grades. Each decision made at each mine

has an influence on the material that will be available for mining in the future, and in consequence

the ability to satisfy constraints on plant use. These decisions determine the composition of ore

produced by each site, which in turn influences the decisions of other sites to ensure the correct

blending of products at each port – resulting in a problem with high combinatorial complexity.

The decomposition-based algorithm presented in this paper is, to the best of our knowledge, the

first approach to solve an integrated multiple-period open-pit scheduling problem, across multiple

mines and ports, where the grade and quality of the ore to be produced by each mine is not known

a priori, but determined as part of the optimisation.
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Appendix A: Modelling Notation

Om,OΠ mine-side and port-side subproblems

Sets and Indices

m,M mines π,Π ports

b,Bm blocks at mine m Bg
m grade blocks at mine m
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Bb
m blast blocks at mine m l,L granularities (lump/fines)

q,Q quality attributes t time period

δ,∆m waste dumps at mine m k,hi, lo,w index k refers to high grade (hi), low
grade (lo), or waste (w)

θ,Θm high grade stockpiles at mine m λ,Λm low grade stockpiles at mine m

s,Sm set of material sources at mine m
(blocks and stockpiles)

d,Dm set of material destinations at mine m
(stockpiles and plants)

κ,ω dry and wet processing plant n,Nπ,l set of products, of granularity l ∈ L,
formed by port π

A∧
m,b set of blocks that must be removed

before block b∈Bm can be accessed
A∨

m,b set of blocks, one of which must be
removed, before b∈Bm can be accessed

i iteration of the decomposition-based
algorithm

s⃗best best solution to the MTP-MMPP
found by our algorithm, defines values
of variables in the MINLP of Section 4

s⃗i solution to the MTP-MMPP found by
our algorithm in iteration i

Ωi
m set of extraction schedules generated

by Om in iteration i of the algorithm

ϕ⃗m, ϕ⃗i
m grade and quality target used by Om, in

iteration i, to generate Ωi
m

σ⃗m, σ⃗i
m set of standard deviations used by Om,

in iteration i, to generate Ωi
m

ϕm,t,i
l,q grade/quality target in ϕ⃗i

m correspond-
ing to granularity l ∈L, attribute q ∈Q,
and time period t

σm,t,i
l,q standard deviation in σ⃗i

m correspond-
ing to granularity l ∈ L, attribute q ∈
Q, and time period t

j, s⃗im,j the jth schedule in a set of schedules s⃗best,m schedule to be implemented at mine
m in the best solution to the MTP-
MMPP found by our algorithm, s⃗best

BA
m a set of aggregates of blocks in Bm IN(a),

a∈BA
m

set of grade or blast blocks forming
part of aggregate a∈BA

m

BA
m set of grade or blast block aggregates

mined (partially or completely) in an
extraction schedule, for mine m, formed
during the solving of Om

B∗
m set of grade blocks at mine m, together

with all grade and blast blocks forming
part of an aggregate in BA

m

Parameters

T number of periods in planning horizon N maximum number of schedules formed
by each mine-side subproblem, Om

T t=1
k (b) tons of material k in block b at the start

of the planning horizon
T t=1(s) tons of material on stockpile s at the

start of the planning horizon

MAXi cap on the number of iterations of the
algorithm performed

Gm,k
b,l,q percentage of q ∈Q in the granularity

l ∈L within material k of block b∈Bm

Sm,k
b,l percentage of granularity l ∈ L in the

material k within block b∈Bm

Gm
s,l,q percentage of q ∈Q in granularity l ∈L

of stockpile s at mine m

Sm
s,l percentage of granularity l ∈L in stock-

pile s at mine m
Rm,ω

l,q percentage of q ∈Q in the granularity
l ∈L of any source s∈ Sm that will be
recovered after wet processing

Y m,ω
l percentage of l ∈L in any source s∈ Sm

that will be recovered after wet process-
ing

Cm
τ tons of material haulable by truck, per

time period, at mine m



:
Management Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 41

Cπ tons of material that can pass through
port π ∈Π, per time period

γ factor by which standard devia-
tions are increased/reduced during our
decomposition-based algorithm

Cm
e tons of material that can be extracted

from blocks at mine m, per time period
Cm

κ ,Cm
ω tons of material that can be processed

by the dry and wet plants at m, per
period

TR tons of ore in a trainload ∆+
q ,∆

−
q significant, and insignificant, change in

the percentage of attribute q ∈Q
Uπ,l,t

n,q upper bound on q ∈ Q percentage in
product n∈Nπ,l formed by port π in t

Lπ,l,t
n,q lower bound on the percentage of q ∈Q

in product n ∈ Nπ,l formed by port π
in period t

Φm
ω binary parameter equal to 1 if and only

if mine m has a wet processing plant
TBm time period, prior to which, blast

blocks at mine m cannot be mined

MA maximum number of blocks permitted
in an aggregate

σ⃗+, σ⃗− set of upper, and lower, bounds on the
standard deviation set σ⃗i

m, ∀ i,m∈M
Ξm grade/quality target to be achieved by

m, over the planning horizon, as stated
in a medium-term (five year) plan

Functions

f(t) equal to max(1, t− 1) g(t) equal to min(t+ 1, T ) where T is the
number of periods in the horizon

vm,t
l,q (s⃗) percentage of q ∈ Q in the ore of gran-

ularity l ∈ L produced by mine m in
period t of the MTP-MMPP solution, s⃗

ρm(s⃗, t) productivity of mine m, in period t, in
a solution to the MTP-MMPP, s⃗

Decision Variables and Expressions: Monolithic MINLP

xm,t
s,d tons of source s∈ Sm, at minem, hauled

to destination d∈Dm, in period t
rl,n,t′

m,π,t (floating point) number of trains of
granularity l ∈L, produced by mine m
in period t′, railed to port π to form
part of product n∈Nπ,l in period t

vm,t
l,q percentage of q ∈Q in the ore of granu-

larity l ∈L produced at m in t
rvm,l,q,t′

π,n,t tons of attribute q ∈ Q, from ore pro-
duced by mine m in period t′, blended
into product n∈Nπ,l in period t

τm,t
l tons of granularity l ∈ L produced at

mine m in period t
x⃗ set of xm,t

s,d variables for all mines m,
periods t, material sources s∈ Sm, and
material destinations d∈Dm

ρm(x⃗, t) measure of productivity (equipment
usage) at mine m in period t

η(x⃗, r⃗, t) measure of deviation present between
port product composition and desired
bounds, across all ports, in period t

yσ,b
m,t binary, taking value 1 if and only if

block b ∈ Bm has been mined (partially
or completely) by, or in, period t, at m

yτ,b
m,t binary, taking value 1 if and only

if block b ∈ Bm has been completely
mined by, or in, period t, at m

om,t
s tons of material on stockpile s, at mine

m, at the start of period t
νm,t
l,q tons of q ∈Q in the ore of granularity

l ∈L produced by mine m in period t
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Decision Variables, Expressions, and Constants: OΠ

sm,j binary variable with value 1 if and only
ifOΠ selects the jth schedule in set Ωi

m∪
{s⃗best,m}, s⃗m,j , to be enacted at mine m

vm,t
l,q (s⃗m,j) the percentage of q ∈ Q in the ore of

granularity l ∈ L produced by mine m
in period t of schedule s⃗m,j

τm
l (s⃗m,j , t) the tons of granularity l ∈ L produced

by mine m in period t of schedule s⃗m,j

Pm
j the productivity achieved by mine m

in schedule s⃗m,j

Nm number of candidate schedules available
for OΠ to choose amongst, for mine m,
in a iteration i (Nm = |Ωi

m ∪{s⃗best,m}|)

rm,l,j,t′

π,n,t (floating point) number of trainloads of
granularity l produced by mine m in
period t′ of schedule s⃗m,j , blended into
product n∈Nπ,l at port π in period t

r⃗′ set of all rm,l,j,t′

π,n,t variables for m ∈M,
l ∈L, j ∈ {1,2, ..,Nm}, t, t′ ∈ {1,2, .., T}

η(r⃗′, t) measure of deviation present between
composition of port products and
desired bounds, in period t

Decision Variables, Expressions, and Constants: Om

Om,1 two-time-period MIP, solved as part of
the rolling horizon heuristic for sched-
ule generation at a mine m, which min-
imises deviation between the grade of
production at m and a grade target

Om,2 two-time-period MIP, solved as part of
the rolling horizon heuristic for sched-
ule generation at a minem, which max-
imises productivity

h1, h2 periods scheduled in Om,1 and Om,2 ∆j,t
l,q random real number generated from a

normal distribution

Lm,t,j
l,q lower bound on the percentage of q ∈Q

in the ore of granularity l ∈L produced
by mine m, in period t, of the jth sched-
ule formed by Om

Um,t,j
l,q upper bound on the percentage of q ∈

Q in the ore of granularity l ∈ L pro-
duced by mine m, in period t, of the
jth schedule formed by Om

x̃m,h
s,d tons of source s hauled to destination d,

at m, in period h of Om,1 and Om,2

Lm,h
l,q ,Um,h

l,q bounds on the percentage of q ∈ Q in
granularity l ∈ L produced by m, in
period h, when solving Om,1 and Om,2

x̃m set of all x̃m,h
s,d variables, for m∈M, h∈

{h1, h2}, source s, destination d
Q̃m,h

l,q percentage of q ∈Q in the ore of gran-
ularity l ∈ L produced by mine m, in
period h, of a solution to Om,1

νm
l,q(x̃m, h) tons of q ∈ Q in the ore of granularity

l ∈L formed by mine m, in period h
η(x̃m, h) measure of total deviation present

between composition of production at
mine m, in period h, and bounds given
by [Lm,h

l,q ,Um,h
l,q ], for all l ∈L, q ∈Q

τm
l (x̃m, h) tons of granularity l ∈ L produced by

mine m, in period h

Appendix B: A MINLP model of the MTP-MMPP

Constraints (39)–(42) ensure that, in each period t: the capacity of dig units at each mine m, Cm
e , is not

exceeded; material hauled is limited by Cm
τ ; the processing of ore at each plant is equal, within a tolerance

ϵ, to Cm
d for d∈ {κ,ω}; and the tons of ore railed to each port π does not exceed Cπ. Constraint (43) ensures

that all ore produced by each mine m in each period t is transported to a port by the end of period t+1.
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∑
b∈Bm

∑
d∈Dm

xm,t
b,d ≤Cm

e ∀ m∈M, t∈ {1,2, .., T} (39)∑
s∈Sm

∑
d∈Dm

xm,t
s,d ≤Cm

τ ∀ m∈M, t∈ {1,2, .., T} (40)

Cm
d − ϵ≤

∑
s∈Sm

xm,t
s,d ≤Cm

d + ϵ ∀ m∈M, d∈ {κ,ω}, t∈ {1,2, .., T} (41)

∑
m∈M

∑
l∈L

∑
n∈Nπ

l

t∑
t′=f(t)

TR rm,l,t′

π,n,t ≤Cπ ∀ π ∈Π, t∈ {1,2, .., T} (42)

g(t′)∑
t=t′

∑
π∈Π

∑
n∈Nπ,l

TR rm,l,t′

π,n,t = τm,t′

l ∀ m, l, t′ ∈ {1,2, .., T} (43)

Constraint (44) constrains the value of binaries yσ,b
m,t (1 if the mining of b has been scheduled by, or during,

t) and yτ,b
m,t (1 if b is scheduled to be entirely extracted by, or during, t). Vertical and disjunctive block

precedences are respectively expressed in Constraints (45)–(46).

yτ,b
m,t

∑
k

T t=1
k (b)≤

t∑
t′=1

∑
d∈Dm

xm,t′

b,d ≤ yσ,b
m,t

∑
k

T t=1
k (b) ∀ m∈M, b∈Bm, t∈ {1,2, .., T}, (44)

yτ,b′

m,t ≥ yσ,b
m,t ∀ m∈M, b∈Bm, b′ ∈A∧

m,b, t∈ {1,2, .., T} (45)∑
b′∈A∨

m,b

yτ,b′

m,t ≥ yσ,b
m,t ∀ m∈M, b∈Bm, t∈ {1,2, .., T}, (46)

Constraint (47) ensures that no blast blocks are mined prior to a specific time period, TBm, at each mine

m∈M. Prior to TBm, only grade blocks can be extracted at mine m. Prior to TBm, only grade blocks can

be extracted at m. Constraints (48)–(51) ensure that stockpile capacities are respected and that no more

than om,t
s tons (the tons of ore on stockpile s at the start of t) can be extracted from s∈Θm ∪Λm in t.

yσ,b
m,t = 0 ∀ m∈M, b∈Bb

m, t < TBm, (47)

om,t
s = T t=1(s) ∀ m∈M, s∈Θm ∪Λm, t= 1, (48)

om,t
s = om,t−1

s −
∑

d∈{κ,ω}

xm,t−1
s,d +

∑
b∈Bm

xm,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (49)

om,t
s −

∑
d∈{κ,ω}

xm,t
s,d +

∑
b∈Bm

xm,t
b,s ≤Cm

s ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (50)

om,t
s −

∑
d∈{κ,ω}

xm,t
s,d ≥ 0 ∀ m∈M, s∈Θm ∪Λm, t∈ {2,3, .., T}, (51)

Constraints (52)–(55) define the tons of each granularity l ∈L and attribute q ∈Q residing on each stockpile

s∈Θm ∪Λm at the start of period t.

om,t
s,l = Sm,t=1

s,l T t=1(s) ∀ m∈M, s∈Θm ∪Λm, l ∈L, t= 1, (52)

om,t
s,l = om,t−1

s,l −
∑

d∈{κ,ω}

am,t−1,d
s,l +

∑
b∈Bm

Sm
b,l x

m,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, l ∈L, (53)
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t∈ {2,3, .., T},

om,t
s,l,q = Sm,t=1

s,l Gm,t=1
s,l,q T t=1(s) ∀ m∈M, s∈Θm ∪Λm, l ∈L, (54)

q ∈Q, t= 1,

om,t
s,l,q = om,t−1

s,l,q −
∑

d∈{κ,ω}

am,t−1,d
s,l,q +

∑
b∈Bm

Sm
b,lG

m
b,l,q x

m,t−1
b,s ∀ m∈M, s∈Θm ∪Λm, l ∈L, q ∈Q, (55)

t∈ {2,3, .., T},

Constraints (56)–(57) ensure that the composition of material leaving each stockpile s ∈ Θm ∪ Λm for a

processing plant d∈ {κ,ω} in each period t is equal to that of the stockpile at the start of t.

am,t,d
s,l om,t

s = xm,t
s,d om,t

s,l ∀ m∈M, s∈Θm ∪Λm, d∈ {κ,ω}, l ∈L, t∈ {1,2, .., T} (56)

am,t,d
s,l,q om,t

s,l = am,t,d
s,l om,t

s,l,q ∀ m∈M, s∈Θm ∪Λm, d∈ {κ,ω}, l ∈L, q ∈Q, t∈ {1,2, .., T} (57)

Constraints (58)–(62) prevent material movement along invalid pathways, and ensure that no more high

(hi), low grade (lo), or waste (w) material is extracted from a block than exists at the start of t= 1.

xm,t
s,κ = 0 ∀ m∈M, s∈Λm ∪∆m, t∈ {1,2, .., T} (58)

xm,t
s,ω = 0 ∀ m∈M, s∈Θm ∪∆m, t∈ {1,2, .., T} (59)
T∑

t=1

∑
d∈Dm

xm,t
b,d x

m,t
b,κ +

∑
s∈Θm

xm,t
b,s ≤ T t=1

hi (b) ∀ m∈M, b∈Bm, (60)

T∑
t=1

xm,t
b,ω +

∑
s∈Λm

xm,t
b,s ≤ T t=1

lo (b) ∀ m∈M, b∈Bm, (61)

T∑
t=1

∑
s∈∆m

xm,t
b,s ≤ T t=1

w (b) ∀ m∈M, b∈Bm, (62)

Variables τm,t
l and vm,t

l,q are defined in Constraints (64)–(65). The tons of q ∈Q in the ore of granularity

l ∈L produced by mine m in t, denoted νm,t
l,q , is defined in Equation (63).

νm,t
l,q =

∑
λ∈Λm

Rm,ω
l,q am,t,ω

λ,l,q +
∑

θ∈Θm

am,t,κ
θ,l,q ∀ m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q, (63)

+
∑
b∈Bm

Sm,hi
b,l Gm,hi

b,l,q x
m,t
b,κ +Sm,lo

b,l Gm,lo
b,l,qR

m,ω
l,q xm,t

b,ω

τm,t
l =

∑
λ∈Λm

Y m,ω
l am,t,ω

λ,l +
∑

θ∈Θm

am,t,κ
θ,l ∀ m∈M, t∈ {1,2, .., T}, l ∈L, (64)

+
∑
b∈Bm

Sm,hi
b,l xm,t

b,κ +Sm,lo
b,l Y m,ω

l xm,t
b,ω

vm,t
l,q τm,t

l = νm,t
l,q ∀m∈M, t∈ {1,2, .., T}, l ∈L, q ∈Q, (65)

Constraint (66) defines variable rvm,l,q,t′

π,n,t , used in Equation (2) to compute the extent to which the com-

position of products formed at each port deviate from desired bounds.
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TR rm,l,t′

π,n,t vm,t′

l,q = rvm,l,q,t′

π,n,t ∀ m∈M, t∈ {1,2, .., T}, t′ ∈ {f(t), t}, l ∈L, q ∈Q, n∈Nπ,l, (66)

We define a set of separation constraints to prevent the extraction of blocks that are not immediately

accessible on the mining face. Blom et al. (2014) provide a set of such constraints for the single time period

MMPP, which we generalise to the multiple time period setting. A block b∈Bm is defined to lie on a mining

face if |A∨
m,b|= 0 (ie. no adjacent blocks must be mined before b can be accessed). The set P ′(Bm) contains

all contiguous sets of blocks B′
m ⊂Bm for which ̸ ∃b′ ∈B′

m such that |A∨
m,b′ |= 0. The set N (Bm,B′

m) contains

all blocks b′′ ∈ Bm\B′
m for which ∃b′ ∈ B′

m such that b′′ ∈ A∨
m,b′ (ie. the ‘neighbours’ of the blocks in set

B′
m). Selected instances of Constraint set (67) are added to the MINLP via a separation algorithm.3 Each

constraint in this set states that if a block in set B′
m is mined in period t, then at least one of the neighbours

of B′
m must have been completely extracted by or during t.

∑
b′′∈N(Bm,B′

m)

yτ,b′′

m,t ≥
1

|B′
m|

∑
b′∈B′

m

yσ,b′

m,t ∀m∈M,B′
m ∈P ′(Bm), t∈ {1,2, .., T} (67)

Indicators yτ,b
m,t and yσ,b

m,t, for all m ∈M, b ∈ Bm, and t ∈ {1,2, .., T}, are restricted to binary values, while

all remaining variables are restricted to non-negative reals.

3 Instances of Constraint (67) are added to our implementation of this model via the use of lazy constraint callbacks.
For brevity, further details of this separation algorithm have been omitted from this paper.


