Lazy Clause Generation: Combining the power
of SAT and CP (and MIP?) solving

Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
University of Melbourne, 3010 Australia. pjs@cs.mu.oz.au

Abstract. Finite domain propagation solving, the basis of constraint
programming (CP) solvers, allows building very high-level models of
problems, and using highly specific inference encapsulated in complex
global constraints, as well as programming the search for solutions to
take into account problem structure. Boolean satisfiability (SAT) solving
allows the construction of a graph of inferences made in order to deter-
mine and record effective nogoods which prevent the searching of similar
parts of the problem, as well as the determination of those variables
which form a tightly connected hard part of the problem, thus allow-
ing highly effective automatic search strategies concentrating on these
hard parts. Lazy clause generation is a hybrid of CP and SAT solving
that combines the strengths of the two approaches. It provides state-of-
the-art solutions for a number of hard combinatorial optimization and
satisfaction problems. In this invited talk we explain lazy clause gener-
ation, and explore some of the many design choices in building such a
hybrid system, we also discuss how to further incorporate mixed integer
programming (MIP) solving to see if we can also inherit its advantages
in combinatorial optimization.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the pos-
sible values of variables (propagation). The propagators that make up the core
of a finite domain propagation engine represent trade-offs between the speed of
inference of information versus the strength of the information inferred. Good
propagators represent a good trade-off at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial problems
arises from these good trade-offs, and programmable search, and has defined the
success of constraint programming (CP).

Boolean Satisfiability (SAT) solvers have recently become remarkably pow-
erful principally through the combination of: efficient engineering techniques
for implementing inference (unit propagation) using watched literals, effective
methods for generating and recording nogoods which prevent making a set of
decisions which has already proven to be unhelpful (in particular 1UIP nogoods),

and efficient search heuristics which concentrate on the hard parts of the prob-
lem combined with restarting to escape from early commitment to choices. These
changes, all effectively captured in Chaff [1], have made SAT solvers able to solve
problems orders of magnitude larger than previously possible.

Can we combine these two techniques in a way that inherits the strengths of
each, and avoids their weaknesses. Lazy clause generation [2,3] is a hybridization
of the two approaches that attempts to do this. The core of lazy clause generation
is simple enough, we examine a propagation based solver and understand its
actions as applying to an underlying set of Boolean variables representing the
integer (and set of integer) variables of the CP model.

In this invited talk we will first introduce the basic theoretical concepts that
underlie lazy clause generation. We discuss the relationship of lazy clause gen-
eration to SAT modulo theories [4]. We then explore the difficulties that arise
in the simple theoretical hybrid, and examine design choices that ameliorate
some of these difficulties. We discuss how complex global constraints interact
with lazy clause generation. We then examine some of the remaining challenges
for lazy clause generation: incorporating the advantages of mixed integer pro-
gramming (MIP) solving, and building hybrid adaptive search strategies. The
remainder of this short paper will simply introduce the basic concepts of lazy
clause generation.

2 Lazy Clause Generation by Example

The core of lazy clause generation is fairly straightforward to explain. An integer
variable x with initial domain [[..u] is represented by two sets of Boolean vari-
ables [x < d],l < d < u and [z =d],l < d < u. The meaning of each Boolean
variable [c] is just the condition c. In order to prevent meaningless assignments
to these Boolean variables we add clauses that define the conditions that relate
them.

[x<d] > [r<d+1],i<d<u—2
[xr=d] = [z <d,l<d<u-1
[xr=d] = -x<d-1],l<d<u
[r<dA-[z<d-1] = [zr=d,l<d<u-—1
[z <] = [z =1]
“fr <u—-1] = [z = u]

Each Boolean variable encodes a domain change on the variable x. Setting
[x = d] true sets variable to d. Setting [z = d] false excludes the value d from
the domain of x. Setting [< d] true creates an upper bound d on the variable
x. Setting [z < d] false creates a lower bound d + 1 on the variable x. We can
hence mimic all domain changes using the Boolean variables. More importantly
we can record the behaviour of a finite domain propagator using clauses over
these variables.

Consider the usual bounds propagator for the constraint x = y X z (see
e.g. [5]). Suppose the domain of x is [—10..10], y is [2..10] and z is [3..10].
The bounds propagator determines that the lower bound of x should be 6. In
doing so it only made use of the lower bounds of ¥ and z. We can record this as
a clause ¢

(c1) =y A2 < 2] > o < 5]

It also determines the upper bound of z is 5 using the upper bound of x and the
lower bound of y, and similarly the upper bound of y is 3. These can be recorded
as

(c2): [z <10] A [y <1] = [z < 5]

(c3): [z <10] A [z <2] = [y < 3]

Similarly if the domain of z is [—10..10], y is [—2..3] and z is [—3..3],
the bounds propagator determines that the upper bound of x is 9. In doing so
it made use of both the upper and lower bounds of y and z. We can record this
as a clause

ly< BIAly <3I Az < A Az <3] = [z < 9]

In fact we could strengthen this explanation since the upper bound of z will
remain 4 even if the lower bound of z was —4, or if the lower bound of y were
—3. So we could validly record a stronger explanation of the propagation as

ly<-3Aly <3l A-le< 5] ALz <3] = [o < 9]

N <Ay <3 Ao < ALz <3] > [o <]

In a lazy clause generation system every time a propagator determines a
domain change of a variable it records a clause that ezplains the domain change.
We can understand this process as lazily creating a clausal representation of the
information encapsulated in the propagator. Recording the clausal reasons for
domain changes creates an implication graph of domain changes. When conflict is
detected (an unsatisfiable constraint) we can construct a reason for the conflict,
just as in a SAT (or SMT solver).

Suppose the domain of z is [6..20], domain of y is [2..20], z is [3..10] and
tis [0..20] and we have constraints < ¢, x =y x z and y > 4V z > 7. Suppose
search adds the new constraint ¢t < 10 (represented by [t < 10]). The inequality
changes the upper bounds of x to 10 with explanation (c4) : [t < 10] — [z < 10].
The multiplication changes the upper bounds of z to 5 ([z < 5]), and y to 3
([y < 3]) with the explanations ¢y and ¢ above, and the disjunctive constraint
(which is equivalent to (c5) : =y < 3] V =]z < 6]) makes —[z < 6] true which
by the domain constraints makes (cg) : [z < 5] — [z < 6] unsatisfiable. The
implication graph is illustrated in Figure 1

We can explain the conflict by any cut that separates the conflict node from
the earlier parts of the graph. The first unique implication point (1UIP) cut
chooses the closest literal to the conflict where all paths from the last decision

c2

[
cs T
I
I

Fig. 1. Implication graph of propagation

to the conflict flow through that literal, and draws the cut just after this literal.
The 1UIP cut for Figure 1 is shown as the dashed line. The resulting nogood is

[z <2] Ay <1 Az < 10] — false

Since we are explaining conflicts completely analogously to a SAT (or SMT)
solver we can attach activities to the Boolean variables representing the inte-
ger original variables. Each Boolean variable examined during the creation of
the explanation (including those appearing in the final nogood) has their activ-
ity bumped. Every once in a while all activities counts are decreased, so that
more recent activity counts for more. This allows us to implement activity based
VSIDS search heuristic for the hybrid solver. We can also attach activity coun-
ters to clauses, which are bumped when they are involved in the explanation
process.

Since all of the clauses generated are redundant information we can at any
stage remove any of the generated clauses. This gives us the opportunity to
control the size of the clausal representation of the problem. Just as in a SAT
solver we can use clausal activities to decide which generated clauses are most
worthwhile retaining.

3 Concluding Remarks

The simple description of lazy clause generation in the previous section does
not lead to an efficient lazy clause generation solver, except for some simple
kinds of examples. In practice we need to also lazily generate the Boolean vari-
ables required to represent the original integer (and set of integer) variables. We
may also choose to either eagerly generate the explanation clauses as we exe-
cute forward propagation, or lazily generate explanations on demand during the
process of explaining a conflict. For each propagator we have to determine how
to efficiently determine explanations of each propagation, and which form the

explanation should take. In particular for global constraints many choices arise.
Lazy clause generation also seems to reduce the need for global constraints, since
in some cases decomposition of the global constraint, together with conflict learn-
ing, seems to recapture the additional propagation that the global constraint has
over its decomposition. Decompositions of global constraints may also be more
incremental that the global, and learn more reusable nogoods. In short, lazy
clause generation requires us to revisit much of the perceived wisdom for creat-
ing finite domain propagation solvers, and indeed leads to many open questions
on the right design for a lazy clause generation solver. Experiments have shown
that for some classes of problem, such as resource constrained project schedul-
ing problems [6] and set constraint solving [7], lazy clause generation provides
state-of-the-art solutions.

References

1. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of 38th Conference on Design Automation
(DAC’01). (2001) 530-535

2. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357-391

3. Feydy, T., Stuckey, P.: Lazy clause generation reengineered. In Gent, I., ed.: Pro-
ceedings of the 15th International Conference on Principles and Practice of Con-
straint Programming. Volume 5732 of LNCS., Springer-Verlag (2009) 352-366

4. Niewenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL mod-
ulo theories. In: Proceedings of the 11th International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning (LPAR’04). Volume 3452 of LNAL
(2004) 36-50

5. Marriott, K., Stuckey, P.: Programming with Constraints: an Introduction. MIT
Press (1998)

6. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Why cumulative decomposition
is not as bad as it sounds. In Gent, 1., ed.: Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming. Volume 5732 of
LNCS., Springer-Verlag (2009) 746-761

7. Gange, G., Stuckey, P., Lagoon, V.: Fast set bounds propagation using a BDD-SAT
hybrid. Journal of Artificial Intelligence Research (2010) to appear

