
Under consideration for publication in Theory and Practice of Logic Programming 1

Lazy model expansion by incremental grounding

BROES DE CAT and MARC DENECKER

Department of Computer Science, K.U.Leuven, Belgium
(e-mail: {broes.decat, marc.denecker}@cs.kuleuven.be)

PETER STUCKEY

National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia

(e-mail: peter.stuckey@nicta.com.au)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Model expansion is a widely accepted way to solve a range of problems. It is achieved
by encoding the problem in a declarative (logic) language such that structures which
satisfy the specification are solutions to the problem. Model expansion is researched in
domains like Knowledge Representation and Answer Set Programming. The ground-and-
solve methodology tackles model expansion by converting the predicate descriptions of
the problem together with the problem instance data to propositional clauses and after-
wards applying a model generator for propositional logic. Ground-and-solve is currently
a state-of-the-art approach to model expansion, but a weakness of the approach is that
the grounding step is only applicable when the problem instance is finite, and even then
the grounding can be exponentially larger than the original description. In this paper we
describe a lazy approach to grounding of problems specified in first-order logic that can
cope with large and infinite problem domains. It interleaves grounding and propositional
model expansion, and by keeping track whether models found for a subset of the full
grounding solve the problem, it can forgo determining all propositions in the grounding.
The approach is hence both more widely applicable and more efficient for problems where
the grounding is large.

KEYWORDS: First-order logic, Model expansion, Lazy grounding

1 Introduction

Model expansion is a widely accepted way to solve a range of problems, by en-

coding the problem in a declarative (logic) language such that structures which

satisfy the specification are solutions to the problem. Such inference techniques are

researched within the domains of Constraint Programming (Apt 2003), Answer Set

Programming (Niemelä 2006) and Knowledge Representation (Baral 2003).

A shared property of a number of such techniques is a duality between rep-

resentation and model expansion. The problem specification on the one hand is

formulated in a high-level (user-friendly) language. The search algorithm on the

2 B. De Cat, M. Denecker, P. Stuckey

other hand usually only supports a more basic language. The link between the two

is a process called grounding (also known as unrolling) which converts the high-

level specification into low-level input. The high-level language FO(·) (Denecker and

Ternovska 2008) for example is associated with its propositional fragment PC(·);
accordingly, MiniZinc (Nethercote et al. 2007) is associated to Flatzinc, ASP to

propositional ASP and First Order logic (FO) to propositional logic. Such an ap-

proach to model expansion is denoted as ground-and-solve, a state-of-the-art way

to solve model expansion problems.

An important bottleneck to applying ground-and-solve is the size of the ground-

ing. For FO for example, the size of the propositional theory is exponential in the

nesting depth of quantifiers and polynomial in the size of the domain of the original

theory. There are lots of practical problems in which it is intractable to generate

the propositional theory.

Is it necessary to always perform grounding completely? Obviously the answer is

no, as shown by a simple example: if a subset of the specification is inconsistent,

it is not necessary to ground the remainder before the search algorithm can return

unsatisfiable. Furthermore, there are a number of problem classes for which it is

known that the full grounding is not required. An example are planning problems,

which usually are modelled over some notion of time. Time is conceptually infinite,

but only a finite plan is required to satisfy some goal. For general model expansion,

we might not be interested in the full model, but only in some small subset, so again

the full grounding might not be necessary to find such models. On the other hand,

we need the guarantee that found solutions are consistent on the whole specification.

In this paper, we present a novel approach to remedy this bottleneck, namely

to generate this grounding lazily (or on-the-fly) instead of up-front. The approach

is presented for the language FO(Type), FO extended with a type system, and

results are reported on an implementation in the idp system, a knowledge base

system supporting efficient model expansion.

2 Preliminaries

While FO is very expressive, from a knowledge representation point of view it

has some well-known limitations, such as not being to naturally express transitive

closure or the cardinality of a set of domain elements. To this end, FO(·) (Denecker

and Ternovska 2008) denotes a broad class of extensions of FO, intended to be

better suited for knowledge representation. A concrete instantiation of “·” denotes

a particular extension; FO(Agg) for example extends FO with aggregate expressions.

The idp system is a knowledge base system (Denecker and Vennekens 2008): it

allows one to specify knowledge in a declarative way and to use a range of inference

mechanisms to apply various reasoning tasks on the knowledge base. The language

supported by idp is an instantiation of FO(·) which extends FO with (among others)

types, arithmetic, aggregates and inductive definitions. In this paper, we focus on

the language FO(Type), a subset of that language, which extends FO with a type

system. More information on the other extensions can be found in (Wittocx et al.

2008) and (Bogaerts et al. 2012).

Lazy model expansion by incremental grounding 3

2.1 Syntax and semantics

We assume familiarity with classical logic. A vocabulary Σ consists of a set of

predicate and function symbols. Propositional symbols and constants are 0-ary

predicate symbols, respectively function symbols. The Herbrand universe HU of

atoms is defined as usual. FO terms and formulae are defined as usual, and are

built inductively from variables, constant and function symbols, logical connectives

(¬, ∧, ∨) and quantifiers (∀, ∃).
A ground sentence is a sentence without quantifiers or variables. A ground theory

is a theory consisting of ground sentences.

A vocabulary also contains types, which are interpreted in a structure as set of

domain elements. Each variable has an associated type, as well as each argument of

a predicate symbol and each argument and the range of a function symbol. As an

example, consider the types Machine and Dollar and a function cost(Machine) :

Dollar which maps a machine to its cost in dollars. A variable x with associated

type T is denoted by x[[T]].

Given a formula ϕ with free variable x, substitution of x with domain element d

is denoted as ϕ[x/d]. We only consider substitutions which replace a variable with

a domain element belonging to its type.

Throughout the paper, A and L are used to refer to atoms, respectively literals.

The semantics of FO(Type) are an integration of standard FO semantics and

the semantics of the type extension.

In this paper we deal with three-valued interpretations I over some set of atoms

HU . We will sometimes write an interpretation I as the set of literals over HU
which are true in it. For example I = {P,¬Q}, with HU = {P,Q,R}, denotes the

interpretation in which P is true, Q is false and R is unknown.

Let I(ϕ) denote the interpretation of a sentence ϕ under I. Hence if I |= ϕ we

have I(ϕ) = t, if I |= ¬ϕ we have I(ϕ) = f and if neither I |= ϕ nor I |= ¬ϕ we have

I(ϕ) = u, that is ϕ is unknown w.r.t I. The interpretation of a sentence under an

interpretation I, denoted I(ϕ) is defined as usual except that for existential quanti-

fication I(∃x[[t]](ϕ)) = t if and only if there is a d ∈ t such that I(ϕ[x/d]) = t; and

I(∃x[[t]](ϕ)) = f if and only if for all d ∈ t we have I(ϕ[x/d]) = f. (Typed) universal

quantification is defined similarly. For ⇒,⇐ and ≡ we take their interpretation

to be the weak interpretation, which (as they are shorthands) coincides with the

interpretation of their associated logical formula. Consequently, a formula ϕ ⇒ ψ

is true if I(ϕ) = f or I(ψ) = t, false if I(ϕ∧ψ) = t and unknown otherwise; ϕ⇐ ψ

is interpreted as ψ ⇒ ϕ; ϕ ≡ ψ as (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

A (three-valued) interpretation I is a model of an FO(Type) sentence if and

only if the sentence is true under the interpretation. It is a model of an FO(Type)

theory T if and only if it is a model of each of the sentences in T .

An interpretation I is more precise than an interpretation I’ if and only if I is

identical to I’ except on symbols which are unknown in I’. Using the set based view

that is I ′ ⊆ I. Two interpretations I and J agree on shared symbols if there is no

proposition P where {P,¬P} ⊆ I ∪ J .

4 B. De Cat, M. Denecker, P. Stuckey

With a slight abuse of notation, given a theory T , T is also used to refer to the

conjunction of the sentences it contains (as opposed to the set of sentences).

2.2 Model expansion

Model generation is the inference task of, given a vocabulary σin, a theory T over

σin and a (partial) interpretation Sin of σin, finding models M which satisfy T and

are more precise than Sin. If Sin interprets all types, the inference task is model

expansion, which will be denoted by 〈T ,Sin〉. Model expansion can be used to solve

problems by modelling them as a logical theory (and structure) such that solutions

to the problem are models of the theory (Mitchell et al. 2006).

In this paper we consider bounded model expansion where also an “output” vocab-

ulary σout is given, a subset of σin. The idea is then to generate interpretations I

which are two-valued on σout and can be extended to a model M of the theory T
more precise than Sin. Conceptually, this comes down to problems where we are

only interested in a (small) part of the solution, as long as we are guaranteed that a

solution exists. Examples are satisfiability checking, where we are only interested in

whether the problem has a solution at all (empty output vocabulary), or a planning

problem where we are only interested in the first n steps, as long as we are guaran-

teed some full plan exists (with the same n steps) in which we can reach the goal.

Obviously, model expansion can be cast as a bounded model expansion problem by

setting σout to σin. Bounded model expansion is denoted as 〈T ,Sin, σout〉.
In the next sections, we present an approach for bounded model expansion over

an empty output vocabulary. In section 4.5, the approach is extended (in a straight-

forward way) to non-empty output vocabularies.

In the rest of the paper, we assume the input theory T is build up from the basic

connectives ∧,∨,≡,¬,∀,∃. We assume that T is function-free and negations only

occur explicitly in front of atoms.

An occurrence of a subformula ϕ in T is called monotone if it is not in the scope of

a negation and not in an equivalence. It is anti-monotone if in the scope of a negation

(hence, must be an atom) and not in an equivalence. It is non-monotone if in an

equivalence. This reflects the well-known property that increasing the truth value

of an atom with only monotone occurrences, increases the truth value of formulae.

If the atom has only anti-monotone occurrences, then increasing its truth value,

decreases the value of formulae, and if it has both, or non-monotone occurrences,

then it can be either way.

2.3 Grounding

Basically, grounding is the process of instantiating all variables with domain ele-

ments to obtain a propositional theory. The full grounding of an FO(Type) formula

ψ, Gfull(ψ), is defined by Table 1. The size of the full grounding is exponential in

the nesting depth of quantifiers and polynomial in the size of the domains.

More intelligent grounding techniques exist, such as symbolic propagation (Wit-

tocx 2010) and grounding with bounds (Wittocx et al. 2010).

Lazy model expansion by incremental grounding 5

Original formula ψ Full grounding Gfull(ψ)

P (d) P (d)

¬P (d) ¬P (d)∧
i∈[1,n] ϕi

∧
i∈[1,n]Gfull(ϕi)∨

i∈[1,n] ϕi
∨
i∈[1,n]Gfull(ϕi)

∀y[[t]] : ϕ
∧
d∈tGfull(ϕ[y/d])

∃y[[t]] : ϕ
∨
d∈tGfull(ϕ[y/d])

ϕ ≡ ϕ′ Gfull(ϕ) ≡ Gfull(ϕ′)

Table 1. The definition of the full grounding Gfull(ψ).

3 Delayed theories

Lazy grounding (lazy mx) is an approach to interleave grounding and search. The

key idea of our approach is to partly ground the input theory and to delay grounding

of the remainder as long as certain conditions on the partial interpretation are

satisfied. We call such conditions delays.

Example 1

Consider the formula L1 ∨ϕ where L1 is a ground literal and ϕ a formula. As long

as L1 is not made false during search, L1 may still become true in the computed

solution and the formula will be satisfied. Therefore, we can delay the grounding

of ϕ by replacing it with the Tseitin symbol T for ϕ, resulting in a propositional

clause L1 ∨ T and the (non-propositional) formula T ≡ ϕ. The latter formula then

only needs to be grounded when T becomes true, for example by unit propagation

when L1 is made false. This condition on the partial structure I, I(T) 6= t, is called

the delay. As long as it satisfied, T ≡ ϕ need not be grounded. �

Delayed grounding can can lead to exponential reduction in the size of the ground-

ing. If for example ϕ is the formula ∀x : χ(x), quantifier instantiation can be com-

pletely avoided if L1 is not false.

3.1 Delays on formulae

A delayed sentence has the form (ϕ)δ where ϕ is a sentence and δ is a delay condition

(briefly, a delay). Two types of delays are considered:

• A true-delay, denoted ϕ 6= t, is satisfied in an interpretation I iff I(ϕ) 6= t.

• A known-delay, denoted ϕ = u, is satisfied in an interpretation I iff I(ϕ) = u.

As a notational convenience, we write ϕ |= δ for delay condition δ as an obvious

shorthand for I(ϕ) 6= t or I(ϕ) = u.

A delayed theory Td is a theory consisting of a ground theory G and a set D of

delayed sentences. We will often denote it by 〈G,D〉.
The delayed theory Td is constructed by a grounding algorithm which partially

grounds the theory, resulting in G, and delays the grounding of certain (sub)formulae,

resulting in D, a residual non-ground theory.

6 B. De Cat, M. Denecker, P. Stuckey

We say that a partial interpretation I satisfies (is a model of) a delayed sentence

(ϕ)δ if I satisfies ϕ. We say that I weakly satisfies (ϕ)δ if I |= δ or else, I |= ϕ.

We will say that a delayed sentence (φ)δ is active in I if its condition δ is not

satisfied, otherwise it is inactive. Conceptually, grounding will be triggered when a

sentence becomes active.

Definition 1 (Weak satisfaction)

A partial interpretation I weakly satisfies (is a weak model of) a delayed theory

Td = 〈G,D〉 iff it satisfies each sentence in G and weakly satisfies each sentence in

D.

The lazy model expansion algorithm iteratively reduces delayed theories into

“more ground” delayed theories. The following definition expresses the main invari-

ant of our algorithm.

Definition 2 (Partial grounding)

A delayed theory Td is a partial grounding of a theory T iff

• T and Td are “logically equivalent”, in the sense that each 2-valued model M

of T can be extended to a model of Td and vice versa, each 2-valued model

of Td satisfies T .

• Each partial interpretation I that weakly satisfies Td has a two-valued exten-

sion M that satisfies T .

Example 2

Consider again the sentence T = L1 ∨ ϕ. The delayed theory Td consisting of

the ground proposition L1 ∨ T and the delayed sentence (T ≡ ϕ)T 6=t is a partial

grounding of T . Indeed, (1) the two theories are obviously equivalent modulo the

difference in vocabulary. (2) Any partial interpretation I that weakly satisfies Td,
satisfies either L1 or T . In the first case, any extension of I satisfies T . In the second

case, I satisfies T and the active sentence T ≡ ϕ, hence also ϕ and therefore T . �

4 Introducing delayed sentences

The lazy grounding algorithm described in section 4.5 iteratively transforms an ini-

tial theory T into a sequence of partial groundings with a monotonically increasing

ground theory. Note that an initial theory T trivially corresponds to the delayed

theory
〈
∅, {(ϕ)t6=t |ϕ ∈ T }

〉
with empty ground theory and all its formulae active.

The process is driven by delayed sentences becoming active in a partial interpreta-

tion I. It may stop when a solution is found, or when unsatisfiability is discovered,

or, in case of infinite domains, it may run forever.

4.1 Tseitin introduction

Recall from the initial example that L1 ∨ ϕ was partially grounded to the ground

formula L1 ∨ T and a delayed sentence ((T ≡ (ϕ)))T 6=t. We here describe this op-

eration.

Lazy model expansion by incremental grounding 7

Definition 3 (Tseitin introduction)

Given a delayed theory Td = 〈G,D〉 and a set of occurrences of a formula ϕ in

sentences ψ with (ψ)δ ∈ Td, the Tseitin introduction for ϕ in Td is the delayed

theory Td’=〈G,D′〉 where D’ is obtained from D as follows:

• by substituting a new Tseitin propositional symbol Tϕ for each of the selected

occurrences of ϕ in D, and

• by adding a new delayed sentence (Tϕ ≡ ϕ)δ. Here δ is determined as follows:

— If all selected occurrences of ϕ are monotone in D, then δ = (Tϕ 6= t).

— If all are anti-monotone, then δ = (¬Tϕ 6= t).

— Otherwise, δ = (Tϕ = u).

Lemma 1

Let Td be a partial grounding of T . Let T ′
d be the Tseitin introduction for a set of

occurrences of ϕ in sentences ψ with (ψ)δ ∈ Td. Then (A) Td’ is a partial grounding

of T . (B) If (ψ)δ ∈ Td is transformed in (ψ′)δ in Td’, then Tϕ ≡ ϕ |= ψ ≡ ψ′.

Proof

(A) Condition 1, that T and Td’ are equivalent in the shared vocabulary (i.e., in all

symbols except Tϕ), is a well-known property of the Tseitin transformation. The

fact that any delayed sentence ψ in Td is only transformed into a delayed sentence

ψ’ in Td’ by applying Tseitin transformation, also proves (B).

(A) For condition 2, let I be a partial interpretation weakly satisfying Td’. Notice

that if (ψ′)δ ∈ T ′
d was derived from (ψ)δ ∈ Td by Tseitin introduction, then if one is

active in I so is the other. We show that I’, the restriction of I to symbols different

than Tϕ, weakly satisfies Td. Hence, it can be extended to a 2-valued model M of

T . If I(Tϕ) 6= u, we then set M(Tϕ) := I(Tϕ); if I(Tϕ) = u, we set M(Tϕ) := I(ϕ).

Either way, the property that I is a model of T is maintained and M extends I.

If (Tϕ ≡ ϕ)δ is active and hence satisfied in I, it is obvious that I weakly satisfies

Td since I(Tϕ) = I(ϕ) 6= u. Let us consider the three cases where the delay is

inactive.

Assume that I(Tϕ) = u. If (ψ′)δ ∈ T ′
d is active and was derived from (ψ)δ ∈ Td,

then ψ′ is obtained from ψ by replacing certain subformulae by one that is u in

I. It follows that I |= ψ. Thus, I weakly satisfies Td, and it can be extended to a

2-valued model M of Td.
The other cases are when I(Tϕ) = f and only monotone occurrences of ϕ were

replaced, or when I(Tϕ) = t and only anti-monotone occurrences were replaced.

Both cases are similar, so let’s consider only the first one. Because Tϕ is false and

has only monotone occurrences in Td, I’ satisfies all active sentences of Td (since

I(Tϕ) ≤ I(ϕ)). Hence, I’ can be extended to a model M of T .

One can prove that if Tseitin introduction is applied only to monotone occur-

rences of ϕ, then introduced delayed sentence can be weakened to (Tϕ ⇒ ϕ)Tϕ 6=t.

If it is only applied to anti-monotone occurrences, we can use (Tϕ ⇐ ϕ)¬Tϕ 6=t. We

will not detail this.

8 B. De Cat, M. Denecker, P. Stuckey

4.2 Delayed grounding algorithm

We now present the delayed grounding algorithm for del gnd. Given a theory T , the

result is a delayed theory Td = 〈G,D〉 which is a partial grounding of T .

The delayed grounding recursively examines formulae in T , choosing disjuncts

and existentially quantified formulae to apply Tseitin introduction on. The al-

gorithm also keeps track of the context of the formula, which is monotone (mono)

or non-monotone (nm).1 The context is used to build an appropriate delay using

the helper function kind defined as:

kind(mono, φ) = (φ 6= t)

kind(nm, φ) = (φ = u)

The algorithm constructs a ground theory in general propositional logic, but

many practical solvers take input in clausal normal form (CNF) instead. Adapting

for del gnd to return a CNF is straightforward, by applying the Tseitin transform-

ation on the ground sentences (on-the-fly or as a post-processing step).

The algorithm makes use of a current interpretation I and of Ientail, the set of

literals true in Sin or by unit propagation on G starting from Sin (that is literals

that are known to be globally true independent of decisions in search). Ientail is

used to simplify formulae which are certainly true/false, I allows to first select

subformulae which are not currently known, preventing immediate activation of

newly introduced Tseitin literals (this condition can be relaxed if it is too expensive

to check).

We define the conjunction 〈G,D〉 ∧ 〈G′,D′〉 of two delayed theories 〈G,D〉 and

〈G′,D′〉 as 〈G ∧ G′,D ∪D′〉.

for del gnd(φ, I, ctxt)

if (Ientail(φ) = t) return 〈true, ∅〉
if (Ientail(φ) = f) return 〈false, ∅〉
switch φ

P (d) : return
〈
P (d), ∅

〉
¬P (d) : return

〈
¬P (d), ∅

〉∨
i∈[1,m] ϕi : select j ∈ [1,m] (with I(ϕj) 6= f if possible)

ψ :=
∨
i∈[1,m]\j ϕi

〈Gj ,Dj〉 = for del gnd(ϕj , I, ctxt)

return
〈
Gj ∨ Tφ,Dj ∪ {(Tψ ≡ ψ)kind(ctxt,Tφ)}

〉
∃y[[t]] : ϕ : select d ∈ t (with I(ϕ[y/d]) 6= f if possible)

ψ := ∃y[[t\d]] : ϕ

〈Gd,Dd〉 = for del gnd(ϕ[y/d], I, ctxt)

return
〈
Gd ∨ Tφ,Dd ∪ {(Tφ ≡ ψ)kind(ctxt,Tψ)}

〉∧
i∈[1,m] ϕi : return 〈true, ∅〉

∧
i∈[1,m] for del gnd(ϕi, I, ctxt)

∀y[[t]] : ϕ : return 〈true, ∅〉
∧
d∈t for del gnd(ϕ[y/d], I, ctxt)

ϕl ≡ ϕr: 〈Gl,Dl〉 := for del gnd(ϕl, I, nm)

〈Gr,Dr〉 := for del gnd(ϕr, I, nm)

1 ←Recall, formulae (except atoms) only occur monotonically or non-monotone.

Lazy model expansion by incremental grounding 9

return 〈Gl ≡ Gr,Dl ∪ Dr〉

The result of for del gnd is guaranteed to be a correct partial grounding of T .

Theorem 1

Let T be a theory and Td = for del gnd (T , I, mono). Then Td is a partial grounding

of T and all delays in Td are inactive under I.

Proof

Follows from Proposition 1 and the fact that all introduced literals Tφ are new and

hence I(Tφ) = u.

Example 3

Consider T = ∃x[[t]] : (P (x) ∧ R(x)) ∨ (∀y[[t′]] : Q(x, y)). Delayed grounding of this

sentence is achieved by selecting a domain element d ∈ t and applying for del gnd to

(P (d)∧R(d))∨(∀y[[t′]] : Q(d, y)) while applying Tseitin introduction to the residual

subformula φ = ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)).

Applying for del gnd to (P (d)∧R(d))∨(∀y[[t′]] : Q(d, y)) recursively calls for del gnd

on P (d)∧R(d) and Tseitin introduction on the other disjunct ψ = (∀y[[t′]] : Q(d, y)).

The resulting delayed theory consists of the ground sentence (P (d)∧R(d))∨Tψ∨Tφ
and the true-delayed sentences:

(Tψ ≡ (∀y[[t′]] : Q(d, y)))Tψ 6=t

(Tφ ≡ ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)))Tφ 6=t

True-delays suffice as the associated formulae occur monotonically in T . �

4.3 Incremental delayed grounding

In order to construct a weak model for a delayed theory Td, search and grounding

are interleaved. When, during search, an interpretation I is constructed where some

delays in Td are active, further grounding needs to be applied to the associated

delayed sentences.

The function inc del gnd takes a delayed theory Td = 〈G0,D0〉 which is a partial

grounding of T and an interpretation I, and returns a new delayed theory Td’, also

a partial grounding of T , for which all delays are inactive in I. The function iterates

over the delayed sentences and applies delayed grounding to those with an active

delay. The delay condition itself is used to determine if its Tseitin literal appears

monotonically or not.

inc del gnd (〈G0,D0〉,I)

G := G0; D := ∅
for each (Tφ ≡ φ)δ ∈ D0

if (δ is inactive in I) D := D ∪ {(Tφ ≡ φ)δ}
else if (δ = Tφ 6= t) ctxt := mono else ctxt := nm

〈Gn,Dn〉 := for del gnd(φ, I, ctxt)

10 B. De Cat, M. Denecker, P. Stuckey

G := G ∧ (Tφ ≡ Gn); D := D ∪Dn
endfor

return 〈G,D〉

4.4 Satisfiability delays

Another approach to introducing delays applies to sentences of which a condition

on their satisfiability can be derived. For some classes of formulae such conditions

are well-known:

Example 4

Consider the definite clause ∀x[[t]] : φ[x]⇒ Q(x) where φ[x] is the body of the clause

(negations have not been pushed inside for clarity). Any interpretation I in which

none of the (ground) heads Q(d) are false can be extended to an interpretation

which satisfies all clauses, namely the interpretation in which all heads are true.

Consequently, only instantiations of which the head is false in I need to be ground.

All remaining heads can then be delayed as they can still be satisfied.

Assume that only I(Q(d)) = f for some d ∈ t. The delayed theory Td〈
φ[x/d]⇒ Q(d), {(∀x[[t\d]] : φ(x)⇒ Q(x))∃x[[t\d]]:¬Q(x)6=t}

〉
is then a partial grounding of the definite clause under I. �

In this section, we present an approach to delay sentences of universally quan-

tified disjunctions based on their satisfiability. Delaying universally quantified dis-

junctions is not captured by Tseitin introduction and is a class of formulae which

occur often in practice. Extending the approach to other and more general classes

of formulae is part of future work.

Definition 4 (Satisfiability delaying)

Consider a delayed theory Td = 〈G,D〉, a partial grounding of T , and an interpret-

ation I. Assume (ψ)δ ∈ D, with ψ = ∀x[[t]] :
∨
i∈[1,m] ϕi.

2 Satisfiability delaying of

ψ for Td under I consists of selecting a subset Sd of
⋃
i∈[1,m] ϕi such that

• Each formula in Sd is a literal.

• No delay in Td contains a literal over the same symbol with the opposite sign

as any literal in Sd.

The set nd of non-delayable instantiations is the set of tuples of domain elements

d ∈ t for which all formulae in Sd are false in I. The delay condition χ is then is

χ = ∃x[[t\nd]] :
∧
ϕi∈Sd ¬ϕi 6= t.

Assume the grounding of the non-delayable instantiations ∀x[[nd]]
∨
i∈[1,m] ϕi res-

ults in the delayed theory 〈Grem,Drem〉. The delayed theory T ′
d is then constructed

as
〈
G ∧ Grem,D − {ψ} ∪ Drem ∪ (∀x[[t\nd]]

∨
i∈[1,m] ϕi)

χ
〉

. We then say that T ′
d is

satisfiability delayed on ψ.

It should be noted that whether a satisfiability delay can contain a literal over a

symbol P depends on occurrences of P in existing delays.

2 ←A delayed sentence (ϕ ∧ ϕ′)δ can be seen as the union of delayed sentences (ϕ)δ and (ϕ′)δ.

Lazy model expansion by incremental grounding 11

Example 5

Consider the theory consisting of the sentences ∀x[[t]] : P (x) ∨ Q(x) and ∀x[t] :

¬P (x). Delaying the former on ∃x[[t]] : ¬P (x) is not correct if the latter is delayed

on ∃x[[t]] : P (x). Indeed, consider an interpretation I in which all literals over P

are unknown and some literal over Q is false. In that case, I is a weak model but

cannot be extended to a model of the theory. �

Proposition 1

Let Td be a delayed theory on T which contains the delayed sentence (ψ)δ such

that a subset exists for ψ satisfying the above-described conditions. Let Td’ be the

delayed theory resulting from satisfiability delaying Td on ψ under I. Then (A)

Td’ is a partial grounding of T . Moreover (B) if (ψ)δ ∈ Td was transformed into

(ψ′)δ ∈ T ′
d then ψ |= ψ′.

Proof

(A) Condition 1, equivalence of Td’ and T , directly follows from the fact that the

conjunction ψ is split and each conjunct is either added as a sentence in G or as a

new delayed sentence.

(A) Condition 2: Assume (ψ)δ is a delayed sentence in Td = 〈G,D〉 and is sat-

isfiability delayed by ψ. Take (ψ′)δ
′

to be the delayed sentence introduced by this

process to create T ′
d = 〈G′,D′〉. Then D′ − {(ψ′)δ

′} = D − {(ψ)δ} and G′ ≥ G.

Now consider any weak model M of Td’. If δ is inactive in M , all delayed sen-

tences Td are weakly satisfied in M , so M is a weak model of Td. If δ is active in

M , the proof is split up. Case 1: δ’ is active. M then satisfies ψ, so all delayed

sentences in Td are weakly satisfied; consequently M is a weak model of Td. Case

2: δ’ is inactive. In this case, ψ might not be satisfied in M . Take (ψ′)δ
′

to be

(∀x[t] :
∨
i∈[1,m] ϕi)

∃x[t′]:
∧
i∈S ¬ϕi . For each din t, either

∨
i∈[1,m] ϕi[x/d] is satisfied

in M or some ϕj [x/d], j ∈ S, is not false in M (otherwise δ’ would be active).

ϕj [x/d] is a ground literal such that no literal on the same symbol and with the

opposite sign occurs in any delay in Td. Construct M ’ as identical to M except that

ϕj [x/d] is true. No delay not active in M can be active in M ’ as the negation of

the literal does not occur in any delay. Applying this idea to all relevant d, M” is

constructed which satisfies ψ, so M” and M are a weak models of Td.
(B) follows trivially from the way the new delayed sentence is constructed.

Satisfiability delaying can be extended to other classes of formulae, such as

known-delaying formulae of the form ∀x[[t]] : L(x) ≡ ϕ(x). It can also be exten-

ded to inductive definitions (Denecker and Ternovska 2008), sets of rules of the

form ∀x : P (x)← φ evaluated by the well-founded semantics(Van Gelder 1993), by

known-delaying their heads. Delaying of inductive definitions opens up possibilities

towards for example transitive closure and more importantly towards Answer Set

Programming. The formalisation is out of the scope of this paper, but the techniques

are included in the prototype implementation used in the experiments.

12 B. De Cat, M. Denecker, P. Stuckey

4.4.1 Updated delayed grounding algorithms

To include satisfiability delaying in the grounding algorithms, information on the

full set of delays is required. To this end, all calls to for del gnd, both those in

inc del gnd and the recursive ones in for del gnd have the current set of delayed

sentences D as an additional parameter.3 The incremental algorithm is adapted to

also handle satisfiability delayed sentences in a straightforward way. Furthermore,

an additional case is added to the switch statement of for del gnd, before the step

which grounds universal quantifications.

∀y[[t]] :
∨
i∈[1,m] ϕi :

if (ϕ can be satisfiability delayed under D and I by set S ⊆ [1,m])

nd := {d | d ∈ t, I(
∧
j∈S ¬ϕj [y/d]) = t}

D := D ∪ (∀y[[t\nd]] :
∨
i∈[1,m] ϕi)

∃y[[t\nd]]:
∧
j∈S ¬ϕj 6=t

return 〈true,D〉
∧
d∈nd for del gnd(ϕi[y/d], I, ctxt, D)

else continue to original universal quantification case

4.5 Lazy model expansion

Lazy model expansion interleaves grounding and search. Given delayed theory Td =

〈G,D〉, the ground theory G is added to the search algorithm as constraints. During

the standard search algorithm, changes to the interpretation are checked against

the delays and grounding can be applied in the middle of the search. Note that

crucially lazy grounding steps are not undone on backtracking. The delayed theory

becomes more and more ground as execution proceeds.

The algorithm gets as input a theory T and a pre-interpretation Sin, and con-

structs the initial delayed theory 〈G,D〉, a partial grounding of T . The algorithm

proceeds by performing unit propagation on the ground part of the delayed theory.

If a conflict is detected it backjumps as usual, adding a conflict clause. If the conflict

is at the root level then G has no model and hence neither does T since 〈G,D〉 is a

partial grounding of T . If a delay is active, it performs grounding to construct a new

delayed theory which is a partial grounding of T . If the search algorithm detects

the current interpretation certainly satisfies all constraints in G, a weak model for

the current delayed theory 〈G,D〉 has been found. As it is a partial grounding of

T , we have proven the satisfiability of T . The strength of such detection depends

on the search algorithm used; the standard approach halts when all literals in the

grounding are true or false, but stronger methods can empower e.g. known-delays.4

Otherwise we make a new search choice and continue.

3 ←For conjunctions and universal quantifications, the delayed sentences returned by one recurs-
ive call are used as input to the next recursive call.

4 ←In the standard approach, known-delays are useless as they are certainly decided (unless
they do not occur in the ground theory). Our own implementation uses a mechanism based on
reducing the number of decision literals.

Lazy model expansion by incremental grounding 13

lazy mx (T , I)

〈G,D〉 := for del gnd(T , I, mono)

while true do

I := unit propagation(G,I)

if (conflict detected)

if (at root level) return false

G := G ∧ conflict clause

I := I at state of backjump point

else if (some delay in D is active in I)

〈G,D〉 := inc del gnd (〈G,D〉,I)

else if (satisfaction of G in I is detected) return true

else I := I ∪ {l} with l a search choice

endwhile

Theorem 2 (Correctness and termination)

If algorithm lazy mx returns true, T has a model which is more precise than I. If

the algorithm returns false, no interpretation exists which is more precise than I

and satisfies T . Algorithm lazy mx terminates if T and I are finite. If T has a finite

number of sentences, termination is possible but not guaranteed.

Proofs are omitted due to lack of space.

The algorithm can be adapted to handle non-empty output vocabularies σout.

A post-condition on the algorithm is that any model found is two-valued on σout.

Such a property can, for example, be ensured by adding the disjunction A∨¬A to

the initial ground theory for each atom A in σout.

5 Experiments

A prototype implementation was created within the new idp-3 system and experi-

ments were conducted with three different setups: basic model expansion (denoted

idp), lazy model expansion by Tseitin introduction (idpT) and by Tseitin intro-

duction and satisfiability delaying (idpT,S).

The considered benchmarks represent a diverse set of problems, both existing

benchmarks (e.g. from previous ASP competitions) and newly constructed ones. As

most instances of existing benchmarks are hard problems geared towards ground-

ing systems and propagation, we also used new instances geared towards “easier”

problems with a very large grounding. It will show the strength and applicability

of lazy mx, while at the same time clarifying that the technique is less well suited

if propagation is crucial to solve it efficiently.

A timeout of 1000 seconds was used and a memory limit of 3 Gb; — is used to

indicate that an instance could not be solved within those bounds. 5

For each benchmark instance, the size of the full grounding (g(full)) and of the

5 ←All experiments were run on an Intel Core 2 Machine (dual 2.40Ghz) running Ubuntu 10.4.
The tested version of the idp system and all data files are available from http://dtai.cs.
kuleuven.be/krr/research/experiments.

http://dtai.cs.kuleuven.be/krr/research/experiments
http://dtai.cs.kuleuven.be/krr/research/experiments

14 B. De Cat, M. Denecker, P. Stuckey

Benchmark g(full) g(idp) g(idpT) g(idpT,S) t(idp) t(idpT) t(idpT,S)

func-1 8.0 ∗ 107 8.0 ∗ 107 1.6 ∗ 105 540 99.03 4.07 0.1
func-2 ∞ — — 1370 — — 0.1
bnq** 1.4 ∗ 108 1.1 ∗ 105 1.1 ∗ 105 6.8 ∗ 104 2.56 2.56 1.96
packing-1 1.0 ∗ 1010 1.2 ∗ 108 1.1 ∗ 108 1.0 ∗ 106 171 172 5.0
packing-2 3.1 ∗ 1012 — — 2.2 ∗ 107 — — 27.0
agentK 5.0 ∗ 106 — — 626 — — 0.02
planning1 ∞ — — 385 — — 0.29
planning2-1 3.0 ∗ 108 2.0 ∗ 108 .05 ∗ 106 4.3 ∗ 104 139.02 5.96 0.46
planning2-2 3.0 ∗ 1010 — 5.1 ∗ 108 2.5 ∗ 106 — 455.02 31.05
soko-18** 1.6 ∗ 108 8.3 ∗ 107 — — 247.5 — —
soko-L 3.7 ∗ 108 — 1.5 ∗ 106 4.0 ∗ 105 — 16.0 6.0
reach-08** 2.3 ∗ 1018 — — 60 — — 26.05
reach-14** 6.2 ∗ 1014 — — 1.7 ∗ 105 — — 3.36

Table 2. Experimental results of applying lazy model expansion. ∗∗ denotes ASP

competition instances.

created groundings (g(idp), g(idpT) and g(idpT,S)) is measured as the number of

literals over the input vocabulary they contain. As the input structure is not taken

into account in the measure, even the grounding of the idp setup can be smaller

than the full grounding. The running times (t(idp), t(idpT) and t(idpT,S)) are also

measured (in seconds). The results are shown in table 2.

The experiments show that, for a range of benchmarks and instances, lazy mx

by incremental grounding can be very beneficial. One reason is that lazy mx acts

as a kind of dynamic dependency analysis, selecting the parts of the theory which

(hopefully) contribute to finding a model. The effect is extremely outspoken in

reachability (reach-*), a benchmark generally solved by static dependency analysis.

The dynamic character of our approach is both at least as powerful and more

general. For some benchmarks, such as soko and bnq, the reduction in grounding

size is counteracted by the adverse effect on propagation and search.

6 Related work

Within logic programming and ASP, research has been conducted towards redu-

cing the size of the grounding by static dependency analysis, implemented in for

example (Leone et al. 2006) and bottom up computation evaluation. Propagation

techniques on the first-order level, delaying grounding until propagation ensues, has

been researched within ASP (Lefèvre and Nicolas 2009), (Palù et al. 2009) and CP

(Ohrimenko et al. 2009). Such techniques can be used in conjunction with lazy mx

to reduce the size of the grounding considered and to lazily ground specific types

of constraints not handled by the presented framework.

The model generation theorem prover Paradox (Claessen and Sörensson 2003)

employs an incremental model generation algorithm. For each type in the vocabu-

lary, an initial domain size is chosen (all domain elements are symmetrical) and the

full grounding is constructed. If no model is found, the domain sizes are increased

Lazy model expansion by incremental grounding 15

until a model is found or a bound on the size is hit (if one could be derived). This

can be combined with lazy grounding to reduce the size of the domains considered.

The well-known technique skolemisation, used for example in theorem proving

and Sat-Modulo-Theory algorithms, allows to deal directly with existential quanti-

fiers by introducing function symbols. Reasoning on consistency can for example be

achieved by congruence closure algorithms, capable of deriving consistency without

effectively assigning an interpretation to the function symbols. Comparing with an

approach using skolemisation and congruence closure is part of future work.

Another topic for future work is to investigate undoing grounding on backtrack-

ing, which would prevent the grounding becoming too large to handle.

7 Conclusion

Lazy model expansion is an approach to model expansion that interleaves solving

and search. It can be highly beneficial when the original theory has a large (or

infinite) grounding, because it tries to introduce just enough grounding to solve the

problem. The disadvantages of lazy mx are that it provides less propagation than

full grounding, and the order of grounding can effect search detrimentally. There

remains much future work to improve lazy mx by incorporating ideas such as lifted

unit propagation and devising better heuristics for controlling delay, but there are

already examples where lazy mx is highly beneficial.

Acknowledgements NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the Digital Economy and

the Australian Research Council through the ICT Centre of Excellence program.

Broes De Cat is funded by the Institute for Science and Technology Flanders (IWT).

References

Apt, K. R. 2003. Principles of Constraint Programming. Cambridge University Press.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Bogaerts, B., De Cat, B., De Pooter, S., and Denecker, M. 2012. The
idp framework reference manual. http://dtai.cs.kuleuven.be/krr/software/idp3/

documentation.

Claessen, K. and Sörensson, N. 2003. New techniques that improve MACE-style model
finding. In MODEL.

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions.
ACM Trans. Comput. Log. 9, 2.

Denecker, M. and Vennekens, J. 2008. Building a knowledge base system for an
integration of logic programming and classical logic. In ICLP. 71–76.

Lefèvre, C. and Nicolas, P. 2009. The first version of a new ASP solver : ASPeRiX.
In LPNMR. 522–527.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic (TOCL) 7, 3, 499–562.

http://dtai.cs.kuleuven.be/krr/software/idp3/documentation
http://dtai.cs.kuleuven.be/krr/software/idp3/documentation

16 B. De Cat, M. Denecker, P. Stuckey

Mitchell, D. G., Ternovska, E., Hach, F., and Mohebali, R. 2006. Model expansion
as a framework for modelling and solving search problems. Tech. Rep. TR 2006-24,
Simon Fraser University, Canada.

Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., and Tack, G.
2007. Minizinc: Towards a standard CP modelling language. In Proceedings of the
13th International Conference on Principles and Practice of Constraint Programming,
C. Bessiere, Ed. LNCS, vol. 4741. Springer-Verlag, 529–543.

Niemelä, I. 2006. Answer set programming: A declarative approach to solving search
problems. In JELIA. 15–18. Invited talk.

Ohrimenko, O., Stuckey, P., and Codish, M. 2009. Propagation via lazy clause gen-
eration. Constraints 14, 3, 357–391.

Palù, A. D., Dovier, A., Pontelli, E., and Rossi, G. 2009. Answer set programming
with constraints using lazy grounding. In ICLP, P. M. Hill and D. S. Warren, Eds.
LNCS, vol. 5649. Springer, 115–129.

Van Gelder, A. 1993. The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47, 1, 185–221.

Wittocx, J. 2010. Finite domain and symbolic inference methods for extensions of
first-order logic. Ph.D. thesis, Department of Computer Science, K.U.Leuven, Leuven,
Belgium.

Wittocx, J., Mariën, M., and Denecker, M. 2008. The idp system: a model expansion
system for an extension of classical logic. In LaSh, M. Denecker, Ed. 153–165.

Wittocx, J., Mariën, M., and Denecker, M. 2010. Grounding FO and FO(ID) with
bounds. Journal of Artificial Intelligence Research 38, 223–269.

	Introduction
	Preliminaries
	Syntax and semantics
	Model expansion
	Grounding

	Delayed theories
	Delays on formulae

	Introducing delayed sentences
	Tseitin introduction
	Delayed grounding algorithm
	Incremental delayed grounding
	Satisfiability delays
	Lazy model expansion

	Experiments
	Related work
	Conclusion
	References

