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Abstract

This paper introduces a propositional encoding for lexicographic path orders (LPOs)
and the corresponding LPO termination property of term rewrite systems. Given this en-
coding, termination analysis can be performed using a state-of-the-art Boolean satisfiability
solver. Experimental results are unequivocal, indicating orders of magnitude speedups in
comparison with previous implementations for LPO termination. The results of this paper
have already had a direct impact on the design of several major termination analyzers
for term rewrite systems. The contribution builds on a symbol-based approach towards
reasoning about partial orders. The symbols in an unspecified partial order are viewed as
variables that take integer values and are interpreted as indices in the order. For a partial
order statement on n symbols, each index is represented in ⌈log

2
n⌉ propositional variables

and partial order constraints between symbols are modeled on the bit representations. The
proposed encoding is general and relevant to other applications which involve propositional
reasoning about partial orders.
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1. Introduction

A term rewrite system is a collection of directed equations of the form ℓ → r which computes
on a given term by repeatedly replacing subterms that match the left side of a rule (ℓ) with
corresponding instances of the right side of the rule (r). As a formalism, term rewrite
systems have the full power of Turing machines. Termination is an important property of
term rewrite systems which is, in general, undecidable. However, special cases are decidable,
and over the years huge research efforts have been devoted to the study of such cases
as well as to the development of termination proving techniques. In particular, a term
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rewrite system terminates if there is a reduction order ≻ which orients the rules in the
system. Namely, such that ℓ ≻ r for each rule ℓ → r in the system. There are many
methods for defining such orders and one of the most studied is the lexicographic path order
(LPO)[20, 10]. For details on term rewrite systems and their termination properties, see the
paper by Baader and Nipkow [4] or the survey paper by Dershowitz and Jouannaud [11].

The increasing interest in automated termination analysis of term rewrite systems has
led to an annual International Competition of Termination Tools [24] initiated in 2004.1.

The rules of the competition allow competitors to apply their choice and combination of
termination proving techniques within a time limit of 60 seconds. Prior to the results of this
paper, techniques based on LPOs were considered too slow to be chosen with high priority
in the strategies applied by the main tools participating in the competition.

This paper introduces a novel propositional encoding of LPOs and demonstrates that
SAT solving can drastically speed up the solving for the related LPO termination problems.
The key idea is that the encoding of a term rewrite system is satisfiable if and only if the
system is LPO terminating and that each model of the encoding indicates a particular LPO
which orients the rules in the system. We present unequivocal experimental results. Our
approach surpasses in orders of magnitude the performance of previous implementations of
LPO termination, such as those originally provided by the termination proving tools TTT
[17, 32] and AProVE [15, 2], as well as a previously proposed propositional encoding for
LPOs described in the paper by Kurihara and Kondo [23].

Deciding LPO termination for a term rewrite system R is about determining if there
exists a partial order > on the symbols occurring in R such that the induced LPO orients
the rules in R. This can be posed as a partial order constraint on the symbols. Partial order
constraints are just like usual propositional formulae, except that propositions are atomic
statements about a partial order on a finite set of symbols. For example, (f = g) ∧ ((f >

h) ∨ (h > g)) is a formula in this logic. It contains three atoms: (f = g), (f > h) and
(h > g). There are many other applications in computer science which involve reasoning
about the satisfiability of partial order constraints. For example, in the verification of timed
systems (e.g. [1]), and in the solving of scheduling and planning problems (e.g. [21]).

The results of this paper are obtained through an encoding of partial order constraints
into propositional logic. A previous propositional encoding for LPO termination, considered
in the paper by Kurihara and Kondo [23], is atom-based. It models the atoms in a partial
order constraint as propositional variables. Then, propositional statements are added to
encode the axioms of partial orders that the atoms are subject to. For a partial order
constraint on n symbols, such encodings typically introduce O(n2) propositional variables
and involve O(n3) propositional connectives to express the axioms. In contrast, we take a
symbol-based approach modelling the symbols in a partial order constraint as integer values
(in binary representation). For n symbols this requires k = ⌈log2 n⌉ propositional variables
for each symbol. The integer value of a symbol reflects its index in a total order extending
the partial order. Constraints of the form (f = g) or (f > h) are then straightforward to
encode in k-bit arithmetic and involve O(log n) connectives each.

This paper is an extended version of [6]. The recent papers [8] and [35] illustrate that
the proposed underlying approach is directly applicable to the more powerful termination

1. See also http://www.lri.fr/∼marche/termination-competition.
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not(gt(A,B)) → ge(B,A)
not(ge(A,B)) → gt(B,A)
not(or(A,B)) → and(not(A), not(B))

not(and(A,B)) → or(not(A), not(B))
and(A, or(B,C)) → or(and(A,B), and(A,C))
and(or(B,C), A) → or(and(B,A), and(C,A))

Figure 1. An example term rewrite system: normalizing formulaewith propositional connectives

(and, or, not) and partial orders ( gt and ge for > and≥).

proving technique based on dependency pairs and argument filterings [3]. The recent pa-
per [26] shows that the proposed underlying approach is applicable to the more powerful
recursive path order [9], which combines multi-set orders with LPOs with respect to per-
mutations (instead of just left-to-right). These extensions involve more complex encodings,
but basically the same kind of partial order and propositional constraint solving. In the
past year, several additional papers [13, 14, 18, 37] have illustrated the huge potential in
applying SAT solvers for other types of termination proving techniques for term rewrite
systems. A common theme in all of these works is to represent (finite domain) integer
variables as binary numbers in bit representation and to encode arithmetic constraints as
Boolean functions on these representations. Results indicate uniformly that the SAT-based
approach to proving termination is highly beneficial. At the time of writing, both TTT
and AProVE apply SAT-based techniques for various types of termination analysis. Both
systems have adopted techniques described in the preliminary version of this paper.

The rest of this paper is organized as follows: Section 2 provides a brief introduction
to term rewrite systems and LPO termination. Sections 3 and 4 introduce partial order
constraints and their symbol-based propositional encoding. Section 5 describes the encoding
of the LPO termination problem to partial order constraints. Section 6 evaluates our SAT-
based approach to LPO termination. Finally, we present related work and conclusions.

2. Preliminaries: Term Rewrite Systems and LPO Termination

A term rewrite system is a set of rules R of the form ℓ → r where ℓ and r are terms
constructed from given sets F and V of symbols and variables, respectively. There is an
additional restriction that ℓ is not a variable and that r contains only variables also in ℓ.
A rule ℓ → r applies to a term t if a subterm s of t matches ℓ with some substitution σ

(namely, s = ℓσ). The rule is applied by replacing the subterm s by rσ, resulting in a new
term v. Such an application is called a rewrite step on t and denoted t →R v. A derivation
is a sequence of rewrite steps. A term rewrite system is said to be terminating if all of its
derivations are finite. An example term rewrite system is depicted as Figure 1. An example
derivation of this system is

not(and(gt(A, B), gt(B, A))) →R or(not(gt(A, B)), not(gt(B, A))) →R

or(ge(B, A), not(gt(B, A))) →R or(ge(B, A), ge(A, B))

Termination of term rewrite systems is undecidable [19]. However, a term rewrite system
terminates if there is a reduction order ≻ such that ℓ ≻ r for each rule ℓ → r in the system.
A reduction order is an order that is well-founded, monotonic and stable (closed under
contexts and substitutions). There are many methods for defining such orders. Many
of them are based on so-called simplification orders and one of the most studied is the
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lexicographic path order (LPO) [20, 10]. This section reviews the definition of LPOs and
introduces the LPO termination problem.

We assume an algebra of terms T (F ,V) constructed over a given finite set of symbols F
and set of variables V. Let >F denote a (strict or non-strict) partial order on the symbols
F (a so-called precedence) and let ≈F denote the corresponding equivalence relation on
symbols. A precedence >F on the set of symbols F induces a lexicographic path order ≻lpo

on the set of terms T (F ,V).

Definition 1 (LPO [20]). The lexicographic path order ≻lpo on terms induced by the partial
order >F is defined as s = f(s1, . . . , sn) ≻lpo t if and only if one of the following holds:

1. t = g(t1, . . . , tm) and s ≻lpo tj for all 1 ≤ j ≤ m and either
(i) f >F g or (ii) f ≈F g and 〈s1, . . . , sn〉 ≻

lex
lpo 〈t1, . . . , tm〉; or

2. si ≻lpo t or si ∼ t for some 1 ≤ i ≤ n.

Here ∼ denotes the equality of terms up to the equivalence of symbols (≈F). Namely, s ∼ t

if and only if either (a) s=t; or (b) s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ≈F g, and si ∼ ti
for all 1 ≤ i ≤ n. The lexicographic extension of ≻lpo to tuples of terms is denoted ≻lex

lpo and
defined by:

〈s1, . . . , sn〉 ≻
lex
lpo 〈t1, . . . , tm〉 ⇔ n > 0 ∧

(

m = 0 ∨

(

m > 0 ∧

(

s1 ≻lpo t1 ∨
(s1 ∼ t1 ∧ 〈s2, . . . , sn〉 ≻

lex
lpo 〈t2, . . . , tm〉)

)))

It simply compares the terms in lexicographic order, using ≻lpo as the base order.

Example 1. Consider the rewrite rule not(gt(A, B)) → ge(B, A) from Figure 1 and as-
sume a partial order >F on its symbols such that gt >F ge. Let ≻lpo denote the correspond-
ing induced lexicographic partial order. It follows from definition 1 that not(gt(A, B)) ≻lpo

ge(B, A): By case 2 of the definition we have that not(gt(A, B)) ≻lpo ge(B, A) if gt(A, B) ≻lpo

ge(B, A); by case 1(i) of the definition gt(A, B) ≻lpo ge(B, A) if gt >F ge (which is as-
sumed) and if gt(A, B) ≻lpo B and gt(A, B) ≻lpo A. Finally, these last two proof obligations
follow directly from case 2 of Definition 1.

Example 1 is about testing s ≻lpo t for a given partial order >F . LPO termination
is instead about the existence of a partial order >F such that s ≻lpo t for the induced
lexicographic path order.

The LPO termination problem is to determine for a given term rewrite system with
function symbols F , if there exists a partial order >F such that the induced lexicographic
path order orients all of the rules in the system. Namely, such that ℓ ≻lpo r for each ℓ → r

in the system. In this case the system is said to be LPO terminating. There are two
variants of the problem: “strict-” and “quasi-LPO termination” depending on if the search
for the partial order >F is further restricted to find a strict partial order or not. Both
imply termination of the corresponding term rewrite system. Quasi-LPO termination is the
stronger property: if a system is LPO-terminating then it is also quasi-LPO terminating
but the inverse does not hold. Quasi-LPO termination is also the harder problem, as the
search for a non-strict partial order on F such that the corresponding LPO orients all of the
rules is more extensive than the search for a strict partial order. Both of the corresponding
decision problems, strict- and quasi- LPO termination, are decidable and NP complete [22].
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3. Partial Order Constraints

Informally, a partial order constraint is just like a formula in propositional logic, except that
propositions are atoms of the form (f > g) or (f = g). The semantics of a partial order
constraint is a set of solutions. A solution is an assignment of truth values to atoms which
is required to satisfy both parts of the formula: the propositional part—namely, viewing
the formula as propositional; and the partial order part—namely, being consistent with the
axioms of partial order with regards to the symbols in the atoms. Moreover, we require
solutions to be closed under extension.

Syntax: Let F be a finite non-empty set of symbols and
{

>,=
}

be binary relation
symbols on F . We denote by AtomF the set of atoms of the form (f = g) and (f > g)
where f, g ∈ F . A partial order constraint on F is a propositional formula in which
the propositions are elements of AtomF . We sometimes write (f ≥ g) as shorthand for
(f > g) ∨ (f = g). We denote the set of atoms occurring in a partial order constraint ϕ by
Atom(ϕ). We assume two special atoms denoted true and false. These may be viewed as
shorthand for (x = x) and (x > x) (for a symbol x ∈ F) respectively.

Semantics: The relations > and = are interpreted, respectively, as a strict partial order
and as equality (both on F). Let ϕ be a partial order constraint on F . The semantics of
ϕ is a set of solutions. A model of ϕ is a set of atoms from AtomF which satisfies both
parts of the formula: the propositional part and the partial order part. A solution of ϕ is
a model µ of ϕ such that any extension of µ is also a model of ϕ. The following definition
formalizes the semantics for partial order constraints.

Definition 2 (assignment, extension, model, solution). Let ϕ be a partial order constraint
on F . An assignment µ is a mapping from propositions of AtomF to truth values, and
can be identified with the set of propositions it assigns to the value true. We say that an
assignment µ is a partial order if it satisfies the axioms for strict partial order and equality.
More specifically, for all f, g, h ∈ F :

reflexivity: (f = f) ∈ µ

symmetry: (f = g) ∈ µ ⇒ (g = f) ∈ µ

asymmetry: ¬((f > g) ∈ µ ∧ (g > f) ∈ µ)
transitivity: (f > g) ∈ µ ∧ (g > h) ∈ µ ⇒ (f > h) ∈ µ

(f = g) ∈ µ ∧ (g = h) ∈ µ ⇒ (f = h) ∈ µ

identity: (f > g) ∈ µ ∧ (g = h) ∈ µ ⇒ (f > h) ∈ µ

(f = g) ∈ µ ∧ (g > h) ∈ µ ⇒ (f > h) ∈ µ

(1)

A partial order extension (or simply extension) of an assignment µ is a partial order µ′,
such that µ ⊆ µ′. We say that an assignment µ is a partial order model for ϕ if it is a
partial order and it is a model for ϕ. A solution µ of ϕ is a partial order model of ϕ, such
that all extensions of µ are also models of ϕ. A partial order constraint ϕ is satisfiable if
and only if it has a solution.

197



M. Codish et al.

Example 2. Let F = {f, g, h}. The following are partial order constraints:

ϕ1 = (f > g) ∧ ((f > h) ∨ (h > f))

ϕ2 = (f ≥ g) ∧ (g ≥ h) ∧ (h ≥ g)

ϕ3 = (f > g) ∧ ¬((h > g) ∨ (f > h))

The set of atoms µ1 =
{

(f > g), (f > h), (f = f), (g = g), (h = h)
}

is a model for ϕ1. It
satisfies the propositional part of ϕ1: ϕ1 evaluates to true when assigning the atoms in µ1

the value true and the others the value false. It satisfies the partial order part of ϕ1: it is a
partial order. The set of atoms

{

(h > f), (f > g)
}

is not a model (for any partial order
constraint) because it is not closed under transitivity (nor reflexivity): it is not a partial
order. However, its extension µ2 =

{

(h > f), (f > g), (h > g), (f = f), (g = g), (h = h)
}

is a model for ϕ1. Formula ϕ1 has additional models which are extensions of µ1 to a total
order:

µ3 =
{

(f > g), (g > h), (f > h), (f = f), (g = g), (h = h)
}

,

µ4 =
{

(f > h), (h > g), (f > g), (f = f), (g = g), (h = h)
}

, and
µ5 =

{

(f > g), (g = h), (h = g), (f > h), (f = f), (g = g), (h = h)
}

Indeed, all of the extensions of µ1 are models, so µ1 is a solution of ϕ1. Since µ3, µ4, and
µ5 are total orders and models they are also solutions.

The formula ϕ2 has two example solutions:

{

(f > g), (g = h), (h = g), (f > h), (f = f), (g = g), (h = h)
}

, and
{

(f = g), (g = f), (g = h), (h = g), (f = h), (h = f), (f = f), (g = g), (h = h)
}

Focusing on ϕ3, we illustrate an additional condition for an assignment to satisfy a partial
order constraint. When searching for solutions of a formula, we are only interested in
assignments if their extensions are also solutions. The partial order µ = { (f > g), (f =
f), (g = g), (h = h) } is a model: ϕ3 evaluates to true when assigning the atoms in µ

the value true and the others the value false. However, no extension of µ satisfies the
propositional part of ϕ3 and hence µ will not be considered a solution of ϕ3.

The following proposition enables us to restrict attention to partial order models which
are total orders. A total order µ is a partial order that also satisfies the following additional
axiom. For all f, g ∈ F :

comparability: (f > g) ∈ µ ∨ (g > f) ∈ µ ∨ (f = g) ∈ µ (2)

Proposition 1. Partial order constraint ϕ has a solution if and only if it has a partial
order model which is a total order.

The proof of this proposition is straightforward. Given that we focus on total order
solutions, we have that ¬(f > g) ≡ (g > f)∨(g = f) and that ¬(f = g) ≡ (f > g)∨(g > f).
Hence we may assume without loss of generality that partial order constraints are negation
free. For example, the formula ϕ3 from Example 2 is equivalent to ϕ′

3 = (f > g) ∧ (g ≥
h) ∧ (h ≥ f).
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Satisfiability: In this paper, we are concerned with the question of satisfiability of partial
order constraints: given a partial order constraint ϕ, does it have a solution? Similar to
the general SAT problem, the satisfiability of partial order constraints is NP-complete. The
reduction from SAT is straightforward.

Integer-based interpretation: We propose a finite domain integer-based interpretation
of partial order constraints. In this approach, the semantics of a partial order constraint is
a set of integer solutions.

Definition 3 (integer assignment and solution). Let ϕ be a partial order constraint on
F and let |F| = n. An integer assignment for ϕ is a mapping θ : F → {0, . . . , n − 1}.
An integer solution of ϕ is an integer assignment which satisifes ϕ under the standard
interpretations of > and = on the non-negative integers.

Example 3. Consider again the partial order constraints from Example 2. The assignments
mapping 〈f, g, h〉 to 〈2, 1, 1〉, 〈2, 0, 0〉 and 〈0, 0, 0〉 are solutions for ϕ2. But only the first
two are solutions to ϕ1. The formula ϕ3 has no integer solutions. Any such solution would
imply a cycle: f > g, g ≥ h and h ≥ f .

Theorem 2. A partial order constraint ϕ is satisfiable if and only if it has an integer
solution.

The theorem is a direct consequence of the following two lemmata.

Lemma 3. Let θ be an integer solution of ϕ. The assignment

µ =
{

(f > g)
∣

∣ {f, g} ⊆ F , (θ(f) > θ(g))
}

⋃

{

(f = g)
∣

∣ {f, g} ⊆ F , (θ(f) = θ(g))
}

is a solution of ϕ.

Proof. Observe that µ satisfies both the propositional and partial order parts of ϕ, since the
integer relation > is a total order. Hence µ is a solution for ϕ by definition. By construction,
µ is total and hence any extension of µ is also a model of ϕ.

Lemma 4. Let ϕ be a satisfiable partial order constraint for F with n symbols. Then there
exists an integer solution θ of ϕ in

{

0, . . . , n − 1
}

.

Proof. By Proposition 1, ϕ has a total order model µ. Assume F = {f1, . . . , fn}. By
comparability, for each 0 ≤ i < j ≤ n− 1 exactly one of fi > fj or fi = fj or fj > fi holds.
We can linearize the symbols in F : fkn

�n−1 · · · �2 fk2
�1 fk1

where for each 1 ≤ i < n,
�i ∈ {>,=} and (fki+1

�i fki
) ∈ µ, since µ models transitivity, symmetry, and identity. We

can then construct a solution θ, using values from 0 to no more than n − 1, where

θ(fk1
) = 0

θ(fkj+1
) =

{

θ(fkj
) where �j−1 ≡ (=)

θ(fkj
) + 1 where �j−1 ≡ (>)

for 0 ≤ j < n − 1
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ϕ = ((gt > ge) ∨ (not > ge)) ∧ ((ge > gt) ∨ (not > gt)) ∧

(((or > and) ∧ (or > not)) ∨ (not > and)) ∧

(((and > or) ∧ (and > not)) ∨ (not > or)) ∧ (and > or)
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hh ::u
u

u
u

�� $$I
I

I
I

GFED@ABCor

RR
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GFED@ABCge

RR

(a) (b)

Figure 2. (a) A partial order constraint, and (b) its domain graph. The graph has two strongly

connected components: {gt, ge} and {not, and, or}. Arcs between the components are dashed.

Simplifying partial order constraint satisfaction: The atoms in a formula ϕ induce
a graph Gϕ on the symbols in F . The strongly connected components of Gϕ indicate where
the partial order constraints can cause unsatisfiability. This graph, Gϕ, captures all possible
cycles in the partial order and hence all potential contradictions. The following definition
is inspired by [23]. We can simplify a (negation free) partial order constraint by making use
of Gϕ.

Definition 4 (domain graph). Let ϕ be a (negation free) partial order constraint on F .
The domain graph Gϕ = (V, E) is a directed graph with vertices V = F and edges E =
{

(f, g)
∣

∣

{

(f > g), (f = g), (g = f)
}

∩ Atom(ϕ) 6= ∅
}

.

Figure 2 illustrates a partial order constraint (a) and its domain graph (b).

Definition 5 (simplifying a partial order constraint). Let ϕ be a (negation free) partial
order constraint on F . The simplification of ϕ is the formula obtained by substituting true
for any atom (f > g), such that f and g appear in different strongly connected components
(SCCs) of Gϕ.

Example 4. Consider the partial order constraint ϕ and its domain graph Gϕ depicted as
Figure 2. The graph Gϕ has two strongly connected components. The simplification for ϕ,
as prescribed by Definition 5, is obtained as:

ϕ′ ≡ ((gt > ge) ∨ true) ∧ ((ge > gt) ∨ true) ∧

(((or > and) ∧ (or > not)) ∨ (not > and)) ∧

(((and > or) ∧ (and > not))) ∨ (not > or))

≡ (((or > and) ∧ (or > not)) ∨ (not > and)) ∧

((((and > or) ∧ (and > not))) ∨ (not > or))

which is satisfied by a partial order in which (not > or) and (not > and).

Lemma 5. A (negation free) partial order constraint is ϕ satisfiable if and only its simpli-
fication ϕ′ is satisfiable.
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Proof. Any solution of ϕ is a solution of ϕ′, as we have only replaced literals occurring
positively by true. Hence, if θ is an integer solution of ϕ, then θ is an integer solution of
ϕ′. Take an integer solution θ′ of ϕ′. We can create a new solution θ′′ of ϕ′ by shifting the
mapping of all symbols in any given strongly connected component of Gϕ by a constant c.
This holds since there are no atoms that involve symbols from two SCCs. Consider a total
order on the strongly connected components of Gϕ. It is straightforward to shift the values
indicated by θ′ of the symbols in corresponding components such that f > g holds for each
atom (f > g) with f and g from different components. The mapping obtained is an integer
solution of ϕ.

4. A Symbol-Based Propositional Encoding

This section presents a propositional encoding of partial order constraints. We refer to this
encoding as symbol-based. A partial order constraint ϕ on a set of symbols F is encoded
by a propositional formula ϕ′ such that each solution of ϕ corresponds to a model of ϕ′

and in particular such that ϕ is satisfiable if and only if ϕ′ is. The idea is to construct
the encoding in terms of the integer-based interpretation of partial order constraints. We
view the symbols in F as integer variables and interpret atoms (f > g) and (f = g) as
integer constraints. By Lemma 4, if F has n symbols then it suffices to consider the finite
integer domain

{

0, . . . , n − 1
}

for the symbols in F . To obtain a propositional encoding,
each symbol is modeled using k = ⌈log2 n⌉ propositional variables which encode the binary
representation of its value and the constraints (f > g) and (f = g) are encoded in k-bit
arithmetic as detailed below.

To introduce the encoding we assume the following notation: With each atom a ∈
AtomF , we associate the propositional variable denoted [[a]]. The propositional part of the
partial order constraint ϕ is denoted [[ϕ]]. This is the propositional formula obtained by
replacing each atom a ∈ atom(ϕ) with its associated propositional variable [[a]].

Example 5. Consider the partial order constraint

ϕ′ = ((or > and) ∧ (or > not) ∨ (not > and)) ∧

((and > or) ∧ (and > not) ∨ (not > or))

from Example 4. Its propositional part is

[[ϕ′]] = ([[or > and]] ∧ [[or > not]] ∨ [[not > and]]) ∧

([[and > or]] ∧ [[and > not]] ∨ [[not > or]])

The propositional encoding of a partial order constraint ϕ over an alphabet |F| of n

symbols with k = ⌈log2 n⌉ is denoted ‖ϕ‖k (we sometimes omit the subscript k) and defined
as follows:

1. The k-bit representation for f ∈ F is 〈fk, . . . , f1〉 with fk the most significant bit.

2. A constraint of the form (f = g) is encoded in k-bits by

‖(f = g)‖k =
k

∧

i=1

(fi ↔ gi).
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A constraint of the form (f > g) is encoded in k-bits by

‖(f > g)‖k =

{

(f1 ∧ ¬g1) k = 1

(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ ‖(f > g)‖k−1) k > 1

3. A partial order constraint ϕ is encoded in k bits by the conjunction of the propositional
part of ϕ with the formulae defining the propositional variables associated with the
atoms in ϕ:

‖ϕ‖k = [[ϕ]] ∧
∧

a∈Atom(ϕ)

([[a]] ↔ ‖a‖k) (3)

Example 6. Consider the partial order constraint ϕ′ from Example 5 and recall that:

[[ϕ′]] = ([[or > and]] ∧ [[or > not]] ∨ [[not > and]]) ∧

([[and > or]] ∧ [[and > not]] ∨ [[not > or]])

Each of the three symbols in ϕ′ is represented in 2 bits and the propositional encoding of ϕ′

is obtained as:

‖ϕ′‖2 = [[ϕ′]] ∧ ([[not > or]] ↔ ((not2 ∧ ¬or2) ∨ (not2 ↔ or2 ∧ not1 ∧ ¬or1))) ∧

([[and > or]] ↔ ((and2 ∧ ¬or2) ∨ (and2 ↔ or2 ∧ and1 ∧ ¬or1))) ∧

([[not > and]] ↔ ((not2 ∧ ¬and2) ∨ (not2 ↔ and2 ∧ not1 ∧ ¬and1)))

Proposition 6. The symbol-based encoding of partial order constraint ϕ with n symbols, m

connectives and r = |Atom(ϕ)| distinct atoms involves O(r+n log n) propositional variables
and O(m + r log n) connectives.

Recall that SAT solvers typically consider propositional formulae in conjunctive normal
form. The transformation to CNF of a propositional formula (such as the encoding in
Equation 3) is performed using a (linear) Tseitin transformation [31]. For a formula with
m connectives, this transformation will add m new propositional variables and result in a
CNF with O(m) clauses of size 3 or less (see [31] for details).

The encoding of ϕ is a Boolean formula, ‖ϕ‖, polynomial in the size of ϕ. Satisfying
the formula provides a solution to ϕ.

Theorem 7. A partial order constraint ϕ on symbols F is satisfiable if and only if its
symbol-based propositional encoding ‖ϕ‖ is.

Proof. Assume that F contains n symbols and let k = ⌈log2 n⌉.
(⇒) Since ϕ is satisfiable, it has a total order model µ and a corresponding inte-

ger solution θ (constructed as in the proof of Lemma 4). Let θ′ be the Boolean assign-
ment on the (propositional) variables

{

fj

∣

∣ f ∈ F , 1 ≤ j < k
}

such that for each f ∈ F ,
〈θ′(fk), . . . , θ

′(f1)〉 is the k-bit representation of the integer θ(f). Then µ ∪ θ′ is a model of
‖ϕ‖k because: (1) by Definition 2, µ models [[ϕ]]; and (2) from the construction of θ′, for
each a ∈ Atom(ϕ), (µ |= [[a]]) ⇔ (θ′ |= ‖a‖).

(⇐) Consider a model σ of ‖ϕ‖k and its partition σ = µ ∪ θ′ where µ ⊆ AtomF and
θ′ ⊆

{

fj

∣

∣ f ∈ F , 1 ≤ j ≤ k
}

. Let θ be the corresponding mapping of symbols in F to
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integers, where θ(f) is equal to the integer represented in k-bits by 〈θ′(fk), . . . , θ
′(f1)〉. Then

θ is an integer solution of ϕ because: (1) for each [[f > g]] ∈ µ, σ |= ([[f > g]] ↔ ‖f > g‖k)
and therefore θ(f) > θ(g); (2) for each [[f = g]] ∈ µ, σ |= ([[f = g]] ↔ ‖f = g‖k) and
therefore θ(f) = θ(g); and (3) µ |= [[ϕ]]. ϕ.

The simplification discussed in the previous section also gives us an immediate basis for
reducing the size of integers we need to consider in finding a solution to ϕ. In order to
find an integer solution to the simplification of ϕ, ϕ′, we only need to consider values from
{0, . . . , |S| − 1} for each symbol f in an SCC S of Gϕ, since symbols in different SCCs do
not interact.

5. Encoding LPO Termination

This section illustrates how an LPO termination problem can be expressed in terms of
a partial order constraint. Hirokawa and Middeldorp [16] observe that finding >F such
that s ≻lpo t is tantamount to solving a constraint obtained by unfolding the definition of
s ≻lpo t. The following definition specifies such an unfolding in terms of a transformation
τ mapping a pair of terms s and t containing symbols from F to a partial order constraint
τ(s ≻ t) on F . A solution of τ(s ≻ t) is a partial order >F such that s ≻lpo t holds for
the induced lexicographic path order. If τ(s ≻ t) has no solution then it is not possible to
orient the terms s and t in a lexicographic path order. The definition of τ follows precisely
the structure of Definition 1 The constraint obtained as τ(s ≻ t) is essentially the same
referred to in [16].

Definition 6 (encoding LPO). In the following let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉.
The encodings of s ≻lpo t, s̄ ≻lex

lpo t̄ and s ∼ t are defined recursively by the encoding τ and
denoted τ(s ≻ t), τ(s̄ ≻ t̄) and τ(s ∼ t) respectively.

1. τ(s ≻ t) =

{

false if s is a variable
(t = g(t̄) ∧ µ1)

∨

µ2 if s = f(s̄)
where

• µ1 =
∧

1≤j≤m

τ(s ≻ tj)
∧

(

(f >F g)
∨

((f ≈F g) ∧ τ(s̄ ≻ t̄))
)

, and

• µ2 =
∨

1≤i≤n

(τ(si ≻ t) ∨ τ(si ∼ t))

2. τ(〈s1, . . . , sn〉 ≻ 〈t1, . . . , tm〉) = n > 0 ∧
(

m = 0 ∨

(

m > 0 ∧

(

τ(s1 ≻ t1) ∨
(τ(s1 ∼ t1) ∧ τ(〈s2, . . . , sn〉 ≻ 〈t2, . . . , tm〉))

)))

3. τ(s ∼ t) =















true if s = t

(f ≈F g) ∧
∧

1≤i≤n

τ(si ∼ ti) if s = f(s1, . . . , sn) and t = g(t1, . . . , tn)

false otherwise
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The encoding specified in Definition 6 can be further specialized in case we are interested
in a strict partial order >F . In this case ≈F and ∼ are the syntactic identity of symbols
and terms respectively. As such atoms of the form (f ≈F g) and constraints of the form
(s ∼ t) can be immediately evaluated to true or false.

Example 7. Consider the term rewrite system of Figure 1 and assume that we are interested
in a strict precedence >F . Applying Definition 6 to the left and right sides of each of the
rules results in the following partial order constraints:

not(gt(A,B)) >lpo ge(B,A) = (gt > ge) ∨ (not > ge)

not(ge(A,B)) >lpo gt(B,A) = (ge > gt) ∨ (not > gt)

not(or(A,B)) >lpo and(not(A), not(B)) = ((or > and) ∧ (or > not)) ∨ (not > and)

not(and(A,B)) >lpo or(not(A), not(B)) = ((and > or) ∧ (and > not)) ∨ (not > or)

and(A, or(B,C)) >lpo or(and(A,B), and(A,C)) = and > or

and(or(B,C), A) >lpo or(and(B,A), and(C,A)) = and > or

The partial order constraint, satisfiability of which, determines strict- or quasi-LPO
termination of a constraint system is obtained as the conjunction of the encodings τ(ℓ ≻ r)
of the rules in the system. Coming back to the system of Figure 1, the conjunction of
constraints illustrated in Example 7 is precisely the partial order constraint ϕ from Figure 2.
Coming back to Example 4, it is straightforward to observe that it is satisfiable. Hence the
system is LPO-terminating.

The next example illustrates a term rewrite system which is quasi-LPO terminating but
not strict-LPO terminating.

Example 8. Consider the following term rewrite system.

div(X, e) → i(X)
i(div(X,Y )) → div(Y,X)
div(div(X,Y ), Z) → div(Y, div(i(X), Z))

Definition 6 for strict-LPO gives

div(X, e) >lpo i(X) = div > i

i(div(X,Y )) >lpo div(Y,X) = i > div

div(div(X,Y ), Z) >lpo div(Y, div(i(X), Z)) = div > i

The conjunction of the constraints on the right sides is not satisfiable indicating that there
does not exist any strict partial order on F such that the corresponding lexicographic path or-
der decreases on the three rules. The system is however quasi-LPO terminating. Definition 6
for quasi-LPO gives a satisfiable partial order constraint equivalent to (div ≥ i) ∧ (i ≥ div)
which indicates that taking div ≈ i provides a proof of quasi-LPO termination (and hence
termination of the given system).

We conclude this section with a note on the size of the partial order constraint τ(s ≻lpo t)
for terms s and t involving a total of n symbol occurrences. Consider one step of unfolding
the recursive definition for the given terms s = f(s1, . . . , sp) and t = g(t1, . . . , tq). We
obtain a formula of the form

τ(s ≻ t) =
∧

j

τ(s ≻ tj) ∧
(

(f >F g) ∨ (f ≈F g) ∧ τ(s̄ ≻ t̄)
)

∨
∨

i

(

τ(si ≻ t) ∨ τ(si ∼ t)
)
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This formula contains p + q subformulae of the form τ(s ≻ t′) or τ(s′ ≻ t) each involving
one of the original terms s or t. Further evaluation steps, one for each of these subterms
further multiplies the number of occurrences of subformula containing one of the original
terms s or t. Hence, a direct application of Definition 6 may result in a constraint of size
exponential in n.

Example 9. The straightforward application of Definition 6 for

τ(f(f(f(c, d), f(c, d)), f(f(c, d), f(c, d))) ≻ g(g(g(a, b), g(a, b)), g(g(a, b), g(a, b))))

results in a partial order constraint containing 2228 Boolean connectives and 4458 occur-
rences of symbols from F = {f, g, a, b, c, d}.

To obtain a polynomial size encoding we introduce sharing of common sub-formula
into the partial order constraint. The approach is similar to that proposed by Tseitin to
obtain linear CNF transformation of Boolean formula [31]. Instead of encoding s′ ≻lpo t′

“in place” for each subformula encountered when encoding s ≻lpo t, we introduce a fresh
Boolean variable of the form X(s′≻t′) to represent its encoding. Similarly we introduce
X(s′∼t′). Viewed this way, the encoding takes the form:

X(s≻t) ↔
∧

j

X(s≻tj) ∧
(

(f > g) ∨ (f = g) ∧ τ(s̄ ≻ t̄)
)

∨
∨

i

(

X(si≻t) ∨ X(si∼t)

)

· · ·
X(s′≻t′) ↔ · · ·
· · ·

where s′ and t′ are subterms of s and t respectively and for the lexicographic order on tuples
we evaluate the definition of τ(s̄ ≻ t̄) in-line. It takes the following form:

τ(s̄ ≻ t̄) = X(s1≻t1) ∨ (X(s1∼t1) ∧ X(s2≻t2) ∨ (X(s2∼t2) ∧ · · · ∨ (X(sn−1∼tn−1) ∧ X(sn≻tn))· · ·))

Let us now consider the (total) size of this system of equations:

• The number of rows is O(n2) considering all pairs of subterms s′ and t′; and each row
contains two partial order atoms, (f >F g) and (f ≈F g), as well as some number of
variables of the form X(s≻t) and X(s∼t).

• Consider a variable of the form X(s≻tj) on the right side of ↔ referring to term s

(e.g. in the first row). It will not appear again on the right side in another row.
This is because (looking in the “recursive calls” of the first row) it will not occur in
the specifications of variables of the form X(s̄≻t̄) nor of X(si≻t) which refer to proper
subterms of s. Likewise variables of the form X(si≻t) (e.g. from the first row) will not
occur again on the right side in other rows of the system.

• Now consider a variable of the form X(si≻ti) occurring in the unfolding of τ(s̄ ≻ t̄) in
the first row. It will occur 3 times (on the right side of a ↔) in the system: Once in
the unfolding of τ(s̄ ≻ t̄), once in the specification of X(si≻t) ↔ · · · , and once in the
specification of X(s≻ti) ↔ · · · .
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In summary, it means that the total number of variables on all of the right sides of the
↔’s is O(n2). Hence the total size of the encoding is determined by the O(n2) number of
rows and the atoms (f > g), (f = g) which encode to O(log n) bits. Namely, the size of the
encoding is O(n2 log n). In practice it is often the case that |F| ≪ n. In this case we may
view the encoding of the partial order atoms as constant size and the overall encoding as
O(n2).

Strictly speaking, the unfoldings obtained now contain partial order atoms like (f > g),
as well as Boolean Tseitin variables, and as such are not partial order constraints. However,
this may be safely viewed as an implementation detail with the Tseitin variables used to
directly obtain the encoding of s ≻lpo t in CNF.

6. Implementation and Experimental Results

A prototype analyzer, lpoSAT, for strict- and quasi- LPO termination is described in [6].
It is based directly on the (polynomial sized) encoding of an LPO termination problem to a
partial order constraint described in Section 5 and then on the encoding of this constraint
to a CNF as described in Section 4. The CNF is delegated to a SAT solver. A satisfying
assignment, if one exists, is then interpreted to provide the user with a precedence which
proves LPO termination.

The prototype is written in SWI Prolog [34, 28] and applies the MiniSat solver [12, 25]
through its Prolog interface described in the paper by Codish, Lagoon and Stuckey [7]. The
experiments described in the preliminary version of this paper [6] indicate orders of magni-
tude speed-up when compared with the two main termination-proving tools incorporating
LPO termination: TTT [32] and AProVE [2].

These experiments are summarized in Table 1, where parts (a) and (b) of the table
present the results for strict- and quasi- LPO termination analyses, respectively. For these
experiments, lpoSAT was run on a 1.5-GHz laptop with Linux FC4 and compared against
TTT run through its Web interface.2. The TTT analyzer was run on a Xeon 2.24-GHz dual-
core machine. At the time, experiments with AProVE gave results which were considerably
slower than TTT and hence the comparison focused on TTT. The columns in the tables
contain times (in seconds) with TTT configured to run with a timeout of 600 seconds, the
maximum allowed by its Web interface. The comparison involves 751 term rewrite systems
from the Termination Problem Data Base (TPDB) version 2.0 [30]. The times presented in
the table are taken on different machines which makes the precise comparison impossible.
Nevertheless, the results are indicative showing that lpoSAT is fast in absolute terms.

In the past year, the SAT-based techniques described in [6] were integrated within the
AProVE tool [2]. Moreover, also the dedicated (non SAT-based) version of the LPO termi-
nation analysis in AProVE and TTT was improved (partially in view of recommendations
presented in [6]). These changes facilitate a better comparison between the SAT and dedi-
cated approaches to LPO termination analysis.

Table 2 provides a current comparison for strict- and quasi- LPO termination analyses
in parts (a) and (b) of the table respectively. The first two columns in each part of the table
provide the results for the SAT-based and dedicated analyses of AProVE. The third and
fourth columns of each part illustrate the results for our Prolog implementation, as well as

2. http://colo6-c703.uibk.ac.at/ttt/cgi-bin/index.cgi
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Table 1. Summary of experimental results for strict and quasi LPO termination as reported in [6]:

total, average and maximum times (sec) for 751 tests of TPDB version 2.0. Timeout is 600 seconds,

the maximum allowed by the web interface of TTT.

Time (sec) lpoSAT TTT

Total 8.983 647.48
Average 0.012 0.86

Max 0.477 317.63
Timeouts − −

(a) strict LPO (2006)

lpoSAT TTT

8.609 2167.44
0.011 2.89
0.544 600.00
− 1

(b) quasi-LPO (2006)

Table 2. Summary of experimental results (2007) for strict- and quasi- LPO termination: total, av-

erage and maximum times (sec) for 865 tests of TPDB version 3.2. Timeout is 60 seconds, following

the same rules of the International Termination Competition.

Time(sec) AProVE AProVE lpoSAT TTT

(SAT) (ded.) (SAT) (ded.)

Total 5.86 328.49 3.59 232.52
Average 0.007 0.38 0.004 0.27

Max 0.31 60.00 0.20 60.00
Timeouts − 4 − 2

(a) strict LPO (2007)

AProVE AProVE lpoSAT TTT

(SAT) (ded.) (SAT) (ded.)

9.31 1330.78 10.59 1752.81
0.011 1.54 0.012 2.03
0.50 60.00 2.80 60.00
− 14 − 9

(b) quasi-LPO (2007)

for the TTT analyzer. Except for TTT, all runtimes are measured on a dual-core 2.16-GHz
laptop, running GNU/Linux 2.6 (Ubuntu 7.04). The TTT analyzer is running through its
Web interface. The tables indicate total, average and maximum runtimes for the 865 term
rewrite systems in the Termination Problem Data Base version 3.2 [30]. AProVE and TTT
are configured to timeout after 60 seconds, following the same rules as in the International
Termination Competition [24].

Table 1 shows that the SAT based approach was orders of magnitude faster than the
dedicated non-SAT-based algorithm in TTT in 2006. Table 2 shows that the advantage of
the SAT-based approach over the non-SAT-based algorithms continue to hold in 2007. The
reader should focus on the results obtained within AProVE comparing the LPO termination
analysis, applying the SAT-based approach, and the dedicated non-SAT-based algorithm.
This gives the fairest possible comparison, since the remainder of the system is identical.
Clearly the SAT-based approach is superior. In spite of the few timeouts encountered when
applying the dedicated analysers, both provide the same number of termination proofs: from
the 865 term rewrite systems, 123 and 127 are found terminating when applying the strict-
and quasi- LPO techniques, respectively. Tables 1 and 2 are not comparable: The analyzers
have been improved and are running on different (faster) machines; and the benchmark
suite has also been extended.
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Table 3. Execution times (sec) for the 25 hardest tests for the dedicated solver in AProVE with 60

second timeouts indicated by∞.

LPO quasi-LPO
Test AProVE AProVE AProVE AProVE

(SAT) (dedicated) (SAT) (dedicated.)

AG01/#3.10 0.01 0.12 0.03 17.55
AProVE/AAECC 0.01 0.37 0.03 ∞
AProVE/AAECC-ring 0.04 1.50 0.10 ∞
AProVE/JFP Ex51 0.01 0.05 0.01 25.07
Cime/mucrl1 0.13 ∞ 0.50 ∞
currying/AG01/#3.13 0.07 2.33 0.08 40.59
higher-order/Bird/BTreeMember 0.01 0.70 0.02 ∞
higher-order/Bird/Hamming 0.03 0.24 0.04 19.10
HM/t009 0.05 5.75 0.34 ∞
TRCSR/Ex15 Luc98 C 0.03 0.44 0.04 27.75
TRCSR/Ex1 2 AEL03 C 0.05 59.12 0.08 ∞
TRCSR/Ex1 GL02a C 0.02 2.06 0.03 ∞
TRCSR/Ex1 GM03 C 0.02 1.23 0.04 ∞
TRCSR/Ex26 Luc03b C 0.03 0.37 0.04 32.75
TRCSR/Ex2 Luc02a C 0.03 0.58 0.04 34.37
TRCSR/Ex2 Luc03b C 0.02 0.25 0.04 15.09
TRCSR/Ex49 GM04 C 0.02 4.75 0.03 ∞
TRCSR/Ex49 GM04 FR 0.01 0.03 0.02 21.34
TRCSR/Ex5 7 Luc97 C 0.05 ∞ 0.07 ∞
TRCSR/Ex6 15 AEL02 C 0.08 ∞ 0.10 ∞
TRCSR/Ex6 15 AEL02 Z 0.02 0.02 0.05 ∞
TRCSR/ExAppendixB AEL03 C 0.06 ∞ 0.10 ∞
TRCSR/ExIntrod GM99 C 0.04 1.76 0.07 52.81
TRCSR/ExIntrod Zan97 C 0.03 0.92 0.04 ∞
TRCSR/ExSec11 1 Luc02a C 0.04 0.54 0.05 49.76
Total (including 60 sec timeouts) 0.91 323.13 1.99 1176.18

Table 3 focuses on the 25 most challenging examples for the dedicated solver of AProVE
(chosen by maximum total time for strict and quasi- LPO analyses in the dedicated solver).
The AProVE SAT-based times are provided for comparison. The columns indicate runtimes
(in seconds) for the LPO and quasi-LPO analyses for the SAT-based and dedicated solvers
of AProVE. Clearly the problems that are hard for the dedicated solver are easy for the
SAT-based solver, none requiring more than half a second. The results demonstrate the
clear benefit of the new SAT-based method in AProVE.

Table 4 presents a detailed analysis for the 25 most challenging examples for lpoSAT
(chosen by maximum total time for strict and quasi- LPO analyses). The two “Time”
columns provide the runtimes of the lpoSAT analyzer for LPO and quasi-LPO, respectively.
The V and C columns list the number of Boolean variables and the number of clauses in
the SAT instance generated in each case. Finally, the “CSP%” columns characterize the
percentage of runtime spent on the actual partial order constraint solving in each case. This
figure includes conversion of the partial order constraints into a SAT instance, solving the
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Table 4. The 25 hardest tests for lpoSAT, with benchmark directory TRCSR indicated by (T),

showing execution time (sec), and number of variable V and number of clauses C in the SAT

instance generated, as well as the percentage of runtime spent in constraint solving for each case.

LPO quasi-LPO
Test Time V C CSP% Time V C CSP%

AProVE/AAECC-ring 0.034 480 1478 38 0.049 1088 3525 49
Cime/mucrl1 0.121 0 1 0 0.158 0 1 0
currying/AG01/#3.13 0.013 0 1 0 0.201 0 1 0
currying/D33/30 0.014 0 1 0 1.060 0 1 0
HM/t009 0.050 589 1767 32 0.116 2504 8192 59
secret05/cime1 0.036 0 1 0 0.568 0 1 0
secret05/cime5 0.032 0 1 0 0.061 0 1 0
Thiemann/nonterm 0.013 0 1 0 2.826 0 1 0
(T)/Ex1 2 AEL03 C 0.036 480 1476 33 0.083 1834 5972 59
(T)/Ex26 Luc03b C 0.020 278 830 40 0.050 1189 3598 60
(T)/Ex2 Luc02a C 0.020 282 846 30 0.053 1229 3720 60
(T)/Ex3 3 25 Bor03 C 0.017 209 603 29 0.040 873 2648 57
(T)/Ex4 7 37 Bor03 C 0.021 209 611 24 0.048 921 2715 48
(T)/Ex5 7 Luc97 C 0.032 474 1411 41 0.074 1873 6018 64
(T)/Ex6 15 AEL02 C 0.050 692 2135 46 0.106 2563 8301 61
(T)/Ex6 15 AEL02 FR 0.019 453 1343 47 0.040 1152 3776 68
(T)/Ex6 15 AEL02 GM 0.026 557 1727 54 0.052 1457 4789 71
(T)/Ex6 15 AEL02 Z 0.018 443 1313 56 0.039 1164 3812 72
(T)/Ex7 BLR02 C 0.016 215 635 31 0.040 967 2939 57
(T)/Ex9 BLR02 C 0.018 220 626 44 0.039 891 2646 54
(T)/ExAppendixB AEL03 C 0.040 532 1652 32 0.093 2016 6541 61
(T)/ExIntrod GM99 C 0.027 309 915 37 0.063 1271 3837 59
(T)/ExIntrod Zan97 C 0.020 248 735 40 0.050 1104 3316 62
(T)/ExSec11 1 Luc02a C 0.025 319 950 36 0.063 1445 4303 60
Zantema/z30 0.023 65 104 9 0.228 174 350 0

Average 0.030 282.2 846.5 28 0.248 1028.6 3240.2 43
Max 0.121 692 2135 56 2.826 2563 8301 72
Total 0.741 6.200

SAT instance with MiniSat and interpreting the result in terms of the constraint symbols.
We also provide the averages and the maximum values for each of the columns and the total
runtimes.

Six examples result in trivial CNF instances (0 Boolean variables / 1 CNF clause).
In these cases, the encoding of the termination problem to a partial order constraint as
described in Section 5 results in the false constraint. Obviously, the challenge in these
examples is not in solving the constraints but rather in obtaining them by unfolding Defi-
nition 1. Note that in our implementation, when unfolding based on Definition 1, the only
Boolean simplifications applied are to replace expressions where a Boolean constant true
or false is encountered by the equivalent expression without this constant: e.g., φ ∧ false

becomes false and φ ∧ true becomes φ.
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The results in the “CSP%” columns of Table 4 and their maximum and average values
lead to an interesting observation. Namely, solving of partial order constraints is not the
hardest step in proving termination, at least not in our prototype implementation. Even
for the hardest cases—the average solving time is as low as 28% of the total for strict LPO
and 43% for quasi-LPO. Corresponding averages for the complete benchmarking suite are
even lower—24% and 30% respectively.

There are 14 tests appearing in both Tables 3 and 4, indicating that the hardest problems
are somewhat independent of the actual solver (dedicated or SAT-based). All of the tests
in Tables 3 and 4 are neither strict- nor quasi-LPO terminating. This is not surprising for
the hardest tests, as proving unsatisfiability is typically harder than finding a solution for
a satisfiable formula.

Finally we comment that the prototype does not simplify partial order constraints with
respect to their SCC-components (Lemma 5). The experimental results reported in [6]
indicate that the implementation would not benefit from that: (a) Most of the tests are
very fast without simplification; and (b) It is typical for hard cases of LPO termination to
have a large strongly connected component including the majority of the symbols.

7. Related Work

The first encoding of a termination problem into propositional logic is presented in a paper
by Kurihara and Kondo [23]. This work considers only strict LPO termination and assumes
that partial order constraints are negation free and contain only atoms of the form (f > g)
(no equality). The approach is based on an atom-based encoding and a representation in
terms of BDDs. It does not provide competitive results. A SAT-based implementation of
the atom-based approach of [23] is described in the recent report by Zankl [36] together with
an experimental evaluation and a comparison with our symbol-based approach. It shows
that the symbol-based approach is orders of magnitude faster for the LPO termination
benchmark set.

The atom-based encoding of a partial order constraint ϕ is obtained by: (a) viewing
the atoms in ϕ as propositional variables, and (b) making the axioms for partial order
explicit in the encoding. We can formalize this in our notation of Section 4 where [[ϕ]]
denotes the propositional part of the partial order constraint ϕ obtained by replacing the
atoms by corresponding propositional variables. The atom-based propositional encoding of
a (negation free) partial order constraint ϕ on symbols F which does not involve equality
is obtained as

[[ϕ]] ∧ T>
F ∧ A>

F (4)

where

A>
F

=
∧

f, g ∈ F

f 6= g

¬([[f > g]] ∧ [[g > f ]])
and

T>
F

=
∧

f, g, h ∈ F

f 6= g 6= h 6= f

[[f > g]]∧[[g > h]] → [[f > h]]

For the more general case where ϕ may contain also equality the encoding must make all
of the partial order axioms of Equations (1 – 2) explicit. In general, atom-based proposi-
tional encodings result in large propositional formulas. For |F| = n they introduce O(n2)
propositional variables and involve O(n3) connectives (e.g., for transitivity).
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It is insightful to compare the two encodings of a partial order constraint ϕ given as
Equations (3) and (4). The common part in both encodings is the sub-formula [[ϕ]] in which
atoms are viewed as propositional variables. The difference is that Equation (4) introduces
explicit axioms to relate the atoms in a partial order, while Equation (3) interprets the
n symbols as indices represented in ⌈log2 n⌉-bits. This is why the symbol-based encoding
introduces O(n log n) new propositional variables instead of the O(n2) for the atom-based
approach. Moreover the symbol-based encoding does not require the expensive encoding of
the axioms because the encoding as integers ensures that they hold “for free” since this is
a property of integers. For a partial order constraint ϕ with m connectives and r distinct
atoms, the symbol-based encoding involves O(m+r log n) connectives instead of O(m+n3)
for the atom-based encoding. More importantly, in practice the search for a solution is
extremely sensitive to the number of variables. The O(n log n) additional variables of the
symbol-based encoding is clearly superior to the O(n2) for the atom-based approach.

In [23] Kurihara and Kondo propose two optimizations. They note that for a given
formula ϕ, the domain graph Gϕ is often sparse and hence they propose to specialize the
explicit representation of the axioms for those symbols from F actually occurring in ϕ. In
a second optimization Kurihara and Kondo observe that the axioms for transitivity and
asymmetry can be replaced by a simpler axiom (they call it A∗), introducing a single clause
of the form ¬((f1 > f2) ∧ (f2 > f3) ∧ · · · ∧ (fk−1 > fk) ∧ (fk > f1) for each simple cycle
(f1 > f2), (f2 > f3), . . . , (fk−1 > fk), (fk > f1) in Gϕ to in order to prevent the cycle from
being present in a model. They claim correctness of the encoding and report considerable
speedups when it is applied. The problem with this approach is that in general there
may be an exponential number of simple cycles to consider. Hence, their encoding either
requires O(n2) propositional variables and introduces O(n3) connectives or else relies on a
potentially exponential phase of processing the simple loops in the domain graph.

In an earlier work, [5], Bryant and Velev also consider an atom-based approach for
Boolean satisfiability with transitivity constraints. They too propose methods to reduce
the number of clauses required to express the transitivity axiom for partial orders and
report significant speed-ups for the benchmarks considered in [5].

Partial order constraints can be seen as an instance of the more general formulae of
separation logic as described by Talapur et al. [29]. In separation logic the atoms are of the
form f ≥ g + c with f and g a pair of symbols and c a constant. In [29], the authors take a
symbol based approach to test for the satisfiability of formulae in this logic. Our notion of
domain graph is a simplification of the inequalities graph introduced in that paper. Talapur
et al. propose an analysis of the inequalities graph which enables to restrict the range of
the values which need be considered for the symbols in a constraint. This is a more general
result than that obtained via simplification in our Lemma 5. Given the current speed of our
LPO termination analyzer, it is unlikely that range restriction could further substantially
improve solving times. For the LPO termination benchmark suite, the analyses are so fast
that the overhead in computing SCC’s does not pay off.

Wang et al. [33] also consider an encoding of separation logic to SAT and improve on the
results of [29]. They also consider symbol-based and atom-based encodings (termed “small-
domain” and “per-constraint”) and quote [27] for an experimental study indicating that the
atom-based approach is often faster than the symbol-based approach for their benchmarks.
Wang et al. propose a lazy atom-based approach in which the clauses required to express
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the transitivity axioms are added on a “by-need” basis. A main contribution of [33] is the
incremental approach to cycle detection. Their approach has been successful for applications
involving large (or unbounded) integer valued variables where representing the variables in
terms of their bits might be prohibitive.

The LPO termination problems are quite different than those tackled using separation
logic. The number of symbols is not large, there are no constants and hence the range
of the corresponding integer variables is also not large. Our straightforward symbol-based
encoding gives extremely fast results without any need for a specialized SAT solver. As
Table 4 shows, the maximum CNF instance solved in our 25 hardest tests includes 2563
propositional variables and 8301 CNF clauses. This is well below the capacity limits of
MiniSat, which is reported to handle benchmarks with hundreds of thousands of variables
and clauses [25]. Moreover, as indicated by our experimental results, The major part in
solving LPO termination problems is in the encoding to partial order constraints and not
in solving these constraints.

8. Conclusion

We introduced a new kind of propositional encoding for reasoning about LPO termination
of term rewrite systems. The key idea was to transform an LPO termination problem into
a partial order constraint on its symbols. We solved partial order constraints applying a
symbol-based encoding to propositional logic and using a state-of-the-art SAT solver. Ex-
perimental results were unequivocal indicating orders of magnitude speedups in comparison
with previous implementations for LPO termination analysis.

This paper has had a direct impact on the design of several major termination analysers
for term rewrite systems [2, 32]. Moreover, it was the basis for extensions to more powerful
termination proving techniques involving new types of encodings but the same underlying
partial order constraint solver.
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