
Conflict Directed Lazy Decomposition

Ignasi Ab́ıo1 and Peter J. Stuckey2

1 Technical University of Catalonia (UPC), Barcelona, Spain.
2 Department of Computing and Information Systems, and

NICTA Victoria Laboratory, The University of Melbourne, Australia

Abstract. Two competing approaches to handling complex constraints
in satisfaction and optimization problems using SAT and LCG/SMT
technology are: decompose the complex constraint into a set of clauses;
or (theory) propagate the complex constraint using a standalone algo-
rithm and explain the propagation. Each approach has its benefits. The
decomposition approach is prone to an explosion in size to represent the
problem, while the propagation approach may require exponentially more
search since it does not have access to intermediate literals for explana-
tion. In this paper we show how we can obtain the best of both worlds
by lazily decomposing a complex constraint propagator using conflicts
to direct it. If intermediate literals are not helpful for conflicts then it
will act like the propagation approach, but if they are helpful it will act
like the decomposition approach. Experimental results show that it is
never much worse than the better of the decomposition and propagation
approaches, and sometimes better than both.

1 Introduction

Compared with other systematic constraint solving techniques, SAT solvers have
many advantages for non-expert users. They are extremely efficient off-the-shelf
black boxes that require no tuning regarding variable (or value) selection heuris-
tics. However, propositional logic cannot directly deal with complex constraints:
we need either to enrich the language in which the problems are defined, or to
reduce the complex constraints to propositional logic.

Lazy clause generation (LCG) or SAT Modulo Theories (SMT) approaches
correspond to an enrichment of the language: the problem can be expressed in
first-order logic instead of propositional logic. A specific theory solver for that
(kind of) constraint, called a propagator, takes care of the non-propositional
part of the problem, propagating and explaining the propagations, whereas the
SAT Solver deals with the propositional part. On the other hand, reducing the
constraints to propositional logic corresponds to encoding or decomposing the
constraints into SAT: the complex constraints are replaced by an equivalent set
of auxiliary variables and clauses.

The advantages of the propagator approach is that the size of the propagator
and its data structures are typically quite small (in the size of the constraint)
compared to the size of a decomposition, and we can make use of specific global



algorithms for efficient propagation. The advantages of the decomposition ap-
proach are that the resulting propagation uses efficient SAT data structures and
are inherently incremental, and more importantly, the auxiliary variables give
the solver more scope for learning appropriate reusable nogoods.

In this paper we examine how to get the best of each approach, and illustrate
our method on two fundamental constraints: cardinality and pseudo-Boolean
constraints.

An important class of constraints are the so-called cardinality constraints,
that is, constraints of the form x1 + · · · + xn # K, where the K is an integer,
the xi are Boolean (0/1) variables, and the relation operator # belongs to {6
,>,=}. Cardinality constraints are omnipresent in practical SAT applications
such as timetabling [1] and scheduling constraint solving [2]. Some optimization
problems, such as MaxSAT or close-solutions problems (see [3]), can be reduced
to a set of problems with a single cardinality constraint (see Section 4.1).

The two different approaches for solving complex constraints have both been
studied for cardinality constraints. In the literature one can find different de-
compositions using adders [4], binary trees [5] or sorting networks [6], among
others. The best decomposition, to our knowledge, is the cardinality network-
based encoding [7]. On the other hand, we can use a propagator for deal with
these constraints, and using either an SMT Solver [8] or LCG Solver [9].

Another important class of constraints are the pseudo-Boolean (PB) con-
straints, that is, constraints of the form a1x1 + · · ·+anxn # K, where K and ai
are integers, the xi are Boolean (0/1) variables, and the relation operator # be-
longs to {6,>,=}. These constraints are very important and appear frequently
in application areas such as cumulative scheduling [10], logic synthesis [11] or
verification [12].

In the literature one can find different decompositions of PB constraints
using adders [4, 6], BDDs or similar tree-like structures [6, 13, 14] or sorting net-
works [6]. As before, LCG and SMT approaches are also possible.

To see why both approaches, both propagator and decomposition, have ad-
vantages consider the following two scenarios:

– Consider a problem with hundreds of large cardinality constraints where all
but 1 never cause failure during search. Decomposing each of these con-
straints will cause a huge burden on the SAT solver, adding many new
variables and clauses, all of which are actually useless. The propagation ap-
proach will propagate much faster, and indeed just the decomposition step
could overload the SAT solver.

– Consider the problem with the cardinality constraint x1 + · · ·+xn 6 K and
some propositional clauses implying x1 + · · · + xn > K + 1. The problem
is obviously unsatisfiable, but if we use a propagator for the cardinality
constraint, it will need to generate all the nCk explanations possible in order
to prove the unsatisfiability. However with a decomposition approach the
problem can be solved in polynomial time due to the auxiliary variables.

In conclusion it seems likely that in every problem there are some auxiliary
variables that will produce more general nogoods and will help the SAT solver,



and some other variables that will only increase the search space size, making
the problem more difficult. The intuitive idea of Lazy Decomposition is to try
to generate only the useful auxiliary variables. The solver initially behaves as a
basic LCG solver. If it observes that an auxiliary variable would appear in many
nogoods, the solver generates it.

While there is plenty of research on combining SAT and propagation-based
methods, for example all of SAT modulo theories and lazy clause generation,
we are unaware of any previous work where a complex constraint is partially
decomposed. There is some recent work [15] where the authors implement an in-
cremental method for solving pseudo-Boolean constraints with SAT, by decom-
posing the pseudo-Booleans one by one. However, they do not use propagators
for dealing with the non-decomposed constraints, and the decomposition is done
in one step for a single constraint.

The remainder of the paper is organized as follows. In the next section we give
SAT and LCG/SMT solving as well as decompositions and propagator definitions
for both cardinality and psuedo-Boolean constraints. In Section 3 we define a
framework for lazy decomposition propagators, and instantiate it for cardinality
and psuedo-Boolean constraints. In Section 4 we show results of experiments,
and in Section 5 we conclude.

2 Preliminaries

2.1 SAT Solving

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x
and x are positive and negative literals, respectively. The negation of a literal l,
written l, denotes x if l is x, and x if l is x. A clause is a disjunction of literals
x1∨ . . .∨xp∨xp+1∨ . . .∨xn, sometimes written as x1∧ . . .∧xp → xp+1∨ . . .∨xn.
A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x, x} 6⊆ A for any x,
i.e., no contradictory literals appear. A literal l is true in A if l ∈ A, is false
in A if l ∈ A, and is undefined in A otherwise. True, false or undefined is the
polarity of the literal l. A clause C is true in A if at least one of its literals is true
in A. A formula F is true in A if all its clauses are true in A. In that case, A is a
model of F . Systems that decide whether a formula F has any model are called
SAT-solvers, and the main inference rule they implement is unit propagation:
given a CNF F and an assignment A, find a clause in F such that all its literals
are false in A except one, say l, which is undefined, add l to A and repeat the
process until reaching a fix-point.

Clauses are not the only constraints that can be defined over the propositional
variables. Sometimes some clauses of the formula are expressed more compactly
as a single complex constraint.



2.2 SMT/LCG Solver

An SMT solver or a LCG solver3 is a system for finding models of a formula
F and a set of complex constraints {ci}. It is composed of two parts: a SAT
solver engine and a propagator for every constraint ci. The SAT solver searches
a model of the formula and the propagators infer consequences of the assignment
and the set of constraints (this is, propagate), and, on demand of the SAT solver,
provide the reason of some of the propagated literals (called the explanation).

2.3 Cardinality Constraints

A cardinality constraint takes the form x1 + · · · + xn # K, where the K is an
integer, the xi are literals, and the relation operator # belongs to {6,>,=}.

Propagation For a 6 constraint, the propagator keeps a count of the number
of literals of the constraint which are true in the current assignment. The prop-
agator increments this value every time the SAT solver assigns true a literal of
the constraint. The count is decremented when the SAT solver unassigns one of
these literals. When this value is equal to K, no other literal can be true: the
propagator sets to false all the remaining literals. The explanation for setting a
literal xj to false can be built by searching for the K literals {xi1 , . . . , xiK} of
the constraint which are true to give the explanation xi1 ∧xi2 ∧ · · · ∧xiK → xj .

Similarly, in a > constraint the propagator keeps a count of the literals which
are false in the current assignment. When this value is equal to n − K, the
propagator sets to true the non-propagated literals. A propagator for an equality
constraint keeps track of both values.

Cardinality Network Decomposition A k-cardinality network of size n is a
logical circuit with n inputs and n outputs satisfying two properties:

1. The number of true outputs of the network equals the number of true inputs.
2. For every i with 1 6 i 6 k, the i-th output of the network is true if and

only if there were at least i true inputs.

An example of cardinality networks are sorting networks e.g. [6], with size
O(n log2 n). An example is shown in Figure 1(b). The smallest decomposition
for a k-cardinality network is O(n log2 k) [7].

Cardinality networks are composed of 2-comparators. A 2-comparator is a
circuit 2comp(x1, x2, y1, y2) with inputs x1, x2 and outputs y1 = x1 ∨ x2 and
y2 = x1 ∧ x2 illustrated in Figure 1(a). 2-comparators can be easily encoded
into SAT through the Tseitin transformations [16] using the clauses: x1 → y1,
x2 → y1, x1 ∧ x2 → y2, x1 → y2, x2 → y2 and x1 ∧ x2 → y1. A cardinality
network can be decomposed into SAT by encoding all its 2-comparators.

3 In this paper we do not distinguish between SMT solvers and LCG solvers. The
two techniques are very similar and both of fit the sketch presented here, although
arguably the propagator centric view is more like LCG.



x1

x2

y1

y2

x1

x2

x3

x4

x5

x6

x7

x8

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38

(a) (b)

Fig. 1. (A) A 2-comparator 2comp(x1, x2, y1, y2) is shown as a vertical bar joining two
lines. (b) An odd-even merge sorting network for n = 8. Each line segment (broken at
nodes) represents a Boolean variable.

Cardinality constraints can be decomposed into SAT through cardinality
networks. For instance, a constraint x1 + · · · + xn 6 K can be decomposed in
two steps: firstly, we build a K + 1-cardinality network and encode it into SAT.
Secondly, we add the clause yK+1, where yK+1 is the K + 1-th output of the
network. Notice that this implies that no K + 1 inputs (x1, x2, . . . , xn) are true,
since the K + 1-th output of a K + 1-cardinality network is true if and only if
there are at least K + 1 true inputs.

Similarly, the constraint x1 + · · · + xn > K can be decomposed into a K-
cardinality network by adding the clause yK , and x1 + · · · + xn = K can be
decomposed with a K+1-Cardinality Network adding the clauses yK and yK+1.4

Example 1. Figure 1 shows an 8-cardinality network. Constraint x1+· · ·+x8 6 3
can be decomposed into SAT by adding the auxiliary variables z1, z2, . . . , z38;
the definition clauses x1 → z1, x2 → z1, x1 ∧ x2 → z2, x3 → z3, . . .; and the
unit clause z35.

2.4 Pseudo-Boolean Constraints

PB constraints are another kind of complex constraint. They take the form
a1x1 + · · · + anxn # K, where K and ai are integers, the xi are literals, and
the relation operator # belongs to {6,>,=}. In this paper we assume that the
operator # is 6 and the coefficients ai and K are positive. Other cases can be
easily reduced to this one (see [6]).

PB Propagator The propagator must keep the current sum s during the
search, defined as the sum of all coefficients ai for which xi is true. This value
can be easily incrementally computed: every time the SAT solver sets a literal
xi of the constraint to true, the propagator adds ai to s, and when the literal is
unassigned by the SAT solver it subtracts ai. For each i ∈ {1, . . . , n} such that

4 Actually, cardinality networks for 6 constraints can be encoded into SAT only adding
the first 3 clauses of every 2-comparator. Similarly, in > constraints we only need
the last 3 clauses of 2-comparators [7].



x1

x2x2

x3x3

x4

01

x1

x2x2

x3x3 x3

x4

01

[7, 7]

[6, 7] [5, 5]

[6, 10] [0, 4]

[0, 5]

[5, 5]

2x1 + 3x2 + 5x3 + 6x4 ≤ h

3x2 + 5x3 + 6x4 ≤ h

5x3 + 6x4 ≤ h

6x4 ≤ h

(a) (b)

Fig. 2. (a) The BDD of PB constraint 2x1+3x2+5x3+6x4 6 7, and (b) the BDD with
long arcs to internal nodes replaced using intermediate nodes and with the intervals
given for each node. Each node represents the constraint shown to the right of the
BDD for the values of h given by the range.

xi is unassigned and K−s < ai, the propagator sets xi to false. The propagator
can produce explanations in the same way as in the cardinality case: if it has
propagated xj to false, xi1 ∧ · · · ∧ xir → xj , is returned as the explanation,
where xi1 , · · · , xir are all the literals of the constraint with true polarity.

PB Decomposition PB decomposition into SAT can be made in two steps:
first, we build the reduced ordered binary decision diagram (BDD) [17] of the
PB constraint; second, we decompose the BDD into SAT.

A BDD of a PB constraint a1x1 + · · · + anxn 6 K is a decision diagram
that represents this constraint: it has a root node with selector variable x1,
the BDD of a2x2 + · · · + anxn 6 K − a1 as a true child and the BDD of
a2x2 + · · · + anxn 6 K as false child. Moreover, it is reduced, i.e., there is no
node with identical true and false child, and there are no isomorphic subtrees.

Example 2. Let us consider the PB constraint c ≡ 2x1 + 3x2 + 5x3 + 6x4 6 7.
The BDD of that constraint is shown in Figure 2(a). False (true) children are
indicated with dashed (solid) arrows. Terminal node 0 (1) represents the BDDs
of Boolean false (true) function.

This BDD represents the constraint in the following sense: assume x1 and
x4 are true and x2 is false. The constraint is false no matter the polarity of x3,
since 2x1 + 3x2 + 5x3 + 6x4 > 2x1 + 6x4 = 8 > 7. In the BDD of the figure
2(a), if we follow the first solid arrow (since x1 is true), then the dashed arrow
(x2 is false) and finally the solid one (x4 is true), we arrive to the false terminal
node: that is, the assignment does not satisfy the constraint.

For lazy decomposition we will decompose the BDD one layer at a time from
the bottom-up. To simplify this process we create a (non-reduced) BDD which
does not have any arcs that skip a level unless they go direct to a terminal node,
by introducing artificial nodes. Figure 2(b) shows the resulting BDD for c.

Given a node ν with selector variable xi, we define the interval of ν as the
set of integers h such that aixi + · · · + anxn 6 h is represented by the BDD



rooted at node ν. This set is always an interval (see [14]). Figure 2(b) shows the
intervals of constraint 2x1 +3x2 +5x3 +6x4 6 7. The BDDs for a PB constraint
can be efficiently built, as shown in [18]. The algorithm, moreover, returns the
interval of every BDD’s node.

We follow the encoding proposed in [14]: for every node, we introduce a fresh
variable. Let ν be a node with selector variable xj and true and false children t
and f . We add the clauses ν → f and ν ∧ xj → t. We also add a unit clause
for setting the root of the BDD to true, and unit clauses setting the true and
false terminal nodes to true and false respectively.

This encoding has the following property. Let A be a partial assignment
of the variables x1, x2, . . . , xn, and let ν be the node of the BDD of the PB
constraint c ≡ a1x1 + . . . + anxn 6 K, with selector variable xi and interval
[α, β]. Then, the unit propagation of the partial assignment A and the encoding
of the constraint c produces:

– ν if and only if c ∧A |= (aixi + · · ·+ anxn ≤ β).
– ν if and only if c ∧A |= (aixi + · · ·+ anxn > β).

In other words, if a1x1 + · · ·+ ai−1xi−1 > K − β in a partial assignment, unit
propagation sets ν to true. If ν is false, unit propagation assures that a1x1 +
· · ·+ ai−1xi−1 6 K − β − 1.

The way of ordering the constraint before constructing the BDD has a big
impact on the BDD size. Computing the optimal ordering with respect the BDD
size is a NP-hard problem [19], but experimentally the increasing order (a1 ≤
a2 ≤ · · · ≤ an) is shown to be a good choice. In this paper we use this order.

3 Lazy Decomposition

The idea of lazy decomposition is quite simple: a Lazy Decomposition (LD) solver
is, in some sense, a combination of a Lazy Clause Generation solver and an eager
decomposition. LD solvers, as LCG solvers, are composed of a SAT solver engine
(that deals with the propositional part of the problem) and propagators, each
one in charge of a complex constraint. The difference between LCG and LD
solvers lies in the role of the propagators: LCG propagators only propagate and
give explanations. LD propagators, in addition, detect which variables of the
decomposition would be helpful. These variables and the clauses from the eager
decomposition involving them are added to the SAT solver engine.

LD is not specific to a few complex constraints, but a general methodology.
Given a complex constraint type and an eager decomposition method for it, an
LD propagator must be able to perform the following actions:

– Identify (dynamically) which parts of the decomposition would be
helpful to learning: LD can be seen as a combined methodology that
aims to take advantage of the most profitable aspects of LCG and eager
decomposition. This point assures that the solver moves to the decomposition
when it is the best option.



– Propagate the constraint when any subset of the decomposition
has been added: The propagator must work either without decomposition
or with a part of it.

– Avoid propagation for the constraint which is handled by the cur-
rent decomposition: auxiliary variables from the eager decomposition have
their own meanings. The propagator must use these meanings in order to
efficiently propagate the constraint when it is partially decomposed. For ex-
ample, if the entire decomposition is added, we want the propagator to do
no work at all.

In this paper we present two examples of LD propagators: the first one, for
cardinality constraints, is based on the eager decomposition of Cardinality Net-
works [7]. The second one, a propagator for pseudo-Boolean constraints, is based
on a BDD decomposition [14].

3.1 Lazy Decomposition Propagator for Cardinality Constraints

In this section we describe the LD propagator for a cardinality constraint of the
form x1 +x2 + . . .+xn 6 K. LD propagators for > or = cardinality constraints
can be defined in a similar way.

According to Section 2.3, the decomposition of a cardinality constraint based
on cardinality networks consists in the encoding of 2-comparators into SAT. A
key property of the 2-comparator 2comp(x1, x2, y1, y2) of Figure 1(a) is that
x1 +x2 = y1 +y2. This holds since y1 = x1∨x2 and y2 = x1∧x2. Thus we can
define a 2-comparator decomposition step for 2-comparator 2comp(x1, x2, y1, y2)
as replacing the current cardinality constraint x1 + x2 + x3 + . . . + xn 6 K
by y1 + y2 + x3 + . . . + xn 6 K and adding a SAT decomposition for the
2-comparator. The resulting constraint system is clearly equivalent. The decom-
position introduces the new variables y1 and y2 to the SAT Solver engine.

The propagation of the LD propagator works just as in the LCG case. As
decomposition occurs the cardinality constraint that is being propagated changes
by substituting newly defined decomposition variables for older variables.

Example 3. Figure 1 shows an 8-cardinality network. A LD propagator for the
constraint x1 + . . . + x8 6 3 initially behaves as an LCG propagator for that
constraint. When variables z1, z2, . . . , z12 are introduced by decomposing the
corresponding six 2-comparators, the substitutions result in the cardinality con-
straint z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 6 3.

An LD propagator must determine parts of the decomposition that should be
added to the SAT solver. For efficiency, our LD solver adds variables only when
it performs a restart: restarts occurs often enough for generating the important
variables not too late, but occasionally enough to not significantly affect solver
performance. Moreover, it is much easier to add variables and clauses to the
solver at the root of search.

The propagator assigns a natural number acti, the activity, to every literal xi
of the constraint. Every time a nogood is constructed, the activity of the literals



z5

z7

z9

z12
z13

z14
z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38

z5

z7

z9

z12
z13

z14
z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38

(a) (b)

Fig. 3. The remaining undecomposed sorting network after decomposing some 2-
comparators with (a) 2comp(z12, z16, z27, z28) shown dotted, and (b) inputs leading
to 2comp(z18, z20, z25, z26) shown dotted.

belonging to the nogood is incremented by one. Each time the solver restarts
the propagator checks if the activities of the literals of the constraint are greater
than λN , where N is the number of conflicts since the last restart and λ is a
parameter of the LD solver.

If act i 6 λN then act i := act i/2. This is done in order to focus on the recent
activity. If act i > λN , there are three possibilities:

– If xi is not the input of a 2-comparator (i.e. an output of the cardinality
network) nothing is done.

– If xi is an input of a 2-comparator 2comp(xi, xj , y1, y2), and its other input
xj has been already generated by the decomposition, we perform a decom-
position step on the comparator.

– If xi is an input of a 2-comparator 2comp(xi, xj , y1, y2), and its other input
xj has not been generated by the decomposition yet, we proceed as follows:
let S = {xk1 , xk2 , . . . , xks} be the literals in the current constraint that, after
some decomposition steps, can reach xj . We perform a decomposition step
on all the comparators whose inputs both appear in S. Thus xj is “closer”
to being generated by decomposition.

Example 4. Assume the LD propagator for the constraint x1 + . . .+x8 6 3 has
generated some variables, so the current constraint is z9 + z17 + z18 + z12 + z5 +
z15 + z7 + z16 6 3. The remaining undecomposed cardinality network is shown
in Figure 3.1(a).

In a restart, if the activity of z12 is greater than λN we decompose the
comparator 2comp(z12, z16, z27, z28) generating new literals z27 and z28 and using
them to replace z12 and z16 in the constraint.

However, if the activity of z18 is greater than λN , we cannot decompose
2comp(z18, z20, z25, z26) since z20 has not been generated yet. The literals reach-
ing z20 are z5, z15 and z7 (see Figure 3.1(b)). Since z5 and z7 are the inputs of
a 2-comparator 2comp(z5, z7, z13, z14), this comparator is encoded: z13 and z14
are introduced and they replace z5 and z7 in the constraint.



3.2 Lazy Decomposition Propagator for PB Constraints

In this section we describe the LD propagator for a PB constraint of the form
c ≡ a1x1 + · · · + anxn 6 K with ai > 0, since other PB constraints can be
reduced to this one.

Suppose B is the BDD for the PB constraint c. The decomposition of the
constraint works as follows: if ν is a node with selector variable xi and interval
[α, β], ν is set to true if a1x1 + · · · + . . . + ai−1xi−1 > K − β. If ν is set to
false, the encoding assures that a1x1 + · · · + ai−1xi−1 6 K − β + 1. The LD
propagator must maintain this property for nodes ν which have been created as
a literal via decomposition.

In our LD propagator, the BDD is lazily encoded from bottom to top: all
nodes with the same selector variable are encoded together, thus removing a
layer from the bottom of the BDD. Therefore, the LD propagator must deal
with the nodes ν at some level i which all represent expressions of the form
aixi+· · ·+anxn 6 βν or equivalently a1x1+· · ·+ai−1xi−1 > K−βν . Suppose ν′

is the node at level i with highest βν where ν′ is currently false. The decomposed
part of the original PB constraint thus requires that a1x1 + · · · + ai−1xi−1 6
K − βν′ − 1. Define Ki = K − βν′ − 1, and nodei = ν′

The LD propagator works as follows. The propagator maintains the current
sum (lower bound) of the expression s = a1x1 + · · · + ai−1xi−1, just as in the
LCG case. If this value is greater than K−βν for some leaf node ν with selector
variable xi and interval [αν , βν ], this node variable ν is set to true. If some
leaf node ν (with selector variable xi and interval [αν , βν ]) is set to false, we
set Ki = K = βν − 1 and nodei = ν. If, at some moment, s + aj for some
1 6 j < i where xj is undefined is greater than Ki, the propagator sets xj to
false. The explanation is the literals in x1, . . . , xi−1 that are true and nodei.

The policy for lazy decomposition is as follows. Every time a nogood is gener-
ated that requires explanation from the PB constraint c, an activity actc for the
constraint c is incremented. If at restart actc > µN where N is the number of
nogoods since last restart we decompose the bottom layer of c and set actc = 0.
Otherwise actc := actc/2.

Note that the fact that the coefficients ai in c are in increasing order is
important. Big coefficients are more important to the constraint and hence their
corresponding variables are likely to be the most valuable for decomposition.

4 Experimental results

The goals of this section are, first, to check that Lazy Decompositions solvers do
in fact significantly reduce the number of auxiliary variables generated and, sec-
ondly, to compare them to the LCG and eager decomposition solving approaches.
For some problems we include other related solving approaches to illustrate we
are not optimizing a very slow system.

All the methods are programmed in the Barcelogic SAT solver [20]. All exper-
iments were performed on a 2Ghz Linux Quad-Core AMD. All the experiments



used a value of λ = 0.3 and µ = 0.1. We experimented with different values
and found values for λ between 0.1–0.5 give similar performance, while values
for µ between 0.05–0.5 also give similar performance. While there is more to
investigate here, it is clear that no problem specific tuning of these parameters
is required.

4.1 Cardinality Optimization Problems

Many of the benchmarks on which we have experimented are pure SAT problems
with an optimal cardinality function (i.e., an objective function x1 + · · · + xn)
to minimize.

These problems can be solved by branch and bound: first, we search for an
initial solution solving the SAT problem. Let O be the value of x1 + · · ·+ xn in
this solution. Then, we include the cardinality constraint x1 + · · ·+xn 6 O−1.
We repeatedly solve replacing the cardinality constraint by x1+· · ·+xn 6 O−1,
where O is the last solution found. The process finishes when the last problem
is unsatisfiable, which means that O is the optimal solution.

Notice that this process can be used for all approaches considered. In the
cardinality network decomposition approach, the encoding is not re-generated
every time a new solution is found: we just have to add a unit clause setting
the O-th output variable of the network to false. LCG and LD solvers can also
easily be adapted as branch and bound solvers, by modifying the bound on the
constraint.

For all the benchmarks of this section we have compared the LCG solver
for cardinality constraints (LCG), the eager cardinality constraint decomposi-
tion approach (DEC), our Lazy Decomposition solver for cardinality constraints
(LD), and the three best solvers for industrial partial MaxSAT problems in
the past Partial MaxSAT Evaluation 2011: versions 1.1 (QMaxSAT1.1) and 4.0
(QMaxSAT4.0) of QMaxSAT [21] and Pwbo solver, version 1.2 (Pwbo) [22].

Partial MaxSAT The first set of benchmarks we used were obtained from the
MaxSAT Evaluation 2011 (http://maxsat.ia.udl.cat/introduction/), industrial
partial MaxSAT category. The benchmarks are encodings of different problems:
filter design, logic synthesis, minimum-size test pattern generation, haplotype
inference or maximum-quartet consistency.

We can easily transform these problems into SAT problems by introducing
one fresh variable to any soft clause. The objective function is the sum of all
these new variables. Time limit was set to 1800 seconds per benchmark as in the
Evaluation. Table 1(a) shows the number of problems (up to 497) solved by the
different methods after, respectively, 15 seconds, 1 minute, etc.

In these problems the eager decomposition approach is much better than
the LCG solver. Our LD approach has a similar behavior to the decomposition
approach, but LD is faster in the easiest problems. Notice that with these results
we would be the best solver in the evaluation, even though our method for solving
these problems (adding a fresh variable per soft clause) is a very naive one!



Method 15s 1m 5m 15m 30m

DEC 211 296 367 382 386

LCG 144 209 265 275 279

LD 252 319 375 381 386

QMaxSAT4.0 191 274 352 370 377

Pwbo 141 185 260 325 354

QMaxSAT1.1 185 278 356 373 383

Method 15s 1m 5m 15m

DEC 409 490 530 541

LCG 151 186 206 228

LD 370 482 528 539

QMaxSAT4.0 275 421 534 557

Pwbo 265 361 423 446

QMaxSAT1.1 378 488 537 556

SARA-09 411 501 537 549

(a) (b)
Table 1. Number of instances solved of (a) 497 partial MaxSAT benchmarks and (b)
600 DES benchmarks

Discrete-Event System Diagnosis Suite The next benchmarks we used are
for discrete-event system (DES) diagnosis as presented in [23]. In these problems,
we consider a plant modeled by a finite automaton. Its transitions are labeled
by the events that occur when the transition is triggered. A sequence of states
and transitions on the DES is called a trajectory; it models a behavior of the
plant. Some events are observable, that is, an observation is emitted when they
occur. The goal of the problem is, knowing that there is a set of faulty events in
the DES, find a trajectory consistent with the observations that minimizes the
number of faults. As all the problems in this subsection, it is modeled by a set
of SAT clauses and a cardinality function to minimize.

In addition to the previously mentioned methods, we have also compared
the best SAT encoding proposed in [23] (denoted by SARA-09). It is a specific
encoding for these problems. Table 1(b) shows the number of benchmarks solved
by the different methods after 15 seconds, 1 minute, etc.

The best method is that described in [23]. However, DEC and LD methods
are not far from it. This is a strong argument for these methods, since SARA-
09 is a specific method for these problems while eager and lazy decomposition
are general methods. On the other hand, LCG does not perform well in these
problems, and LD performs more or less as DEC. Both versions of QMaxSAT
also performs very well on these problems.

Close Solution Problems Another type of optimization problems is suggested
in [3]. In these problems, we have a set of SAT clauses and a model, and we
want to find the most similar solution (w.r.t the Hamming distance) to the
given model if we add some few extra clauses. Table 2(a) contains the number
of solved instances of the original paper after different times.

For the original problems LD is slightly better than eager decomposition
(DEC) and much better than the other approaches.

Since the number of instances of the original paper was small, we created
more instances. We selected the 55 satisfiable instances from SAT Competition
2011, industrial division, that we could solve in 10 minutes. For each of these 55
problems, we generated 10 close-solution benchmarks adding a single randomly



Method 15s 1m 5m 15m 60m

DEC 18 24 31 34 34

LCG 16 18 24 27 30

LD 19 26 31 34 36

QMaxSAT4.0 9 14 18 20 22

Pwbo 5 6 7 7 7

QMaxSAT1.1 6 11 16 17 19

Method 15s 1m 5m 15m 60m

DEC 143 168 208 226 243

LCG 181 223 242 255 268

LD 187 230 252 262 279

QMaxSAT4.0 55 55 63 69 80

Pwbo 102 144 179 204 215

QMaxSAT1.1 54 55 57 57 64

(a) (b)
Table 2. Number of instances solved of the (a) 40 original close-solution problems and
(b) 450 new close-solution problems.

generated new clause (with at most 5 literals) that falsified the previous model.
100 of the 550 benchmarks were unsatisfiable, so we removed them (searching
the closest solution does not make sense in an unsatisfiable problems). Table
2(b) shows the results on the remaining 450 instances.

For the new problems LCG and LD are the best methods with similar be-
haviour. Notice that for these problems the cardinality constraint size involves
all the variables of the problem, so it can be huge. In a few cases, the encoding
approach runs out of memory since the encoding needed more than 225 variables.
We considered these cases as a timeout.

4.2 MSU4

Another type of cardinality benchmarks also comes from the MaxSAT Evalu-
ation 2008. In this case we solved them using the msu4 algorithm [24], which
transforms a partial MaxSAT problem into a set of SAT problems with multiple
cardinality constraints.5

We have grouped all the problems that came from the same partial MaxSAT
problem, and we set a timeout of 900 seconds for solving all the family of prob-
lems. We had 1883 families of problems (i.e., there were originally 1883 partial
MaxSAT problems), but in many cases all the problems of the family could be
solved by any method in less than 5 seconds, so we removed them. Table 3(a)
contains the results on the remaining 479 benchmarks.

In these problems the LD approach is clearly the best, particularly in the first
minute. The reason is that for most of the problems, DEC is faster than LCG,
and LD performs similarly to DEC. But there are some problems where LCG is
much faster than DEC: in these cases, LD is also faster than LCG, so in total it
beats both other methods. Moreover, in some problems there are some important
constraints which should be decomposed and some other which shouldn’t. The
LD approach can do this, while DEC and LCG methods either decompose all the
constraints or none.

5 We thanks Albert Oliveras and Carlos Ansótegui for his assistance with these bench-
marks.



Method 15s 1m 5m 15m

DEC 190 282 352 411

LCG 123 168 212 241

LD 263 336 410 435

Method 15s 1m 5m 15m 60m

DEC 318 354 390 407 427

LCG 372 387 400 415 433

LD 369 382 401 423 439

borg 280 406 438 445 467

(a) (b)
Table 3. (a) Number of families solved from 479 non-trivial MSU4 problems, and (b)
number of instances solved from 669 problems PB Competition-2011.

4.3 PB Competition Problems

To compare pseudo-Boolean propagation approaches we used benchmarks from
the pseudo-Boolean Competition 2011 (http://www.cril.univ-artois.fr/PB11/),
category DEC-SMALLINT-LIN (no optimisation, small integers, linear con-
straints). In this problems we have compared the LCG, DEC and LD approaches
for PB constraints and the winner of the pseudo-Boolean Competition 2011, the
solver borg (borg) [25] version pb-dec-11.04.03. Table 3(b) contains the number
of solved instances (up to 669) after 15 seconds, 1 minute, etc.

In this case, LCG approach is better than DEC, while LD is slightly better
than LCG and much better than DEC since presumably it is worth decomposing
some of the PB constraints to improve learning, but not all of them. The borg
solver is clearly the best, but again it is a tuned portfolio solver specific for
pseudo-Boolean problems and makes use of techniques (as in linear programming
solvers) which treat all PB constraints simultaneously.

4.4 Variables Generated

One of the goals of Lazy Decomposition is to reduce the search space of the
problem. In this section we examine the “raw” search space size in terms of the
number of Boolean variables in the model.

Table 4 shows the results of all the problem classes. DEC gives the multiplica-
tion factor of Boolean variables created by eager decomposition. For example if
the original problem has 100 Boolean variables and the decomposition adds 150
auxiliary variables, we have 250 Boolean variables in total and the multiplication
factor will be 2.5. LD gives the multiplication factor of Boolean variables result-
ing from lazy decomposition. Finally aux. % gives the percentage of auxiliary
decomposition variables actually created using lazy decomposition. The values
in the table are the average over all the problems in that class.

In the optimization problems, there is just one cardinality constraint and
most of the time is devoted to proving the optimality of the best solution.
Therefore, the cardinality constraint appears in most nogoods since we require
many explanations to prove the optimality of the solution. For these classes, the
number of auxiliary variables we need is high 35-60 %. Still this reduction is
significant.



Class of problems DEC LD aux. %

Partial MaxSAT 7.46 5.41 61.72

DES 1.55 1.16 26.62

Original close-solution 12.21 7.48 45.33

New close-solution 24.55 12.38 35.88

MSU4 1.77 1.01 2.18

PB Competition 44.21 17.52 3.24

Table 4. The average variable multiplication factor for (DEC) eager decomposition
and (LD) lazy decomposition, and the average percentage of auxiliary decomposition
variables created by lazy decomposition.

In the MSU4 and PB problems, on the other hand, there are lots of complex
constraints. Most of them have little impact in the problem (i.e., during the
search they cause few propagations and conflicts). These constraints are not
decomposed in the lazy approach. The LD solver only decomposes part of the
most active constraints, so, the number of auxiliary variables generated in these
problems is highly reduced.

5 Conclusions and Future Work

We have introduced a new general approach for dealing with complex constraints
in complete methods for combinatorial optimization, that combines the advan-
tages of decomposition and global constraint propagation. We illustrate this ap-
proach on two different constraints: cardinality and pseudo-Boolean constraints.
The results show that, in both cases, our new approach is nearly as good as the
best of the eager decomposition and global propagation approaches, and often
better. Note that the strongest results for lazy decomposition arise when we have
many complex constraints, since many of them will not be important for solving
the problem, and hence decomposition is completely wasteful. But we can see
that for the important constraints it is worthwhile to decompose.

There are many directions for future work. First we can clearly improve
our policies for when and what part of a constraint to decompose. We will also
investigate how to decide the right form of decomposition for a constraint during
execution rather than fixing on a decomposition prior to search. We also plan
to create lazy decomposition propagators for other complex constraints such as
linear integer constraints, regular, lex, and incorporate the technology into a full
lazy clause generation solver.

Acknowledgments The first author is partially supported by Spanish Min. of
Educ. and Science through the LogicTools-2 project (TIN2007-68093-C02-01)
and by an FPU grant. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Ex-
cellence program.



References

1. Aśın Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT
and MaxSAT. Annals of Operations Research (February 2012) 1–21

2. Mcaloon, K., Tretkoff, C., Wetzel, G.: Sports league scheduling. In: In Proceedings
of the 3th Ilog International Users Meeting. (1997)

3. Ab́ıo, I., Deters, M., Nieuwenhuis, R., Stuckey, P.J.: Reducing chaos in sat-like
search: Finding solutions close to a given one. In: SAT. (2011) 273–286

4. Warners, J.P.: A Linear-Time Transformation of Linear Inequalities into Conjunc-
tive Normal Form. Information Processing Letters 68(2) (1998) 63–69

5. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Con-
straints. In Rossi, F., ed.: Principles and Practice of Constraint Programming,
9th International Conference, CP’03. Volume 2833 of Lecture Notes in Computer
Science., Springer (2003) 108–122

6. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2 (2006) 1–26

7. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2) (2011) 195–221

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM, JACM 53(6) (2006) 937–977

9. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357–391

10. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.: Why Cumulative Decomposition
Is Not as Bad as It Sounds. In Gent, I.P., ed.: 15th International Conference
on Principles and Practice of Constraint Programming, CP’09. Volume 5732 of
Lecture Notes in Computer Science., Springer (2009) 746–761

11. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus special-
ized 0-1 ILP: an update. In Pileggi, L.T., Kuehlmann, A., eds.: 2002 International
Conference on Computer-aided Design, ICCAD’02, ACM (2002) 450–457

12. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Deciding CLU Logic Formulas via Boolean
and Pseudo-Boolean Encodings. In: Proc. Intl. Workshop on Constraints in For-
mal Verification. (September 2002) Associated with Intl. Conf. on Principles and
Practice of Constraint Programming (CP’02).

13. Bailleux, O., Boufkhad, Y., Roussel, O.: A Translation of Pseudo Boolean Con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation,
JSAT 2(1-4) (2006) 191–200

14. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: BDDs for Pseudo-
Boolean Constraints - Revisited. In: SAT. (2011) 61–75

15. Manolios, P., Papavasileiou, V.: Pseudo-boolean solving by incremental translation
to sat. In: Formal Methods in Computer-Aided Design, FMCAD. (2011)

16. Tseitin, G.S.: On the Complexity of Derivation in the Propositional Calculus.
Zapiski nauchnykh seminarov LOMI 8 (1968) 234–259

17. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

18. Mayer-Eichberger, V.: Towards Solving a System of Pseudo Boolean Constraints
with Binary Decision Diagrams. Master’s thesis, Lisbon (2008)

19. Tani, S., Hamaguchi, K., Yajima, S.: The complexity of the optimal variable
ordering problems of shared binary decision diagrams. In: Proceedings of the 4th
International Symposium on Algorithms and Computation. ISAAC ’93, Springer-
Verlag (1993) 389–398



20. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
barcelogic smt solver. In: Computer-aided Verification (CAV). Volume 5123 of
Lecture Notes in Computer Science. (2008) 294–298

21. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: Qmaxsat: A partial max-sat
solver. JSAT 8(1/2) (2012) 95–100

22. Martins, R., Manquinho, V., Lynce, I.: Parallel Search for Boolean Optimization.
In: RCRA International Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion. (2011)

23. Anbulagan, Grastien, A.: Importance of Variables Semantic in CNF Encoding of
Cardinality Constraints. In Bulitko, V., Beck, J.C., eds.: Eighth Symposium on
Abstraction, Reformulation, and Approximation, SARA’09, AAAI (2009)

24. Manquinho, V.M., Silva, J.P.M., Planes, J.: Algorithms for weighted boolean op-
timization. In: Int. Conf. Theory and Applications of Satisfiability Testing (SAT),
LNCS 4501. (2009) 495–508

25. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio meth-
ods. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence. (2010)


