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Abstract

We investigate the semantics of aggregates (COUNT, sUM, ...) in logic pro-
grams with function symbols and negation. In particular we address the
meaning of programs with recursion through aggregation. We extend the
two most successful semantic approaches to the problem of recursion through
negation, well founded models and stable models, to programs with aggre-
gates. We examine previously defined classes of aggregate programs: ag-
gregate stratified, group stratified, magical stratified, monotonic and closed
semi-ring programs and relate our semantics to those previously defined. The
well-founded model gives a semantics to all programs containing aggregates,
and agrees with two-valued models already defined for aggregate and group
stratified programs. Stable models give a meaning to many programs with
aggregation, including all of the above classes, and captures all the models
that have been previously defined. Further, there are programs not captured
in any previously defined class where the unique stable model agrees with
their “intuitive” semantics.

1 Introduction

A formal definition of aggregate functions in relational algebra and relational
calculus was first given by Klug [8]. Ozsoyoglu et al. [12] extended the
definitions given by Klug to a non first normal form language in which a term
can be a set (also known as nesting relations). Adding sets as a primitive
to the language can be an alternative to adding aggregates, and this is the
approach used in the LDL language [3], and in a language for complex objects
proposed by Abiteboul and Beeri [1]. However, sets are mostly used when
aggregate subgoals could be used, and the latter seem to give clearer and
more concise programs.

As the relational calculus query languages defined by Klug [8] and ex-
tended by Ozsoyoglu et al. [12] do not consider derived relations, recursion
through aggregate functions was not an issue in their work. Abiteboul and
Beeri [1], Mumick et al. [11], Lefebvre [10], Ganguly et al. [6] and Consens
and Mendelzon [4] consider recursion through aggregates, but they only give
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Figure 1: Share ownership for companies a, b and c

semantics to programs that either have some form of stratification, are mono-
tonic in some sense, only use the MIN and MAX aggregate operators, or can
be expressed as a “path computation” on a closed semiring. As shown in
Example 1.1 below, there are some interesting programs that do not belong
in any of these classes. Various computation methods are also described in
these papers, but the methods only apply to the restricted classes of pro-
grams they have defined.

Example 1.1 The following program describes profit sharing of holding
companies: a company A owning a fraction 5 of a company B receives a
dividend of S * K from company B whose profit is K. The sum of the
dividends is the profit of a holding company. (In Section 2 we discuss the
notation used for aggregates.)

p(A, N) :- group by(d(4, B, M), [A], N = suM(M)).
p(c, 100).

d(A, B, M) :- s(4, B, S), p(B, K), M =S % K.
s(a, b, 0.60).

s(a, c, 0.52).

s(b, a, 0.20).

s(b, c, 0.16).

It is clear from the diagram in figure 1 that the equations relating the profit
of a and b are

profit_a = 52+ 0.6 x profit b, profit b= 164+ 0.2x* profil_a

Which has the unique solution profit_.a = 70, profit b = 30. We wish the
semantics of the program to agree with our informal reasoning. O

Our approach to the problem of semantics for programs involving re-
cursion through aggregation is to extend the two most successful semantic
approaches to the problem of recursion through negation: well-founded mod-
els [18] and stable models [7]. The well-founded semantics of programs with
aggregates is able to give a model to every program (although many will be
uninteresting) and agrees with the already defined semantics for aggregate



stratified and group stratified programs. The stable models we define for
programs with aggregates gives a uniform semantics to all of the classes of
program for which we already understand the semantics of aggregation.

While others ([11, 4]) have restricted their attention to programs includ-
ing aggregates but without recursion through negation, and to restricted
subsets of those programs. In this paper we address every program involv-
ing aggregation and negation.

2 Aggregates and aggregate programs

We consider a scheme for aggregates based on aggregate operators and the
group_by operator of SQL. This scheme is the same as that considered in
[11]. Aggregate subgoals in this form give a limited form of second-order
information to logic programs without introducing set-valued terms to the
programs. This contrasts with the approaches of [1, 3, 15, 16]. The most
common use of sets in these languages is to express aggregate operations.
The explicit use of aggregate subgoals results in clearer and more concise
programs, and presents the possibility for more efficient evaluation of such
programs.

2.1 Aggregates

An aggregate operator F is (loosely) a function from multisets of tuples to
a single value. The most commonly used aggregate operators for database
applications are SUM, COUNT, MIN, MAX, AVERAGE, while the SOLUTIONS
aggregate operator is important in meta-level logic programming. For ex-
ample sum({3,3,4,5,6}) = 21.

Note that not all aggregate operations make sense on empty multisets,
e.g. AVERAGE({}). Also aggregate operations rarely make sense for infinite
multisets, for example consider sum({1,—-1,1,—1,...}). Infinite multisets
do not usually arise in relational databases where the size of the multisets
is finite (since they are the projection of a finite set). But since we do
not wish to restrict ourselves to finite domains we must take into account
the possibility of infinite multisets. Given this knowledge we can define an
aggregate operator as follows:

Definition 2.1 We assume all programs operate over a fixed domain of
terms D. An aggregate operator F over domain D is a partial mapping from
(not necessarily finite) multisets of tuples of arity n to a single value. O

Definition 2.2 An aggregate subgoal is of the form
g'roup_by(p(fc, 2)7 [f('%)]v Y= F(E('%v 2)))

where F is an aggregate operator, & are the groupby variables defined as the
variables appearing in the grouping list (%), p(%,%) is an atom involving
variables # U Z called the aggregation predicate, and F(Z, %) is a tuple of
terms involving only some subset of the variables Z U Z. Note E may be



an empty (0-arity) tuple. The variables Z and y are free in the subgoal,
while Z are local variables (bound variables) and may not appear outside
the aggregate subgoal. A ground instance of the aggregate subgoal consists
of replacing the variables Z,y everywhere by ground values Zg, yo. O

Definition 2.3 A ground instance of an aggregate subgoal A is true in
a (two-valued) interpretation M if ¥(5) is defined for the multiset 5 =
{E(Z0,2) | M = p(Z0, %)}, and yo = F(5). A ground instance of an aggregate
subgoal is false in M if v(5) is defined and yo # F(S5). If F is total then
ME-As (M A).

A (two-valued) interpretation M models a program P including aggre-
gate subgoals if for each ground instance of a clause in P, A — By,..., B,
either M = A or 3t M |= —B;. In this paper we shall only consider in-
terpretations sharing a fixed pre-interpretation with domain D. These in-
terpretations can be represented by subsets of H Bp, where H Bp is defined
as the set of atoms of the form p(¢y,...,%,) where p is a predicate symbol
appearing in the program and t; € D. O

Example 2.4 Consider the aggregate subgoal
group by(p(X,Y,Z2), [X], T = suMm(Z))
Then M = {p(1,2,2),p(1,3,2),p(3,3,2)} models the ground instances:

group by(p(1,Y,2), [1], 4 = suM(Z))
- group by(p(3,Y,2), [3], 3 = suM(Z))

Note that, unlike aggregate operators in relational database query lan-
guages (RDQL), the operators we define may be defined for empty and
infinite multisets. In fact to duplicate the semantics of operators found in
RDQL, counT, for example, must be defined for empty sets (returning a
value 0 say) which can be explicitly caused to fail (e.g. y # 0), otherwise in
our semantics the aggregate subgoal will be neither true or false.

It also turns out to be necessary (see Section 6) to be able to assign
values to the application of an aggregate operator to an infinite multiset.
Consider the rule

a — gTOUP—biU(P(*T)a []7 y= COUNT(.I”)), y> 0

It seems natural to infer that a is true if there is any value of z for which
p(z) is true, even if p(z) is true for an infinite number of different values of
x. Hence, we require that COUNT of an infinite multiset to have some value
(say w), such that w > z for all integers z.

Having the aggregate operator COUNT defined for empty sets and infinite
sets allows us to replace negation by aggregation in the following manner.
Replace each literal —p(Z) by the aggregate subgoal group_by(p(z),[Z],0 =
couNT). This translation was used to generate the program in Example 3.6.
It is easy to show that this translation produces equivalent programs with
respect to both the well-founded and stable models we define.



2.2 Classes of Aggregate Programs

In this subsection we review definitions of aggregate and group stratified
programs as defined by Mumick et al [11]. In Sections 5, 6 and 7 we investi-
gate magical stratified, monotonic and semi-ring programs; the other classes
of aggregate programs that have been investigated.

The predicate call graph of a program P has nodes for each predicate
symbol appearing in P and, for each rule in P of the form

q(f) — p1(8~1)7 .t '7pn(8;b)7a17 .t '7a/7’

where p1(s1), ..., pn(s,) are positive literals and a4, ..., a, are negative lit-
erals or aggregate subgoals, an arc labelled 0 from ¢ to each p; and an arc
labelled 1 from ¢ to each predicate occurring in a subgoal a;.

The atom call graph of a program P has nodes for each ground atom in
the Herbrand Base of P. For each ground instance of a clause in P of the
form

q—P1,.-3Pn,015...,0r

where py,...,p, are positive literals and aq,...,a, are negative literals or
ground aggregate subgoals, there are arcs labelled 0 from ¢ to each p;, and
arcs labelled 1 from ¢ to the ground instance of the atom appearing in each a;
(either b; where a; = =b;, or p(Zg, ) where a; = group_by(p(Zo, 2), [Zo], yo =
H(E))).

A strongly connected component (SCC) of the predicate or atom call
graph of a program P is positive if there are no arcs labelled 1 both of whose
endpoints are in the SCC.

A program is aggregate stratified [11], if each of the SCCs in its predicate
call graph is positive. Clearly aggregate stratification is a straightforward ex-
tension of stratification to programs including aggregates. Aggregate strat-
ified programs do not involve recursion through aggregation and are hence
easy to evaluate in a bottom-up manner.

A three-valued interpretation I is a pair of disjoint subsets (7', F') of the
Herbrand Base, where T" and F are the true and false facts respectively. Let
I=(T,F)and I' = (17", F'). Define I <g I' ff ' CT" and FF C F'. If M is
a three-valued interpretation, define P/M as the ground program resulting
from taking all ground instances of clauses in P and removing the literals
in the body that are true in M and removing all clauses containing a literal
false in M.

If M is the two-valued model of the extensional database (EDB) predi-
cates, then we say a program P is group stratified [11], if each of the SCCs
of the atom call graph of the ground program P/M is positive, and there
are no infinite descending paths (i.e. there is a bottom SCC). In this case
we can assign a level ordinal to each atom in the Herbrand base such that
if there is an arc from a to b then either level(a) > level(b) or, if the arc is
labelled 0, level(a) = level(b). This is a straightforward extension of local
stratification to include programs with aggregates.



Definition 2.5 A model M of a group stratified program P is a perfect
model if, for all other models M’, if a is the atom of least level that is in one
model but not the other then it is in M’. O

Theorem 2.6 [11] Every aggregate or group stratified program P has a
unique perfect model. !

3 Well-founded models

Determining the “natural” semantics of logic programs including negation
has been an ongoing area of research in logic programming. To be able to
give reasonable semantics to all logic programs, several researchers [5, 9, 18]
turned to three-valued semantics for programs, where the truth value of a
ground atom can be either true, false, or undefined. The well-founded model
of a program is a three valued model defined in [18], and it is the strongest
of the proposed semantics. For stratified programs, well-founded models are
consistent with perfect models [13].

In this section we extend the definition of well-founded models to pro-
grams that contain aggregates. The original definition of well-founded mod-
els given by [18] is contained within ours in such a way that they are identical
for programs that are free of aggregates. First we must explain what it means
for a three-valued interpretation to model an aggregate subgoal.

Definition 3.1 We define a three-valued (Herbrand) interpretation I =
(T, F) to satisfy a ground instance, A, of an aggregate subgoal

group by(p(Zo, 7), [Zo], yo = F(£(Zo, 2))

if V2 p(Z9,2) € T U F and r(S5) is defined for the multiset 5 =
{E(Z0,2) | p(Z0,2) € T}, and yo = ¥(5). Similarly I = -Aif VZ p(Zo,2) €
TUF and ¥(5) is defined for the multiset S = {E(Zo, 2) | p(Zo,2) € T}, and
Yo 7£ F(S) a

The motivation for this definition is the following: it does not make sense
for us to take the aggregate of a multiset which is not completely defined.
If there exists Zg such that p(Zg, 2p) € T'U F', then I says nothing about the
aggregation, since the multiset of aggregation is not fully defined, hence we
should not infer any information (true or false) about the aggregation.

Now we are in a position to define the well-founded models of programs
with aggregates. Consider the three-valued version of the immediate conse-
quence operator Tp, T3 extended to handle aggregate subgoals in the natural
manner

T3(I) = { A there exists ground instance of a clause in P
A — Bl, PR Bn
where By, ..., B, are positive or negative literals

or ground aggregate subgoals such that I = By A...A B, }

! Actually [11] only claim the result for aggregate stratified programs, but any group
stratified program can be rewritten to a (possibly infinite) ground aggregate stratified
program.



Lemma 3.2 Tf; 1s monotonic with respect to <3

Proof: (Sketch) Clearly if I = (7', F') models a ground aggregate subgoal
B;, and I <3 I' then I' = (T", F') where T' C 1" and F' C F’ and clearly
I |: B;. O

Define an unfounded set of a program P with aggregates with respect
to 3-valued interpretation I to be set of atoms S such that, for each ground
instance of a clause in P with head A € 5, either

e the body of the clause is false in I, or

o the body of the clause includes a positive literal in §

This is identical to that for normal logic programs, since the aggregate part of
the program cannot (directly) contribute to an unfounded set. The concept
of unfounded sets essentially only depends on the definite parts of clauses.

Definition 3.3 Let Up([I) be the largest unfounded set of P wrt I (or equiv-
alently, the union of all the unfounded sets of P wrt I). Define Wp(l) =
(T3(I),Up(I)). The well-founded model W} of a program P (including ag-
gregates) is given by the least fixpoint of Wp = Wp | a for some ordinal a
since Wp is monotonic. O

Proposition 3.4 W5 is a model of P

Proposition 3.5 Let P be an aggregate stratified or group stratified pro-
gram. Then W[ is the perfect model of P.

There are programs with two-valued well-founded models that are not
group stratified, magically stratified, monotonic or closed semi-ring pro-
grams.

Example 3.6 The following program is modularly stratified through aggre-
gation; a class of programs that is informally discussed in [14].

p(d).

pX) :- t(X, Y, Z2), r(Y), r(2).

r(X) :- groupby(p(X), [X], O = COUNT).
t(a,b,a).

t(a,a,b).

The reader can verify that its well-founded model (written as a set of literals)
restricted to p and 7 is {p(b), —r(b), - p(a),r(a)}. O

4 Stable models

The most successful two-valued approach to providing semantics for logic
programs involving negation is the so called stable model semantics defined
in [7]. In this section we (conservatively) extend the definition of a stable
model to programs including aggregates, and discuss the relationships of
well-founded models and stable models for programs with aggregates.



Consider a program P including aggregates. Then the (aggregate) stable
model transformation of P with respect to a two-valued Herbrand interpre-
tation M, denoted G(M, P) is given by the following:

o For each ground instance of a clause in P, if each negative literal or
aggregate subgoal 5 in the body of the clause instance is such that
M = S then the clause instance with negative literals and aggregate
subgoals removed is in G(M, P), otherwise it is not in G(M, P).

Note that G(M, P) is a definite program, and is a conservative extension of
the Gelfond-Lifshitz stable transformation.

Definition 4.1 An interpretation M is a stable set of P if the least Herbrand
model of G(M, P) equals M. O

Proposition 4.2 If M is a stable set of P then M is a model of P.

From now on we refer to a stable set as a stable model. The stable
model semantics is defined for programs P having a unique stable model
M, and declares M to be the canonical model of P. For normal programs,
stable models are minimal; this does not necessarily hold for programs with
aggregates.

Remark 4.3 The stable models of P are not minimal in general.

Example 4.4 The transformed version of the program below

a(b) :- groupby(p(X,Y), [1, 1 = counT(X,Y)).
pX,Y) - a(X), a(Y).

with respect to the interpretation {a(b),p(b,b)} is

a(b).
pX,Y) - a(X), a(Y).

which has least model {a(b),p(b,b)}. Hence {a(b),p(b,b)} is a stable model
of the program. The reader can verify that the empty interpretation {}
is also a stable model and thus we have a stable model strictly including
another stable model. O

This is a result of the fact that while negative literals are decreasing
(the larger the model, the less they imply), aggregate subgoals in general
are neither decreasing nor increasing. Thus they may have points of local
stability. But for programs where the stable model semantics is defined, i.e.
that have unique stable models, the semantics agrees with our intuition. For
example consider the example program given in the introduction.

Example 4.5 The program P given in Example 1.1 has a unique stable
model M = { p(a, 70), p(b, 30), p(c, 100), d(a,b,18), d(a,c,52),
d(b,a,14), d(b,c,16) } (ignoring the s predicate). O



There are strong connections between stable models and well-founded
models for programs with negation, and these connections are still valid
when we extend the definitions to incorporate aggregates.

Theorem 4.6 Any stable model M of P is an extension of the well-founded
model W§, i.e. Wi <3 M.

Proof: (Sketch) The proof follows similar lines to that in [18] but is ex-
tended to handle cases involving aggregates. O

Theorem 4.7 If P has a 2-valued well-founded model then it is the unique
stable model.

Proof: (Sketch) It is easy to show that the well-founded model is a stable
model and together with Theorem 4.6 the result is proved. O

5 Magical Stratified Programs

Magical stratified programs were defined by Mumick et al. [11]. Their mo-
tivation is the class of programs that result from magic set transformations
of aggregate stratified programs; some of which are not aggregate stratified.
Mumick et al. define a (two-valued) perfect model for magical stratified pro-
grams based on an evaluation method where rules involving aggregates are
used only when no other rule can be applied to produce more tuples. For
magic transformed aggregate stratified programs, this model agrees with
that of the original program. The definition of magical stratified programs
is quite involved and we leave the details to [11]. It is most easily understood
through the evaluation technique for a single SCC where we close the appli-
cation of all non-aggregate rules before using an aggregate rule to generate
new facts. We also require that when an aggregate rule is used, no further
facts that change the aggregation are ever found to be true. Thus we may
assign a level to each tuple (given by the number of aggregations required
to derive it) and thus define a perfect model.

Remark 5.1 The perfect model of a magical stratified program may not
agree with the well-founded model

Example 5.2 The following program is magical stratified.

mp.

p(1) :- mp.

p(2) :- mp, q.

q :- group by(p(X), [I, 3
r :- group by(p(X), [1, 1

SUM(X)).
suM(X)).

The perfect model is { mp, p(1), r }. The well-founded model does not agree
because we cannot decide whether p(2) is true or false because it depends
on q which depends on p(2). O



The reason for this lack of correspondence is that magical stratification
does not say anything about the tuples which are not in the perfect model
e.g. p(2) and we may have rules that take no part in the perfect model but
prevent the well-founded model from evaluating aggregates. We can however
show that the perfect model is a stable model.

Theorem 5.3 The perfect model M of a magical stratified program P is a
stable model of P.

Proof: (Sketch) We prove they agree on a single SCC by induction on the
level ordering on tuples within the SCC. Each tuple at level 1 can be derived
without using any rule involving aggregates, hence these rules appear in
G(M, P). For level k tuples, note that any aggregate subgoals appearing in
the derivation of a level k£ tuple depend only on tuples of level & — 1 or lower,
by the condition that ensures no new tuples involved in the aggregate are
produced later. Hence the appropriate instances of the rules without the
aggregate subgoals appear in G(M, P). O

Remark 5.4 The perfect model M of a magical stratified program P is not
necessarily a unique or least stable model.

Example 5.5 The reader can verify that the program in Example 5.2 has
another stable model { mp, p(1),p(2),q }. O

The program in Example 5.2 is clearly not the result of a magic set trans-
formation, and it is the rules that do not correspond to magic transformed
rules that create the disparity with well-founded models. We conjecture that
programs resulting from the magic set transformation of aggregate stratified
programs have a two-valued well-founded model.

6 Monotonic Programs

Another class of programs involving recursion through aggregation for which
an intuitive model exists are the monotonic programs [4, 11]. This class is
very different from the classes previously defined. The reason programs in
this class have an intuitive model is not because we can break apparent cycles
through aggregation, but rather the cycles through aggregation occur in such
a fashion that the rules involving aggregates are still monotonic. Consider
the following example.

Example 6.1 A company X controls a company Y if X controls more than
50% of the shares in Y. A company X controls (via itself (X)) the shares
that it owns in Y, and controls via Z the shares in Y owned by companies
Z that it controls. This leads to the following program

c(X,Y) :- group by(cv(X,Z,Y,M),[X,Y],N=sum(M)),N > 0.50.
cv(X,X,Y,N) :- s(X,Y,N).
cv(X,Z,Y,N) :- c(X,Z), s(Z,Y,N).

10



The first rule is monotonic in the following sense: as soon as company A
owns enough shares to control B, then no matter how many more shares it
controls, it will still control B (as companies can’t own negative shares). O

Definition 6.2 We formalize the definition of monotonic programs as fol-
lows. Let g be a set of base predicates. A base interpretation B is a two-
valued interpretation for ¢. Define a B-interpretation as a two-valued inter-
pretation that agrees with B on g¢.

A program P is monolonic with respect to some base interpretation B if
for each ground instance of a clause in P of the form Head «— Body where
the predicate in Head is not in ¢ it is the case that for any B-interpretation
1'if I = Body then I' |= Body for each B-interpretation such that I’ > [. O

In the example above the base interpretation B defines the meaning of
the > predicate. Without this restriction and the domain restriction to
non-negative numbers we could not say that the program was monotonic.
Programs with negative literals are rarely monotonic, because the negative
literals have exactly the opposite of the desired effect. But there are many
examples of programs involving aggregates whose rules are monotonic.

Definition 6.3 We can extend the T operator (from 2-valued Herbrand
interpretations to 2-valued Herbrand interpretations) to include a base in-
terpretation B as follows:
TE(I) = BU{A| there exists ground instance of a clause in P
A — Bl, ey Bn

where the predicate symbol of A is not in ¢

and By,..., B, are positive or negative literals or ground

aggregate subgoals such that TUB = By A...A B, }

Clearly the TIJD3 operator is monotonic for programs P that are monotonic

wrt B. Hence it has a least fixpoint lfp(TIJDB) and it is this that gives the
intuitive model of a monotonic program. O

Example 6.4 For example given the s relation of Example 1.1 and us-
ing the usual base interpretation for > the intuitive model of the program
in Example 6.1 is {c(a,b), c(a,c), cv(a,a,b,0.60), cv(a,a,c, 0.52),
cv(a,b,c,0.16),cv(a,b,a,0.20), cv(b,b,c,0.16),cv(b,b,a,0.20)}. O

Whether a program is monotonic or not depends on the definitions of
the aggregate operators F as well as the base interpretation. We must be
especially careful in their definition when we consider programs over infinite
domains, and since programs with aggregates often include numbers, many of
them implicitly involve infinite domains. Consider the program in Example
6.1 with the s relation of Example 1.1. For the program to be monotonic
(wrt the usual interpretation of <) then if the set S = {cv(a,Z,b,N) | I |
cv(a,Z,b,N)} includes { cv(a,a,b,0.60) } then [ must model the body
of the first rule, even if S is infinite. Hence suM must be defined for infinite
sets and the base interpretation of < must be defined for any new values
than suM returns. Given this information the next remark is not surprising.

11



Remark 6.5 TIJDB s not continuous for all programs P which are monotonic
wrt B.

Example 6.6 Consider the following program over the domain of integers
plus the symbol w. Let B be the obvious interpretation of + and =. Define
COUNT to return the size of the multiset if finite or w if infinite.

a :- group.by(p(X), [I, w = couNT(X)).
p(0).
pX) - p(Y), X =Y + 1.

TIJD3 is clearly monotonic, but if we consider the directed set X of all inter-
pretations of the form {p(z) | ¢ < n} for finite n, then lub(X) is the infinite

set {p(0),p(1),...}, TB(X) = X but TE(lub(X)) = {a,p(0),p(1),...}. O

The models of monotonic programs do not correspond to well-founded
models in general, since unlike T3 the TIJDB operator can gain information
from aggregates without deciding the aggregate predicate relation first. The
well-founded model of the program in Example 6.1 does not determine that
a controls b because of the cycle of dependence c(a, b) — cv(a,a,b,0.60)
— c(a,a) — cv(a,b,a,0.20) — c(a, b). In contrast we can show that
the intuitive model is a stable model.

Theorem 6.7 If P is a monotonic program wrt B, then lfp(TIJDB) is a stable
model of P.

Proof: (Sketch) Let M = Ifp(TF), we show by induction that Tompy 1
kC M and TIJDB 1k CTow,p) | wior all ordinals k. Hence M = Tg,py |
w. d

Unfortunately the model given by lfp(TIJDB) is not necessarily the unique
stable model. Consider the example program above with the s relation given
by {s(b,c,0.60),s(c,b,0.60)} (arather unusual situation). The intuitive
model is that b and ¢ control each other. But another stable model is possible
where a (or d) controls both b and ¢ (and they continue to control each
other). We can show, however, that the intuitive model is the least stable
model.

Theorem 6.8 Let P be a monotonic program wrt B, and M a stable model
of P such that B C M then M D lfp(TE)

Proof: Assume to the contrary that {fp(TE) ¢ M. Let k + 1 be the
minimal ordinal s.t. ¢ € TIJD3 1 k+1and ¢ ¢ M. Then there exists ground
instance of a clause in P of the form

q—P1,. s Pm,01,...,0r

such that TIJDB TkEpLA-APmAagA---Aa,. Since TIJDB 1TkC M and P is
monotonic wrt B this means M = py A---Apym Aay A---Aa, hence M = g.
Contradiction. O

Ganguly et al. [6] examine a class of definite programs only involving
MIN aggregations (MIN-programs) that are cost monotonic. Basically this

12



condition means that we can order atoms using a cost attribute such that
if there exists a path in the atom call graph of P/B from A; to Ay then
cost(Ay1) > cost(Az) and if the path contains arcs labelled 1 then cost(A4;) >
cost(Az). They define a greedy fizpoint procedure that computes their se-
mantics. Their MIN aggregates take the form MIN(¢, [Z], p(Z, Z,¢)) and corre-
spond to the conjunction p(Z, 21, ¢), groupby(p(Z, z, ¢1), [Z],c = MIN(¢q1)) in
our approach to aggregates. They define the semantics of a MIN-program P
as the well-founded model of the normal program P’ obtained from replacing
each subgoal MIN(¢, [Z], p(Z, 2, ¢)) by p(&, 2, ¢), 7321, ¢1 (p(Z, Z1,¢1) Ney < ©).
The well-founded model of P’ does not agree with our definition of the well-
founded model of P because P’ can gain information from incomplete sets

p('%v 217 Cl)-

Theorem 6.9 The intended model M of a cost monotonic MIN-program P
as defined by Ganguly et al. [6] is the unique stable model of P.

Proof: (Sketch) M is the unique stable model of P’. We can straightfor-
wardly show that the stable models of P and P’ are identical. O

7 Closed Semi-ring Programs

Ullman [17] defines a class of generalized transitive closure problems that
consist of finding the @ sum of all @ paths in a weighted directed graph.
Problems that can be expressed in this manner include transitive closure,
shortest paths and parts explosion. The general form of the problem requires
two operators @ and ® to obey the algebraic laws of a closed semi-ring.
Ullman gives an algorithm due to Kleene that computes the answer to
the generalized transitive closure problem. We can express a generalized
transitive closure problem using the following aggregate program P(&, ®)

p(A,A,B,e,N) :- a(A,B,N).
P(A:C:B,I,N) [ Sum_P(A,C,M), a(C:B:I): ®(M:I:N)~
sump(A,B,N) :- group by(p(A,C,B,T,M), [A,B], N=F_sum(M)).

where a(a, b, n) represents that the weight of the arc from a to b is n. The
two rules for p separate the contributions from paths of length 1 and length
greater than 1.

Example 7.1 The shortest path programs can be written in the following
manner

p(A,A,B,e,N) :- a(4A,B,N).
p(A,C,B,r,N) :- sp(A,C,M), a(C,B,I), N =M

+ TI.
sp(4,B,N) :- group.by(p(A,C,B,T,M), [A,B], N =

min(M)).

Consens and Mendelzon [4] show that “naive” evaluation of programs of
the above form (although they do not specify a generic form) will correctly
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compute generalized transitive closure if it terminates. Clearly the well-
founded models of such programs are uninteresting, but we can show that
the correct answer to a generalized transitive closure problem determines a
stable model of the corresponding program.

Proposition 7.2 Ifa(a,b) is the weight of the arc from a to b and sum_p(a,b)
is the sum (@) over all proper paths from a to b, of the product (@) of
the weights of the arcs along those paths in order. Let p.(a,b) = a(a,b)
and py(a,c,b) = sum_p(a,c) @ a(c,b). Then M = U{alae,b,a(a,b))} U
{p(a,a,b,e,p(a,b))}U{p(a,c.b,r,p,(a,c, b)) }U{sump(a,b, sum_p(a,b))}U
{@(a,b,a®b)} is a stable model of P(P,®), where we have the appropriate
interpretation of @ _sum.

Proof: First note that the following equality holds
sum_p(a,b) = p.(a,b) ® @pr(a, ¢, b)

since every proper path is either of length 1 (in p.) or length greater than 1
(in p,). Given this it is easy to see that there are sum_p facts in the program
G(M,P(®,®)) of the form sum_p(a,b, sum_p(a,b)). Clearly using the def-
inition of p we can see that {p(a,a,b,e,p.(a,b))} U {p(a,c,b,r,p(a,c,b))}
is the set of p facts in Tg(ar,p(s,9)) | w. Hence M is a stable model. O

Remark 7.3 The program P(®,®) is not guaranteed to have a unique stable
model.

Example 7.4 The shortest path problem above with the arelation a(a,b,1),
a(b,a,1) gives the answers sp(a,b,1),sp(b,a,1), sp(a,a,2),sp(b,b,2).
But the program has another stable model sp(a,b,—00), sp(b,a,—0o0),
sp(a,a,—o0), sp(b,b,—o0). O

8 Conclusions and further work

We have generalized much of the work that has been done on aggregates.
We have extended the definition of well founded models in such a way that
all programs containing aggregates have (at least) a partial well founded
model, that is often the two valued “intended” model. We have extended
the definition of stable models to programs with aggregates in such a way
that, the models defined by others as having the “intended” semantics, are
all stable models. This includes the least fix point of monotonic programs,
and the perfect models of aggregate, group, and magical stratified programs.

If the language of a program includes function symbols or arithmetic,
then there are no algorithms guaranteed to compute models for any of the
classes of programs we have discussed. Further work is required to find
useful classes of programs and queries for which there exist algorithms to
compute them. However, it is possible to define computation procedures
that effectively compute the desired model for particular classes of programs.
These include aggregate stratified programs [2], group stratified programs,
magical stratified programs, monotonic programs [11], semi-ring programs
[4, 17] and MIN-programs [6].
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