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Abstract

Current SAT solvers are well engineered and highly efficient, and significant research
effort has been put into creating data structures that can produce maximal efficiency for
the core propagation engine within SAT solvers. However, there is still substantial room
for improvement. As the disparity between CPU speeds and cache sizes have increased,
cache conscious data structures and algorithms have become very important. They are even
more important in the context of parallel SAT solving, as issues like cache contention and
main memory contention can dramatically slow down a parallel SAT solver. We present
a series of data structure and algorithmic modifications that are able to increase the core
propagation speed of MiniSat 2.0 by an average of 80% on a set of medium sized industrial
instances, and increase the speed of a parallelized version of MiniSat running with 8 threads
by 140% on those same instances.

Keywords: Boolean satisfiability, cache-aware data structures

1. Introduction

Boolean Satisfiability solvers find a wide range of application in areas such as electronic
design automation and artificial intelligence. A tremendous amount of research has been
undertaken to find ways to speed up SAT solvers. Algorithmic improvements in terms of
decision heuristics and learning schemes have made modern SAT solvers orders of magni-
tude faster than their predecessors. Besides the algorithmic improvements however, the
engineering and design of data structures and the core propagation algorithm has also led
to substantial increases in speed [1]. A typical modern SAT solver spends some 70-90%
of its time performing Boolean constraint propagation, hence optimization of this inner
propagation loop is of great importance.

SAT solving often produces highly non-local memory access patterns. Variable and
clause reordering schemes have been investigated in the past [2] to try to increase locality
of reference, but the non-locality is inherent in SAT solving and can never be completely
eliminated.

Memory issues are even more important in parallel SAT solving and can dramatically
affect the speed of a parallel SAT solver [3]. Most current multi-core systems contain L2
or L3 caches that are shared between multiple cores. When more than 1 thread is used,
cache capacity contention occurs and the effective cache capacity for each thread is reduced
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compared to the sequential case. Cache coherency caused by false sharing can also become
an issue. If the private data of different threads are mixed together within the same cache
line of memory (as could be the case, for example, if each thread used malloc to allocate
memory for small chunks of private data like clauses), then any of those threads writing to
their private data would force all the other threads to fetch that cache line from memory
again, causing an unnecessary cache miss. Main memory access on a multi-core machine
is also typically slower than on single processor machines and does not scale well with the
number of cores. This causes a huge problem for memory intensive algorithms such as SAT
solving. These issues makes it imperative for us to design data structures and algorithms
that are as cache efficient as possible.

In this paper, we modify MiniSAT 2.0 [4], a very well engineered SAT solver that came
first in the industrial category of the SAT 2005 and SAT 2006 competitions, to utilise new
data structures and algorithms that significantly improve its caching properties and thus its
core propagation speed. We also demonstrate our improvements using our parallel solver
PMiniSat, which is a simple parallelization of MiniSat 2.0.

The layout of this paper is as follows. In Section 2, we describe in detail the data
structures and algorithms currently employed in MiniSat 2.0. In Section 3, we describe
the data structures and algorithmic modifications we made. In Section 4, we present an
experimental evaluation of our changes. In Section 5, we discuss related work. Finally in
Section 6 we conclude.

2. Boolean Constraint Propagation

We begin with our SAT terminology. A proposition p is a Boolean variable from a universe
of Boolean variables, P. A literal l is either: a proposition p, or its negation ¬p. Define
var(p) = p and var(¬p) = p. The complement of a literal l, denoted ¬l, is ¬p if l = p or p
if l = ¬p. A clause C is a disjunction of literals, often treated as a set. An assignment is a
set of literals A such that ∀p ∈ P.{p,¬p} 6⊆ A, or the failed assignment ⊥. An assignment
A satisfies a clause C if one of the literals in C appears in A. A theory T is a set of clauses.
An assignment is a solution to theory T if it satisfies each C ∈ T .

The core of any DPLL SAT solver is the Boolean constraint propagation (or unit prop-
agation) engine that determines what literals are the consequence of a Boolean decision.
Modern SAT solvers utilize a two-watched literal scheme [1] for their core propagation
engine. The two-watched literal scheme represents a vast improvement over earlier counter-
based schemes used in older SAT solvers, significantly cutting down on the number of
memory accesses and the amount of processing required [5]. In the two-watched literal
scheme, only two of the literals in any clause is being “watched” at any time. Whenever
one of those watched literals is assigned a value and becomes “false” in the clause, the clause
is examined to see if it is capable of causing a unit propagation.

Each watched list belongs to a literal. And each clause is attached to the watched lists
of the two literals in it that are being watched. Hence the pointer to each clause exists in
exactly two of the watched list vectors at any time. Whenever a variable becomes assigned,
the watched list of the literal that became “false” is examined, and each of the clauses
pointed to by the pointers in the watched list is examined to determine if something needs
to be done.
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When a clause is examined, four different things can happen:

(a) One of the literals in the clause is found to have value “true”. In this case, the clause
is already satisfied and nothing needs to be done.

(b) A literal other than the other watched literal is found to be unassigned. In this
case, the watched literal that just became “false” is replaced by this new unassigned
literal as the watched literal, and the clause is attached to the watched list of the new
watched literal.

(c) No other unassigned literal can be found, and the other watched literal is unassigned.
In this case, the other watched literal is forced to have value “true” and we have a
unit propagation.

(d) no other unassigned literal can be found, and the other watched literal already has
value “false”. In this case we have a conflict.

Psuedo-code for Boolean constraint propagation with watch literals is shown in Figure 1.
The code takes an assignment A and a decision literal d. The queue Q of literals to be
processed is a FIFO queue implemented by push, pop, emptyq and isempty. The set
watch[l] is the set of clauses in T watched on literal l. watch1[C] and watch2[C] are
the two watched literals of clause C. The algorithm maintains that if A ∩ C 6= ∅, then
watch1[C] ∈ A (although this is not maintained by backjumping). We can see the four
cases defined above in the if elseif elseif else structure, although the case (a) is split into
two since the first condition is common and cheap to check.

2.1 Boolean constraint propagation in MiniSat 2.0

MiniSat 2.0 utilises a two-watched literal scheme. This is implemented in MiniSat 2.0
through a vector of “watched lists”, each of which is a vector of pointers pointing to the
bodies of the clauses. Some excerpts of the MiniSat 2.0 data structure code together with
their memory layout is shown in Figure 2.

The clauses have a special data structure in MiniSat 2.0. A clause consists of an initial
32 bits (size etc) that contain the size of the clause as well as a few bit flags, followed by
another 32 bits (extra) that contain the “activity” of the clause. This is followed by the
literals of the clause itself, each of which take 32 bits. The clause is produced by mallocing
the exact amount of memory needed to store the clause.

3. Improving the Cache behaviour

3.1 Rationale for changes

The two largest sources of memory consumption in MiniSat 2.0 are the watched lists, and
the clauses. They are also the largest sources of cache misses. SAT solving typically exhibit
highly non-local memory access patterns, as variable assignments can potentially require any
clause to be examined, and clauses can potentially cause any variable to become fixed. Thus
at any time, a very wide number of clauses and watched lists may potentially need to be
examined. This makes caching highly ineffective as there is very little locality of reference.
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bcp(A,d)
A := A ∪ {d}
Q := push(emptyq, d)
while ¬isempty(Q)

(Q, l) := pop(Q)
foreach C ∈ watch[¬l]

if (a) watch1[C] ∈ A ∨ watch2[C] ∈ A
continue

elseif (a) ∃l′ ∈ C ∩A
watch[watch1[C]] := watch[watch1[C]]− {C}
watch1[C] := l′

watch[l′] := watch[l′] ∪ {C}
elseif (b) ∃l′ ∈ C,¬l′ 6∈ A, l′ 6= watch1[C], l′ 6= watch2[C]

watch[¬l] := watch[¬l]− {C}
watch[l′] := watch[l′] ∪ {C}
if ¬l = watch1[C]

watch1[C] := l′

else watch2[C] := l′

elseif (c) ∃l′ ∈ C,¬l′ 6∈ A
watch[watch1[C]] := watch[watch1[C]]− {C}
watch1[C] := l′

watch[l′] := watch[l′] ∪ {C}
A := A ∪ {l′}
Q := push(Q,l′)

else (d)
return ⊥

return A

Figure 1. Boolean constraint propagation of the decision literal d given a current assignment A.

For typical industrial instances where the number of clauses could number in the hundreds
of thousands, cache misses can cause a substantial slowdown in the core propagation engine.
It has been found that more cache aware SAT solvers like Chaff and Berkmin are faster
than their predecessors by up to 3 times due to improved cache performance alone [7].

It may seem that with such awareness of cache issues and with so much work having
been done to improve the core propagation engine of SAT solvers, there would be little
if any improvements left that can be made. However, that turns out not to be the case.
Using Cachegrind, a cache simulator in the Valgrind tool suite, we were able to identify and
measure various sources of cache misses. The core of SAT solver is the inner loop of the
propagation engine where a clause is examined to see if it can produce a unit propagation.
This loop is run hundreds of millions of times and constitutes the bulk of the processing in
a SAT solver. By running Cachegrind on 10 typical medium sized industrial instances, we
were able to find out how cache misses were affecting this inner loop. It was found that the
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class Clause {
uint32_t size_etc;
union { float act;

uint32_t abst; } extra;
Lit data[0];
...

};

template<class T>
class vec {

T* data;
int sz;
int cap;
...

};

vec<vec<Clause*> > watch;

data

Clause

Clause

Clause

Clause

Clause

watch[l]

watch[not l]

watch
capsz

Figure 2. Data structure used in MiniSat 2.0

SAT solver spent an average of around 80 instructions, 3.2 L1 misses and 0.64 L2 misses per
inner loop on the instances tested (more details are provided in the results section). Current
computers have L1 miss penalties of the order of 10-15 cycles, and L2 miss penalties of the
order of 100-200 cycles, thus these figures show that a very substantial portion of the run
time, perhaps 60-70%, is spent simply waiting for data to be read in. Having confirmed
that cache misses are indeed a major problem, we targeted each source of cache misses we
found in order to design data structures that can reduce them.

In the following sections, we describe each of our modifications in turn. Our changes
are aimed at two things. Firstly, to increase locality of reference by using data structures
that can pack the data closely together, and second, to eliminate as much data lookup as
possible.

3.2 Watched list data structure modification

The data structure currently employed by MiniSat 2.0 to store the watched lists is a “vector”
data structure. A vector as implemented in MiniSat 2.0 consists of both a head and a body.
The head contains the size of the vector, the amount of memory malloced for the body, and
a pointer to the body. The body contains the actual elements.

Cache simulations of MiniSat 2.0 on a set of 119 medium sized industrial instance
(see Appendix A) revealed that reading in the watched lists during Boolean constraint
propagation causes a significant number of cache misses. The cache misses can be divided
up into two groups: misses from reading the head of the watched list vector, and misses
from reading the body of the watched list containing the actual data. Interestingly, the
number of cache misses from reading the head of the vectors is close to the number of cache
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Figure 3. The histogram over the 119 tested instances of the percentage of short watched lists
(length≤ 16) encountered during the inner loop for Boolean constraint propagation.

misses from reading the body of the vectors even though the head actually contains no real
information at all. This is clearly a source of inefficiency.

Further examination shows the cause of the problem. It turns out that in typical in-
dustrial instances, watched lists are often very short. The average length of the watched
lists depends on the ratio between the number of clauses and the number of variables. This
ratio often lies somewhere between 3-6 for the original problem depending on the problem
class, and is largely independent of problem size. As more learnt clauses are created, the
ratio will increase. But for a large problem, the number of learnt clauses never exceeds the
number of original clauses by much. As a result, watched lists often only contain a small
number of elements. For example, among the 119 problems we collected statistics for, 105
of them had over 75% of their watched lists having 16 elements or less, with most problems
having around 85-90% of their watched lists being short. Further details can be found in
Figure 3.

This small number of data elements means that most of the time all of the data in the
watched list can be stored in just one cache line of memory. Normally, the cost of reading
the vector head would be amortised over the cost of reading in the body of the vector.
But since the watched list bodies often only require 1 cache line to be pulled in to read
all of its data, the memory read required to read in the head becomes relatively expensive.
Reading the head and the body separately basically causes 2 memory reads instead of one
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class WatchedList {
T* data;
int sz;
int cap;
T head_data[12];

}

data sz cap T T T T T T T T T T T T

T T T T T T T T T T T TTTTT

Figure 4. Watched List Data Structure

and doubles the number of reads required to read in the data and hence doubles the number
of cache misses.

The vector data structure was probably chosen because the length of a watched lists can
change, and so any fixed sized data structure would not work. However, this doubling of the
number of memory reads is inefficient. The modification we propose is to use custom vector
data structures that can store the first few elements of the watched list in the head part
of the vector, and have the rest stored in the body as usual. Thus for a 64 byte cache line
for example, we store the usual vector head information in the first 16 bytes, and use the
remaining 48 bytes for storing actual data. This gives enough space to store 12 elements in
the watched list head. The C++ definition and a diagram of the data structure is shown in
Figure 4. Since watched lists are usually short, the data would often fit completely within
those 48 bytes and the vector body does not need to be examined. Thus we can read the
entire watched list by reading in only 1 cache line of memory. This modification basically
halves the number of memory reads and cache misses caused by reading in the watched
lists. However, some extra processing is required to both read and write to such a data
structure.

3.3 Clause data structure modification

Examination of typical propagation behaviour also revealed some interesting statistics. It
was found that clauses are often not fully examined during propagation, rather, only the
first few literals are examined. Both case (a) and case (b) as described in Section 2 can
result in the clause not having to be fully examined, as a true or unassigned literal can
be found within the first few literals of the clause. Figure 5 shows the statistics on the
distribution of how many literals of the clause are examined during each propagation. As
can be seen, the probability that a clause has to be examined beyond a certain length
drops very rapidly after the first few literals. In a very large proportion of the instances we
investigated, some 50-90% of clause examinations terminate after just examining the first
literal, and some 85-100% of clause examinations terminate within the first 4 literals.

In the original MiniSat, whenever a clause is examined, an entire cache line of data is
likely to be pulled in. Since we often only actually need to read the first few literals of the
clause, e.g 16 bytes out of a 64 byte cache line, pulling in an entire cache line consisting of
the rest of the clause is wasteful and will tend to flush out other useful data. Furthermore,
MiniSat 2.0 used a simple malloc to allocate memory for clauses, and thus we have no
guarantee that clauses to not cross cache line boundaries or that there no wasted space
between clauses, etc.
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Figure 5. The histogram over the 119 tested instances of the percentage of clauses where ≤ k
literals were examined in the inner loop for Boolean constraint propagation. The histogram shows
the results for k = 1 (only first literal examined), k = 4 and k = 8.

The modification we propose is to split up clauses into a head part and a tail part. The
head part consists of the first few literals of the clause, which is the part most likely to be
examined, and the tail part consists of the rest of the literals. Since only the head part is
likely to be examined in any examination of the clause, the head parts of clauses often have
better locality of reference with each other than with their own tail parts. Furthermore,
since we know their exact size, we can manage their memory allocation manually and ensure
that they are well packed along cache line boundaries.

The optimal choice for the length of the head part varies depending on the characteristics
of the problem instance. It is necessary for a whole number of the clause heads fit into each
cache line, thus the available choice for the clause head sizes would for example 4, 8, 16,
etc literals. If a new watch is often found within the first 4 literals in the problem instance,
a choice of 4 would be best. If the instance often requires you to go beyond the first 4
literals to find a new watched literal, then a choice of 8 may be better, etc. However, in
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OR
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Figure 6. Clause Data Structures

general, 4 literals for the head seems to be a good choice, as the statistics shows that in
most problems, some 85-100% of clause examinations terminate within the first 4 literals.
Furthermore, since most of the original clauses are of length 2 or 3, picking 4 literals for
the head will allow us to pack all of the original clauses very tightly together with little
wasted space. Our experiments confirm that this is indeed the optimal length when this
modification is implemented alone. We will later show however, that some of our other
very effective modifications alters the statistics so significantly that a choice of 4 literals for
the head is no longer the optimum when those other modifications are made. This will be
discussed in a later section.

We implement our split clause data structure by having a vector of clause heads, and a
vector of clause bodies. If a clause has length 4 or less, we simply store those 4 literals in
the clause head. If the clause has length greater than 4, we store the first 3 literals in the
head and store an index to the rest of the clause in the 4th spot. The body of the clause
is also split up into chunks, forming a linked list where each node fits exactly in one cache
line. Having fixed size chunks for both clause heads and clause bodies allows us to easily
free and reuse blocks of memory that have already been allocated. There is little if any
penalty for splitting up the body into chunks, as the body chunks are rarely examined, and
when the end of the cache line is reached, a new cacheline would have to be read in in any
case even if the clause was stored in a contiguous block of memory. A diagram of our data
structure is shown in Figure 6.

A side benefit of this scheme is that the clauses can now be referred to by a 32 bit index
rather than by a pointer, and on 64 bit systems, this cuts the size of the watched lists by
half, further improving cache performance.

In the parallel context, since both the clause packing and the watched list modification
pack the bulk of the data belonging to each thread into large contiguous arrays that belong
to the thread, cache contention caused by false sharing is almost completely eliminated.

3.4 First literal

Perhaps the most significant statistic we collected is that, as noted above, in a surprisingly
large proportion of time, only one literal in the clause is ever examined. It is often the case
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that the first literal in the clause is already assigned a value of true and thus the clause
examination can immediately terminate. This occurred somewhere between 50-90% of the
time on most of the instances we examined. This is due to the way that the literals in
the clause are reshuffled by the propagation algorithm. i.e. literals found to have value
true are moved to the first spot, and literals that are made “true” by Boolean constraint
propagation on that clause are moved to the first spot. This interesting statistic means
that in a significant proportion of the time, a clause is read from memory only to read the
value of that first literal. This is tremendously inefficient as each such read would pull in
for example a 64 byte cache line just to read 4 bytes of data.

The modification we make is to store the first literal of the clause in the watched list
itself along with the index to the clause. Then when the watched list is examined to perform
propagation, that literal is first checked to see if it is in fact already true, in which case the
clause does not have to be read in at all. And if the literal is not true, then the index is
used to read in the clause as per usual. This modification effectively eliminates the memory
read required to pull in the clause some 50-90% of the time. The cost of this modification
is that the size of the watched lists are now doubled. However, the locality of reference
is far better on the watched lists than among randomly located clauses in memory so this
modification substantially improves the caching properties of the solver.

3.5 Binary clauses

An almost trivial extension to the previous modification is to handle binary clauses specially.
Since we are already storing one literal of the clause in the watched list itself, it is quite
easy to have each of the literals in the binary clause store the other literal in its watched
list. We can simply mark the clause index with a bit flag to indicate whether the clause is
binary or not, and if it is it can be handled specially. Since knowing the other literal in the
clause means that you know everything about the clause, the clause itself never needs to be
read in to perform propagation.

The cache benefit of this modification is to some extent negated by the previous mod-
ification as the previous improvement has already made it unnecessary to read in a large
proportion of clauses. However, experiments show that a significant enough number of
binary clauses lookups got through the previous improvement to make this modification
worthwhile.

3.6 Ternary clauses

A somewhat more non-trivial change is to handle ternary clauses specially as well. Since
the first literal modification in Subsection 3.4 requires that we store both a 4 byte clause
index and a 4 byte first literal in the watched list for each clause, there is already enough
space for us to store two literals, and thus we can store all of the information contained
in ternary clauses in the watched lists themselves. The different variations of the watched
list element are shown in Figure 7. This change complicates certain other aspects of the
solver but is certainly possible. The benefit of this modification is less clear, as although
we would eliminate all lookups of ternary clauses and thus have less cache misses, each of
those clauses would now be attached to three watched lists instead of two, and thus the
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Normal Clause First Literal Clause Index

Binary Clause Other Literal Unused

Ternary Clause 1st Other Literal 2nd Other Literal

Figure 7. Watched list element data structure

processing required to propagate them may increase by as much as 50%. Experiments seem
to indicate that there is some benefit however.

As mentioned in Subsection 3.3, the optimal choice of the clause head length depends
on the statistics of the problem. For the unmodified solver, a length of 4 is optimal.
However, once the first literal modification, the binary clause handling and the ternary
clause handling in Subsections 3.4, 3.5 and 3.6 are implemented as well, the statistics of the
problem changes significantly. All binary and ternary clause lookups are now eliminated,
as well as all lookups where the first literal is already true. This represents a significant
proportion of the cases where the clause examination terminated within the first 4 literals.
Thus once these modifications are made it can no longer be said that most remaining clause
lookups terminate within the first few literals. The new optimum was found experimentally
to be 16 for our set of instances, which coincides with the size of a cache line on our machine,
although the difference in speedup is only around 5-10%.

3.7 Packing assignments

Besides the above major modifications, there are also some trivial packing of data that can
be done. For example, in the original MiniSat 2.0, a single byte is used to represent the
current value of each variable. Because of the very non-local way in which variables are
examined, it will often be the case that when the algorithm examines one variables value,
an entire cache line of assignment data is pulled in, the rest of which will never be used.
Since 2 bits is in fact sufficient to store a variables assignment, it is possible to pack the
value of 4 variables into each byte. Such packing means that each cache line contains more
assignments and there is a greater chance that some of the other assignments pulled in with
the cache line has some use.

3.8 Expected benefits

Most of the above changes trade more processing for reduced cache misses. Thus they are
not guaranteed to improve performance. A benefit would only be gained if the underlying
assumptions for the modification hold, i.e. the source of cache misses being tackled is a
major source of slow down, and the statistical assumptions behind the modification hold for
the particular instance you are trying to solve. We expect this to be true for all reasonably
large instances, e.g. > 50,000 variables. For small, instances however, cache misses are not
an issue and the changes may well cause a slow down.

Another important point to note is that the effects of the modifications do not simply
add up. In some cases there are synergies such that the total effect of the modifications is
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greater than the sum. In others, the effect of one modification is replicated by another to
some extent and the total effect is less than the sum.

4. Experimental evaluation

4.1 Sequential solving

In the first set of experiments we test the effectiveness of our modifications in the context
of sequential SAT solving using modified versions of MiniSat 2.0. An exhaustive test of
each combination of data structure modifications is too time consuming. We test each
modification in turn (except for the ternary clause handling as it is difficult to implement
alone), all of them together, and certain combinations that produce interesting synergies.

The tests were performed on Xeon Pro 2.4GHz processors with 32kb L1 cache, 4Mb L2
cache, 64 byte cache line and 16-way set associativity. The solver was compiled using gcc
3.4.5 using -O3 optimization. 24 medium sized industrial instances from SAT competition
2007 [8] were used (See Appendix B). These instances come from 9 different problem classes.
We also run our final version with all modifications on a further 33 industrial instances (see
Appendix C) of varying difficulty and different problem classes to ensure that our results
generalise. The original version was run 25 times with different random seeds and the
modified versions were run 20 times with different random seeds. This brings the standard
error down to around 5%. The instruction count and cache miss counts were collected using
the Valgrind cache simulator. For the cache simulation, only 10 instances were tested with
1 run each, so these numbers are merely indicative. The results are shown in Table 1.

As the figures in Table 1 show, the modifications all increased the amount of processing
required, but most of them compensated for that with reduced cache misses, leading to
substantial speedups. Clause packing, when implemented alone, is most effective for a
clause head length of 4, which is what we expect given the large number of binary and
ternary clauses in the original problems. Clause packing is able to reduce L1 cache misses
by around 10% and L2 cache misses by around 45%, resulting in a speedup of around 19%.
The first literal modification also produce a significant speedup, reducing L1 cache misses
by around 20% and L2 cache misses by around 40%, giving a speedup of around 25%.
The case for the watched list modification, binary clause modification and assignments
packing is less clear. The watched list modification is able to reduce L2 cache misses by
around 20%, but the extra processing required has apparently out weighed the benefits. A
more efficient implementation of the modification may yield a better speedup. The binary
clause modification yielded no speedup whatsoever. In fact, it seems slightly inferior to the
original. However, it produces some speedup when coupled with the first literal modification
(extra 16%), as the data structure changes used in the first literal modification allow the
binary clause modification to be implemented with little extra overhead. Assignments
packing also yielded no speedup when implemented alone. However, as a comparison of
PA+PC(4) with PC(4) shows, assignments packing can produce a non-negligible speedup
(extra 11%) when coupled with other modifications. The best combination of modifications
WL+PC+FL+BC+TC was able to reduce L1 misses by around 45% and reduce L2 misses
by around 75%, leading to a speedup of 80%.

In summary, it can be said that the clause packing, first literal modification, and the
special binary clause handling each increase the propagation speed by around 15-25%, and
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Table 1. Cache conscious optimizations for sequential SAT solving. Comparison of various
combinations of optimizations: WL — Watched list modification (3.2), PC(n) — Clause modification
with length n clause head, n = 16 if labelled as just PC (3.3), FL — Store first literal in watched list
(3.4), BC — Handle binary clauses specially (3.5), TC — Handle ternary clauses specially (3.6) PA
— Pack assigns (3.7). The results show the (geometric mean) runtime for the suite, the speedup
compared to MiniSat 2.0, I/Loop stands for average number of instructions per inner loop of the
propagation engine, L1M/Loop and L2M/Loop stands for the average number of L1 and L2 misses
per inner loop of the propagation engine.

24 medium sized industrial instances (Appendix B)

Modifications Runtime (s) Speedup I/Loop L1M/Loop L2M/Loop
MiniSat 2.0 59.05 — 80.7 3.21 0.64
WL 62.17 0.95 97.7 3.02 0.53
BC 62.07 0.96 93.7 3.30 0.69
PA 59.17 1.00 99.7 2.89 0.62
PC 64.39 0.92 97.7 3.14 0.65
PC(8) 54.85 1.08 97.9 3.05 0.48
PC(4) 49.78 1.19 98.3 2.95 0.35
FL 47.91 1.25 83.7 2.58 0.39
PA+PC(4) 45.51 1.30 99.3 2.63 0.34
WL+PC+FL 38.96 1.53 104.5 2.44 0.29
WL+PC+FL+BC 35.14 1.70 99.3 2.23 0.24
WL+PC+FL+BC+TC 33.16 1.80 89.8 1.78 0.16

33 other industrial instances (Appendix C)

Modifications Runtime (s) Speedup
MiniSat 2.0 212.21 —
WL+PC+FL+BC+TC 117.77 1.80

the ternary clause handling increases it by another 10%. The changes caused by the watched
list modification and the assignments packing are too inconsistent to be considered a real
improvement. The average speedup gained from the best combination of modifications is
around 80% on the initial 24 instances we examined. There is a large amount of individual
variation in the speedups of the instances, with the speedup ranging between 19% to as
high as 178%. The average speedup on the 33 extra instances we tested it on is also 80%.
Thus it is quite likely that the speedup generalises to other similarly sized instances.

4.2 Parallel solving

In the second set of experiments we test the effectiveness of our modifications in the context
of parallel SAT solving using the parallel SAT solver PMiniSat. Two versions of PMiniSat
were made, one with and one without the data structure modifications. The tests were
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Table 2. Cache conscious optimizations for parallel SAT solving. We compare a parallelized
version of MiniSat2.0, PMiniSat, using the original data structures and the combination of opti-
mizations detailed in Table 1. The results are the geometric mean of 20 runs.

Original WL+PC+FL+BC+TC
Threads Runtime (s) Efficiency Runtime (s) Efficiency Speedup
1 44.03 — 28.30 — 1.56
2 26.94 0.82 15.19 0.93 1.77
3 21.75 0.67 12.70 0.74 1.71
4 19.06 0.58 10.52 0.67 1.81
5 19.90 0.44 10.15 0.56 1.96
6 21.42 0.34 10.70 0.44 2.00
7 23.41 0.27 10.31 0.39 2.27
8 26.44 0.21 11.03 0.32 2.40

performed on an 8 core Mac with 2x Harpertown Quad core Xeon 2.8GHz processors. Each
core has a 32kb L1 cache, and each pair of cores share a 6Mb L2 cache with a 64 byte
cache line and 24-way set associativity. The solver was compiled using gcc 4.0.1 using -O3
optimization. We run both versions of the solver with 1 to 8 threads. Again the tests are
done on the 24 medium sized industrial instances (Appendix B). Each instance was run 20
times with different random seeds. The results are given in Table 2.

The sequential (1 thread) speedup due to the modifications is slightly lower on the Mac
than on the Xeon Pro. This is to be expected as the solver has access to a full 6Mb of L2
cache on the Mac compared to only 4Mb on the Xeon Pro, thus cache misses are less of
an issue and the cache improvements have a smaller effect. The speedups produced by the
modifications clearly increase with increasing number of threads, from 56% speedup for 1
thread up to 140% for 8 threads.

The dramatic drop in efficiency as more threads are used is somewhat surprising at
first glance, as it is known from other experiments that PMiniSat is highly efficient algo-
rithmically, achieving an efficiency of 103% at 4 threads and 87% at 8 threads on these
24 instances in terms of the total number of executions of the inner loop over all threads.
The communication cost in PMiniSat is also negligible. Further investigation shows that
the relatively low efficiency of PMiniSat on this multi-core machine (with or without cache
improvements) can be directly attributed to memory costs.

Our cache simulation numbers show that the average rate of L2 cache misses on the
unmodified sequential solver was of the order of 10 million misses per second. With a
write-back cache policy, and a 64 byte cache line size, this translates into a fairly massive
1.28 Gb/s of traffic between the processor and the main memory. Thus even though the
entire clause database of a medium sized industrial problem may only require 20-50 Mb
of memory, the highly non-local memory access pattern forces an enormous amount of
memory transfer to occur. The situation is far worse for our parallel solver, as the memory
bandwidth requirement will be multiplied by the number of threads. Futhermore, issues such
as cache contention, shared data and speculative prefetching by the Harpertown processors
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Table 3. Parallel memory stress test.

Threads Runtime (s) Efficiency
1 29.2 —
2 22.6 0.65
4 18.2 0.40
8 16.8 0.22

will increase the amount of memory transfer that each thread needs even further. In the
sequential solver, L2 misses were already consuming some 50-60% of the cpu time. From
our numbers, it appears that in the parallel solver, this proportion grows to around 75% for
4 threads and around 90% for 8 threads. Thus when the parallel solver is run with many
threads, the limiting factor is not processing power, but the ability of the main memory
to handle an extremely large number of memory accesses. On the 8-core Mac that the
experiments were run on, the main memory is clearly not fast enough to satisfy all 8 cores.

To illustrate this, memory stress tests using a memory access pattern similar to a SAT
solver were run on the 8 core Mac. In the stress tests, 64 Mb of contiguous memory is
allocated to each thread. Each thread then reads a random location within its block and
increments the value. This loop is performed a billion times. As can be seen in table 3,
the efficiency drops dramatically with increasing number of threads and the trend is very
similar to what is observed on the parallel SAT solver.

In the sequential context, our modifications were able to substantially reduce cache
misses. In the parallel context, they provide even more speedup because of the other
memory issues that occur. When multiple threads share an L2 cache, capacity contention
occurs. Since the vast majority of cache misses in SAT solving are capacity misses, when
two threads share the same cache, the effective L2 cache size for each of them is roughly
halved. On the Harpertown processors, each thread would effectively have 3Mb or less of
L2 cache instead of 6Mb for the sequential case. Thus L2 misses are far higher and our
cache improvements produce more speedup. Main memory contention is clearly a very
serious source of inefficiency for parallel SAT solvers. Our cache improvements reduce L2
misses, which translates into less main memory accesses and thus less contention, once
again producing more speedup. Although our numbers show that it would be impractical
to run our solver with more than 4 or 5 threads on this particular machine, the speedups
illustrate very well how much more effective our modifications are in the parallel context,
as our modifications produce a far greater speedup of 140% with 8 threads than the 56%
with 1 thread.

5. Related work

The inefficiency of having the clauses reside in non-contiguous, randomly allocated memory
locations has been noted before, and array style clause memory management have been
attempted. For example, in Chaff [1], a large chunk of contiguous memory is initially allo-
cated for clauses. Memory from this pool is then allocated to clauses as needed. However,

15



G. Chu, A. Harwood and P.J. Stuckey

in their implementation, the memory is simply allocated from the end of the pool, and they
do not attempt to reuse freed chunks of memory caused by deleted clauses until an infre-
quent monolithic garbage collection step compactifies the remaining clauses. This somewhat
reduces the effectiveness of using an array for the clauses, as clauses are no longer in con-
tiguous parts of memory due to there being deleted clauses in between. Our implementation
allocates fixed sized chunks of memory to clauses, thus it is easy for us to keep a stack of
freed chunks that can be reused immediately. This makes better use of memory and also
produces better locality of reference.

Our first literal modification bears some resemblence to the Watched Literal Reference
List (WLRL) used in [9], however, their WLRL data structure is motivated by different
considerations. In their parallel solver MiraXT, clauses are read-only and are shared among
multiple threads, thus in order for watched literal propagation to occur, each thread has to
remember the two literals in the clause that are attached to their watched lists. This data is
stored in an extra data structure called the WLRL. Similar to our first literal modification,
examining the WLRL can allow the clause examination to terminate without examining the
original clause. However, the authors do not examine the cache behaviour of this design or
whether it can produce any speedups.

The clause data structures used in CMUSAT [10] is also similar to our first literal
modification and is motivated by the same reasons. However, instead of storing the first
literal in the watched list itself as we do, they store the two watched literals of each clause
in a separate array, essentially creating an abridged version of each clause. This is very
similar to the WLRL described above. When a clause is examined, their algorithm first
examines these two watched literals to see if they are true. If they are, then the main
clause is not examined. It seems to us however, that such a design may not decrease cache
misses by much. The examination of the two watched literals, which is stored in a separate
array from the watched list, is very likely to cause a cache miss as well, as it has the same
highly non-local access pattern that the clauses suffer from. And in the case that the main
clause has to be examined, their design may end up causing two misses instead of one. Our
modification is superior, as storing the first literal in the watched list itself provides far
better locality of reference.

The special handling of binary clauses is not a new idea. In fact, MiniSat 1.13 had a
similar implementation that was later removed in MiniSat 2.0 for readability reasons. Spe-
cial handling for ternary clauses have also been considered before, for example [6] discusses
ways in which ternary clause could be handled specially by packing the literals together.
Their packing scheme involves packing the 3 literals into only 64 bits. This can substantially
reduce the memory footprint when a large majority of clauses are of length 3. However,
their implementation limits each literal to 20 bits, with 1 bit reserved for a flag. This means
that a maximum of 524,288 variables are allowed. Such a restriction may have been rea-
sonable at the time, but is no longer really reasonable given the sizes of the problems that
can be solved today. Our changes do not modify the length of a literal, but do utilise two
of its bits for special flags. Thus we retain a limit of 536,870,912 variables, which ought to
be sufficient for the foreseeable future.
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6. Conclusion

This paper describes a series of data structure and algorithmic modifications that are able to
increase the core propagation speed of MiniSat 2.0 by some 80% on a wide range of medium
sized industrial instances. An even greater speedup of around 140% was obtained when
the modifications were incorporated into the parallel SAT solver PMiniSat running with 8
threads. Cache simulations were used to find the main sources of cache misses in MiniSat 2.0.
Propagation statistics were then collected that guided us towards the design of more cache
concious data structures and algorithms. Three of our modifications produced unambiguous
speedups of the order of 15-25% each in the sequential context. Our experiments indicate
that memory costs dominate execution in the parallel solver, and hence cache improvements
are even more important. Our modifications are relatively easy to implement and can easily
be incorporated into other state of the art SAT solvers, all of which currently also utilise
the same two watched propagation as MiniSat 2.0.
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Appendix A. 119 industrial SAT instances

These examples were taken from the SAT Race 2008 instances available at
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/downloads.html.

aloul-sr06-chnl10-13.cnf
AProVE07-04.cnf
AProVE07-06.cnf
AProVE07-15.cnf
AProVE07-20.cnf
AProVE07-22.cnf
blocks-4-ipc5-h21-unknown.cnf
clauses-10.cnf
clauses-4.cnf
cube-9-h10-unsat.cnf
cube-9-h11-sat.cnf
dated-10-15-u.cnf
dated-5-11-u.cnf
een-pico-sr06-pr02-02.cnf
een-tipb-sr06-par1.cnf
een-tipb-sr06-tc6b.cnf
eq.atree.braun.8.unsat.cnf
eq.atree.braun.9.unsat.cnf
goldb-heqc-desmul.cnf
goldb-heqc-i8mul.cnf
goldb-heqc-k2mul.cnf
goldb-heqc-rotmul.cnf
grieu-vmpc-s05-05s.cnf
grieu-vmpc-s05-24s.cnf
grieu-vmpc-s05-27r.cnf
hoons-vbmc-s04-05.cnf
hoons-vbmc-s04-06.cnf
hoons-vbmc-s04-07.cnf
hoons-vbmc-s04-07.cnf
manol-pipe-c10b.cnf
manol-pipe-c10bi_s.cnf
manol-pipe-c10id_s.cnf
manol-pipe-c10ni_s.cnf
manol-pipe-c10nid_s.cnf
manol-pipe-c10nidw_s.cnf
manol-pipe-c6b_i.cnf
manol-pipe-c6bid_i.cnf
manol-pipe-c6id.cnf
manol-pipe-c6idw_s.cnf
manol-pipe-c6n.cnf
manol-pipe-c6ni_s.cnf
manol-pipe-c6nid_s.cnf
manol-pipe-c6nidw.cnf
manol-pipe-c6nidw_i.cnf
manol-pipe-c7_i.cnf
manol-pipe-c7_i.cnf
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manol-pipe-c7idw.cnf
manol-pipe-c7idw_s.cnf
manol-pipe-c8_i.cnf
manol-pipe-c8b_i.cnf
manol-pipe-c8b_i.cnf
manol-pipe-c8n.cnf
manol-pipe-cha05-113.cnf
manol-pipe-cha05-143.cnf
manol-pipe-f6b.cnf
manol-pipe-f6i.cnf
manol-pipe-f6n.cnf
manol-pipe-f6nid.cnf
manol-pipe-f7idw.cnf
manol-pipe-g10idw.cnf
manol-pipe-g6bid.cnf
manol-pipe-g7n.cnf
manol-pipe-g8b.cnf
manol-pipe-g8bidw.cnf
manol-pipe-g8n.cnf
miza-sr06-md5-47-03.cnf
miza-sr06-md5-48-01.cnf
miza-sr06-sha0-35-03.cnf
mizh-md5-47-3.cnf
mizh-sha0-35-2.cnf
mizh-sha0-35-4.cnf
mizh-sha0-35-5.cnf
narai-vpn-10s.cnf
narai-vpn-sat05-02s.cnf
narai-vpn-sat05-07.cnf
schup-l2s-s04-abp4.cnf
schup-l2s-s04s2-09.cnf
schup-l2s-s04-valves.cnf
simon-mixed-s02bis-01.cnf
simon-mixed-s02bis-03.cnf
simon-mixed-s02bis-05.cnf
simon-mixed-s02bis-05.cnf
stric-bmc-ibm-10.cnf
stric-bmc-ibm-12.cnf
total-10-11-u.cnf
total-5-11-u.cnf
total-5-13-u.cnf
total-5-17-s.cnf
uts-l05-ipc5-h26-unsat.cnf
uts-l05-ipc5-h27-unknown.cnf
uts-l06-ipc5-h28-unknown.cnf
uts-l06-ipc5-h29-unknown.cnf
uts-l06-ipc5-h30-unknown.cnf
vange-color-inc-54.cnf
velev-eng-uns-1.0-04.cnf
velev-eng-uns-1.0-04a.cnf
velev-fvp-sat-3.0-12.cnf
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velev-live-sat-1.0-01.cnf
velev-live-sat-1.0-03.cnf
velev-npe-1.0-02.cnf
velev-npe-1.0-03.cnf
velev-pipe-1.0-08.cnf
velev-pipe-1.0-09.cnf
velev-pipe-1.1-03.cnf
velev-pipe-1.1-05.cnf
velev-pipe-uns-1.0-08.cnf
velev-pipe-uns-1.0-14.cnf
velev-pipe-uns-1.1-05.cnf
velev-sss-1.0-05.cnf
velev-sss-1.0-cl.cnf
velev-vliw-sat-2.0-02.cnf
velev-vliw-sat-2.0-04.cnf
velev-vliw-uns-2.0-02.cnf
vmpc_24.cnf
vmpc_25.cnf
vmpc_26.cnf
vmpc_27.cnf
vmpc_28.cnf

Appendix B. 24 medium sized industrial instances

AProVE07-04.cnf
AProVE07-06.cnf
AProVE07-15.cnf
AProVE07-22.cnf
blocks-4-ipc5-h21-unknown.cnf
clauses-4.cnf
cube-9-h10-unsat.cnf
cube-9-h11-sat.cnf
dated-10-15-u.cnf
dated-5-11-u.cnf
manol-pipe-c10nidw_s.cnf
manol-pipe-c6nidw_i.cnf
mizh-md5-47-3.cnf
mizh-sha0-35-2.cnf
mizh-sha0-35-4.cnf
mizh-sha0-35-5.cnf
total-10-11-u.cnf
total-5-11-u.cnf
total-5-13-u.cnf
uts-l05-ipc5-h26-unsat.cnf
uts-l05-ipc5-h27-unknown.cnf
uts-l06-ipc5-h28-unknown.cnf
uts-l06-ipc5-h29-unknown.cnf
uts-l06-ipc5-h30-unknown.cnf
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Appendix C. 33 more industrial instances

manol-pipe-c10ni_s.cnf
manol-pipe-c6id.cnf
manol-pipe-c6nid_s.cnf
manol-pipe-c7idw.cnf
manol-pipe-c8n.cnf
manol-pipe-g10idw.cnf
narai-vpn-10s.cnf
vange-color-inc-54.cnf
velev-live-sat-1.0-01.cnf
velev-live-sat-1.0-03.cnf
velev-npe-1.0-02.cnf
AProVE07-02.cnf
AProVE07-03.cnf
AProVE07-06.cnf
AProVE07-08.cnf
AProVE07-09.cnf
AProVE07-16.cnf
AProVE07-21.cnf
AProVE07-27.cnf
blocks-4-ipc5-h22-unknown.cnf
dated-10-11-u.cnf
dated-10-13-u.cnf
dated-5-15-u.cnf
dated-5-17-u.cnf
manol-pipe-c10nidw_s.cnf
manol-pipe-c7bidw_i.cnf
manol-pipe-c7nidw.cnf
manol-pipe-f9b.cnf
manol-pipe-g10bidw.cnf
total-10-13-u.cnf
uts-l06-ipc5-h30-unknown.cnf
uts-l06-ipc5-h31-unknown.cnf
uts-l06-ipc5-h32-unknown.cnf
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