
Under consideration for publication in J. Functional Programming 1

HM(X) Type Inference is CLP(X) Solving

Martin Sulzmann

School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Peter J. Stuckey

NICTA Victoria Laboratory

Department of Computer Science and Software Engineering

University of Melbourne

3010, Australia

pjs@cs.mu.oz.au

Abstract

The HM(X) system is a generalization of the Hindley/Milner system parameterized in the
constraint domain X. Type inference is performed by generating constraints out of the
program text which are then solved by the domain specific constraint solver X. The solver
has to be invoked at the latest when type inference reaches a let node so that we can
build a polymorphic type. A typical example of such an inference approach is Milner’s
algorithm W.

We formalize an inference approach where the HM(X) type inference problem is first
mapped to a CLP(X) program. The actual type inference is achieved by executing the
CLP(X) program. Such an inference approach supports the uniform construction of type
inference algorithms and has important practical consequences when it comes to reporting
type errors. The CLP(X) style inference system where X is defined by Constraint Handling
Rules is implemented as part of the Chameleon system.

1 Introduction

The Hindley/Milner system is one of the most widely used type systems for pro-

gramming language design and program analysis. Type inference is an important

feature and relieves the user from providing an excessive amount of type infor-

mation. The standard approach towards type inference is to traverse the abstract

syntax tree and generate constraints out of the program text. These constraints

need to be solved at the latest when inference reaches a let node in order that we

can build a type scheme. Type schemes are also known as parametric polymorphic

types (or polymorphic types for short). Typical examples of such an inference ap-

proach are Milner’s algorithm W (1978) or variants such as algorithm M (Lee &

Yi, 1998) and G (Eo et al., 2003). The choice of the specific algorithm only affects

the order of traversal of the abstract syntax tree. The main structure of the in-

ference algorithm remains the same. That is, inference employs a combination of

2 Martin Sulzmann and Peter J. Stuckey

interleaved constraint generation and constraint solving to compute the final result

type.

In this paper, we formalize an inference approach where the entire Hindley/Milner

type inference problem is mapped to a logic program. Thus, we can explain Hind-

ley/Milner inference as a two stage process where we first generate a logic program

and then in a subsequent phase we run the logic program to compute the actual

inference result. The crucial difference to the standard approach is that there is no

interleaving between constraint generation and solving. Both phases are now clearly

separated.

Our main result is much more general. We show that the HM(X) type inference

problem can be explained as constraint logic programming over domain X. The

constraint logic programming scheme (Jaffar & Lassez, 1987; Jaffar et al., 1998)

defines a family of languages, CLP(X), for constraint domains X, generalizing logic

programming from the fixed Herbrand constraint domain, to arbitrary domains.

Similarly the HM(X) (Sulzmann et al., 1997; Odersky et al., 1999; Sulzmann, 2000)

type system generalizes the Hindley/Milner system, by generalizing the domain of

type constraints beyond Herbrand constraints. Concrete type instances are obtained

by instantiating the abstract constraint domain X. For example, in case of Hind-

ley/Milner the constraint domain X is set to be the Herbrand constraint domain

for which solving is achieved via unification (Robinson, 1965). There are plenty of

further examples of constraint domains X and their respective solvers in the lit-

erature such as record constraints (Rémy, 1993) and subtype constraints (Pottier,

1998). In our own work (Stuckey & Sulzmann, 2005), we show how to describe

the type class constraint domain (Wadler & Blott, 1989) via Constraint Handling

Rules (CHRs) (Frühwirth, 1995). We can take advantage of these works and pro-

vide CLP(X)-based type inference for record, subtype and type class systems by

instantiating X with the domain specific solver.

The results reported in this paper are based on previous work (Stuckey et al.,

2003b; Sulzmann, 2000; Sulzmann et al., 1999). The idea of mapping Hindley/Milner

type checking and inference to logic programming is well known, at least in the

logic programming community, e.g. consider (Mycroft & O’Keefe, 1984; Lakshman

& Reddy, 1991; Demoen et al., 1999). However, we provide the first formal treat-

ment on the subject including concise soundness and completeness results of type

inference.

In summary, our contributions are:

• We give an algorithm W-style constraint-based reformulation of HM(X) type

inference which is parameterized in terms of the domain specific solver for

the constraint domain X. The proofs of soundness and completeness of type

inference are more “light-weight” compared to previous substitution-based

formulations (Section 3).

• We show that the entire HM(X) type inference problem can be phrased in

terms of CLP(X) solving (Section 4). An important advantage of the CLP(X)-

based type inference scheme over algorithm W is an order-independent traver-

Journal of Functional Programming 3

sal of the abstract syntax tree (AST). This provides the basis to support better

type error diagnosis methods.

We have implemented the CLP(X) style type inference scheme as part of the

Chameleon system (Sulzmann & Wazny, 2007) where the constraint domain X can

be described by CHRs. Of course, any other system which supports CLP(X) can be

used as well. But the Chameleon system supports a number of other features such

as tracking of source locations connected to constraints for type error reporting

purposes. We refer to (Stuckey et al., 2006) for an overview.

Next, we highlight the key ideas of our approach. In Sections 2.1 and 2.2, we

review the basics behind the CLP(X) and HM(X) system. Related work is discussed

in Section 5. We conclude in Section 6.

1.1 Highlights of CLP(X) Style Type Inference Scheme

In a first step, we translate the type inference problem into a CLP(X) program,

i.e. set of Horn clauses or rules. We use constraints to describe the types of expres-

sions and each rule describes the type of a function. For simplicity, we only consider

the Herbrand constraint domain here which is sufficient to describe constraints

arising out of standard Hindley/Milner programs. We perform type inference by

running the logic program resulting from the Hindley/Milner program.

Example 1 Consider the following program.

g y = let f x = x in (f True, f y)

We assume that the type domain supports tuples.

We introduce predicates (also referred to as constraints) g(t) and f(t) to constrain

t to the types of functions g and f respectively. It is necessary for us to provide

a meaning for these constraints, which we will do in terms of rules. The body of

each rule will contain all constraints arising from the definition of the corresponding

function, which represent that function’s type.

For the program above we may generate rules similar to the following.

g(t) :- t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1 ∧ f(tf2) ∧ tf2 = ty → t2
f(t) :- t = tx → tx

We adopt the convention that the rule starting with predicate g(t) (also known as

rule head) is referred to as the g rule. We assume that let-bound function names

are renamed to guarantee that the rule heads contain distinct predicates.

In the g rule we see that g’s type is of the form ty → (t1, t2), where t1 and t2 are

the results of applying function f to a Bool and a ty value. We represent f’s type,

at both call sites in the program, by the predicate calls f(tf1) and f(tf2).

The f rule is much more straightforward. It simply states that t is f’s type if t

is the function type tx → tx, for some tx, which is clear from the definition of f.

We can infer g’s type by running the above logic program on the goal g(t). We

write cl to denote SLD resolution with respect to rule cl .

4 Martin Sulzmann and Peter J. Stuckey

g(t) g t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1 ∧ f(tf2) ∧ tf2 = ty → t2
f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ f(tf2)

∧ tf2 = ty → t2
f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1

∧ tf2 = t′x → t′x ∧ tf2 = ty → f2

Before applying a rule, we rename variables to avoid name clashes. For example, see

the last derivation step where in f’s rule we rename tx to t′x. Each variable which

occurs only in the rule body is existentially quantified. Hence, we perform inference

by exhaustively applying rules until we reach the final constraint. Any solution to

the final constraint assigns a valid type for g to the variable t. We can capture g’s

type succinctly by building the most general unifier of the constraints and applying

it to variable t. We see that g’s type is ∀ty .ty → (Bool , ty).

Let us compare our inference strategy against a traditional approach such as

algorithm W . In algorithm W , to infer the type of g we first infer the type of the

let function f. Inference for let function f proceeds by inferring the type tx → tx.

Variable tx is a free variable, that is, only occurs in the type of f and has no reference

to any of the types of variables from the enclosing scope. Hence, we can universally

quantify over tx and assign f the type ∀tx.tx → tx. Under this type assignment we

continue to perform inference of (f True, f y). At each call site of f we build a

generic instance by removing the quantifier and renaming the quantified variables

with some fresh variables. The resulting constraints generated for (f True, f y)

are effectively the same as in the last step of the CLP(X)-style inference system.

As expected, algorithm W computes the same type ∀ty .ty → (Bool , ty) for g.

The point is that in the CLP(X)-based inference scheme, we do not explicitly

generate type schemes for let-defined functions such as f. Rather, we use rules to

represent the set of types that can be given to f. Hence, there is no need to build

a generic instance of f’s type scheme at a call site. Instead, we simply use the

predicate call f(t) to query the let-defined functions type.

In essence, we achieve polymorphism by replicating the constraints for let defi-

nitions. An idea which appears several times in the literature. For example, con-

sider (Henglein, 1992; Mitchell, 2002). In an efficient implementation, we can use

memoization and constraint simplification to reduce repeated work.

Because quantification over universal variables is implicit in the CLP(X)-based

inference scheme, we need to refine our inference scheme to ensure that all references

to free type variables from the environment share the same monomorphic type. Here

is an example that explains this point in more detail.

Example 2 The program below is a slightly modified version of the program pre-

sented in Example 1.

g y = let f x = (y,x) in (f True, f y)

The key difference is that f now contains a free variable y. Since y is monomorphic

within the scope of g we must ensure that all uses of y, in all definitions, are

Journal of Functional Programming 5

consistent. That is, each rule which makes mention of ty, y’s type, must be referring

to the same variable. This is important since the scope of variables used in a rule

is limited to that rule alone.

In order to enforce this, we perform a transformation akin to lambda-lifting (also

known as closure conversion) but at the type level. Instead of unary predicates of

form f(t) we now use binary predicates f(t, l) where the l parameter represents f’s

environment.

For the above program, we generate the following rules.

g(t, l) :- t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1 ∧ f(tf2, [ty])

∧ tf2 = ty → t2
f(t, l) :- t = tx → (ty, tx) ∧ l = [ty]

We write [t1, ..., tn] to indicate a type-level list containing n types. Type-level lists

are built using the common constructors · : · (cons) and [] (empty list). Hence,

[t1, ..., tn] is in fact a short-hand for t1 : ... : tn : []. The first argument in f(t, l),

which we commonly refer to as the t component, will be bound to the function’s

type. The second component, which we call l, represents a list of unbound, i.e. free,

variables in scope of that function. Thus, we ensure that whenever the f predicate

is invoked from the g rule that ty, the type of y, is made available to it. So, in

essence, the ty that we use in the f rule will have the same type as the ty in g,

rather than simply being a fresh variable known only in g.

Type inference for g proceeds by running the above logic program on the goal

g(t, []) where [] represents the empty (type) environment.

g(t, []) g t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t′x) ∧ [ty] = [t′y] ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t′x) ∧ [ty] = [t′y] ∧ tf1 = Bool → t1
∧ tf2 = t′′x → (t′′y , t′′x) ∧ [ty] = [t′′y] ∧ tf2 = ty → t2

We build the most general unifier of the resulting constraints and find that g’s

type is ∀ty .ty → ((ty ,Bool), (ty , ty)). Without the l component we would infer the

incorrect type ∀ty .∀t ′y .∀t ′′y .ty → ((t ′y ,Bool), (t ′′y , ty)).

Similar ideas using a list of the types of lambda-bound variables for inference

have been previously described in (Henglein, 1993; Birkedal & Tofte, 2001). To

the best of our knowledge, we are the first to exploit this method in the context of

HM(X).

Monomorphic recursion is straightforwardly handled by the approach by equating

the type of the recursive call with the type of the function.

Example 3 Consider the simple recursive code

f x = (let g y = g x in g x)

which is written in our internal syntax as follows

f x = (let g y = rec g in λ y. g x in g x)

6 Martin Sulzmann and Peter J. Stuckey

The generated rules are

g(t, l) :- t = ty → t1 ∧ l = [tx] ∧ tg = tx → t1 ∧ tg = t

f(t, l) :- t = tx → t′ ∧ l = [] ∧ g(tx → t′, [tx])

The underlined constraint ensures that the recursive call to g has the correct type.

Polymorphic recursion is also handleable by the approach, assuming that poly-

morphic recursive functions have a declared type. We simply generate a rule for

the polymorphic recursive function using its declared type. In this case we need to

check that the constraints defining the polymorphic recursive function are implied

by the declared type. But we do not consider the issues of checking type declarations

further in this paper.

Example 4 Consider the polymorphic recursive code

f :: ∀a. a -> (a,Bool)

f x = (fst (f x), snd (f True))

where fst :: ∀a,b.(a,b) -> a and snd :: ∀a,b.(a,b) -> b have the usual

meaning. The generated rule for f is simply

f(t, l) :- t = a → (a, Bool) ∧ l = []

The body of the f is translated into constraint C of the form

t = tx → (t1, t2) ∧ l = [] ∧ fst(tfst, []) ∧ tfst = t3 → t1 ∧ f(t4, []) ∧ t4 = tx → t3
∧ snd(tsnd, []) ∧ tsnd = t5 → t2 ∧ f(t6, []) ∧ t6 = Bool → t5

Checking the declared type amounts to determining that ∃a.t = a → (a, Bool) |=X

∃̄{t}C, which is indeed the case. Notation ∃̄{t}C denotes that we existentially quan-

tify over all free variables in C but t.

So far, we assumed that X is equivalent to the Herbrand constraint domain. Thus,

we can support type inference for standard Hindley/Milner. In our next example,

we consider type inference for type classes by describing the constraint domain X

with Constraint Handling Rules (CHRs) (Frühwirth, 1995).

Example 5 We consider a Haskell-style language with support for type classes.

class Foo a b where foo :: a -> b -> Int

instance Foo a b => Foo [a] [b]

f xs y = foo xs (y:xs)

The class declaration introduces a two-parameter type class Foo which comes with

a method foo which has the constrained type ∀a, b.Foo a b ⇒ a → b → Int . The

constraint Foo a b is defined by the constraint domain X which in turn is defined

by the above instance. The instance declaration states that Foo [a] [b] holds if

Foo a b holds. For simplicity, we ignore the instance body which does not matter

here. Following our previous work (Stuckey & Sulzmann, 2005), we can represent

such type class relations via CHRs. Here is the translation of the above program to

CLP(X) where X is defined by a CHR program. We simplify the presentation by

removing the l component which is unnecessary here.

Journal of Functional Programming 7

Foo [a] [b] ⇐⇒ Foo a b

foo(t) :- t = a → b → Int ∧ Foo a b

f(t) :- t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ foo(txs → ty → t1)

We adopt the convention that predicates starting with lowercase letters refer to the

types of functions, i.e. such predicates are defined by CLP(X) rules, and predicates

starting with uppercase letters refer to constraints defined by the constraint domain

X (which is defined via CHRs here). Above the rule for function f and method foo,

we find a CHR which represents the instance declaration. CHRs define rewrite rules

among constraints. The above rule says to rewrite Foo [a] [b] (or an instance of it)

to Foo a b. These CHR solving steps are simply performed during the CLP(X)

solving process.

Here is the inference derivation for function f.

f(t) f t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ foo(txs → txs → t1)

foo t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ Foo a′ b′

∧ txs → txs → t1 = a′ → b′ → Int

↔X t = [a] → a → Int ∧ txs = [a] ∧ ty = a ∧ Foo [a] [a]

∧ a′ = [a] ∧ b′ = [a] ∧ t1 = Int

↔X t = [a] → a → Int ∧ txs = [a] ∧ ty = a ∧ Foo a a

∧ a′ = [a] ∧ b′ = [a] ∧ t1 = Int

In the last two derivation steps, we simplify constraints giving equivalent con-

straints with respect to the constraint domain X, by first building the most general

unifier, and then applying a constraint handling rule. We find that f has type

∀a.Foo a a ⇒ [a] → a → Int .

In summary, we can support type inference for a wide range of systems by plug-

ging in the domain specific solver for X into the generic CLP(X) solving engine.

Furthermore, in the CLP(X)-based inference scheme, we can maintain a strict phase

distinction between constraint generation and solving. We first generate the CLP(X)

program and then we run the CLP(X) program on some appropriate goal, e.g. the

constraints corresponding to the top-most expression, to obtain the inference result.

In a traditional inference scheme such as algorithm W , we find a mix of constraint

generation and solving because each let statement invokes the solver to infer the

type of the let-defined function. Only then, we can proceed to generate the con-

straints out of the let body.

The formal details of phrasing HM(X) type inference in terms of CLP(X) solving

are given in Section 4. The main benefit of the CLP(X)-based type inference scheme

is an order-independent traversal of the abstract syntax tree (AST).

A separate constraint viewpoint allows use to improve type error diagnosis signif-

icantly. For details see (Stuckey et al., 2003a; Stuckey et al., 2003b; Stuckey et al.,

2004; Stuckey et al., 2006), here we only give a brief overview. The separate con-

straint viewpoint avoids the traversal bias of algorithms such as algorithm W , and

can explain the real nature of a type error which is caused by a set of conflicting

8 Martin Sulzmann and Peter J. Stuckey

locations. We can expose multiple reasons for a type error, and explain the reasons

for an expression having a particular type.

Consider the following program, where toLower :: Char->Char and toUpper

:: Char->Char. There are two minimal unsatisfiable sets of constraints in the

generated constraint describing the type of k. The unsatisfiable sets of constraints

arise from the two highlighted sets of locations:

k x = if x then (toUpper x) else (toLower x)

k x = if x then (toUpper x) else (toLower x)

A change at the shared location, may fix both errors, so by Occam’s razor is more

likely to be the source of the problem. We could report the error as:

Problem :Test expression in if must be Bool

Types : Char (test argument)

Bool (test)

Conflict:k x = if x then (toUpper x) else (toLower x)

Although our earlier work (Stuckey et al., 2003b; Stuckey et al., 2004) used a

particular form of constraint domain X, the same methods extend to arbitrary

domains. We only need a constraint solver to determine minimal unsatisfiable con-

straints and a constraint simplifier to display types as succinctly as possible. For

determining smaller sets of location that cause a given type we need an implication

tester which determines if C ⊃ D for domain X. Hence the approach extends to

any constraint domain X.

Finally we remark that type inference using CLP(X) systems can be very efficient.

A CLP(X) system is specialized for SLD resolution and constraint solving and

hence is very efficient. If the CLP(X) system supports tabling, it can also memorize

earlier answers to avoid repeated computation and use early projection (Fordan

& Yap, 1998) for simplifying intermediate answers (although the implementation

of (Demoen et al., 1999) found it was unnecessary even for substantial programs).

Thus this approach not only provides a clean theoretical understanding of type

inference, that supports more complicated error reasoning, it also leads to practical

efficient type inference.

In summary the advantages of the CLP(X) approach are: (a) better understand-

ing of type inference by the separation of concerns, (b) flexible and accurate type

error diagnosis, and (c) efficient implementation of type inference.

2 Background

2.1 The CLP(X) Framework

We assume familiarity with the basics of first-order logic. We use common notation

for Boolean conjunction (∧), implication (⊃), equivalence (↔) and universal (∀)

and existential quantifiers (∃). We let ∃V .F denote the logical formula ∃a1 · · · ∃an.F

where V = {a1, . . . , an}, and let ∃̄V .F denote ∃fv(F)−V
, where fv returns the set of

Journal of Functional Programming 9

free variable in its argument. We let ∃̃.F denote the existential closure of F , and

∀̃.F the universal closure.

We use s̄ to represent a sequence of objects s1, . . . , sn. A substitution [t1/a1, . . . , tn/an],

also written [t̄/ā], simultaneously replaces each variable ai by term ti.

The CLP(X) scheme defines a class of languages, parametric in the choice of

constraint domain X. A constraint domain defines the meaning of terms and con-

straints. We give a simplified definition of the CLP(X) scheme that suffices for our

purposes.

For our purposes, a constraint domain X consists of a signature ΣX which defines

the function and predicates symbols and their arities, and a constraint theory TX

which is the set of true formulae over ΣX . We use the notation F |=X F ′ to mean

TX ∧ F |= F ′, that is all models of TX and F also model F ′.

The language of terms and constraints in CLP(X) is:

Terms t ::= a | T t̄

Constraints C, D ::= True | U t̄ | C ∧ C | ∃a.C

where a is a variable and T is a function symbol in ΣX and U is a predicate symbol

in ΣX . We will often write ∃ā.C as a short-hand for ∃a1 · · · ∃an.C, similarly ∀ā.C

We assume the signature includes (right associative) binary function symbol · → ·

written infix, constant [] representing the empty list, and (right associative) binary

function symbol · : ·, written infix, representing cons. We assume the signature

includes binary predicate symbol · = ·, written infix. We assume that the theory

TX ensures = is an equality relation on terms in ΣX , and : is a Herbrand constructor,

that is, ∀t1.∀t2.∀t3.∀t4.t1 : t2 = t3 : t4 ⊃ t1 = t3 ∧ t2 = t4 We assume True is an

always satisfiable constraint, that is, an identity for ∧.

For example, for (pure) Hindley/Milner type inference the constraint domain is a

Herbrand domain H . For example ΣH = ({Int ,Bool , · → ·, [·], [], · : ·, }, {· = ·}), TH

is the complete axiomatization of (finite tree) Herbrand domains (Maher, 1988).

A CLP(X) rule defines the meaning of new predicate symbols in terms of domain

X. Let Π be a set of predicate symbols disjoint from those in ΣX . The language of

CLP(X) rules is defined as

Head H ::= p(a1, . . . , an)

Atom L ::= p(t1, . . . , tn)

Goal G ::= L | C | G ∧ G

Rule R ::= H :- G

where p is a n-ary predicate symbol from Π and ā ≡ a1, . . . , an are distinct vari-

ables, and t1, . . . , tn are terms. A program P is set of rules. Notice that we use a

different notation for predicates p(t1, . . . , tn) (also referred to as atoms) to separate

them clearly from the predicates defined by the domain X. Predicates defined by

the domain X start with upper-case letters (apart from · = ·) whereas predicates

defined by the CLP(X) program start with lower-case letters. Rules are implicitly

universally quantified, hence the role of variables is just place-holders in rules. We

can therefore freely alpha-rename bound variables.

A goal G is executed by SLD resolution with the rules in P . Let G = G1 ∧

p(t̄) ∧ G2 and alpha-renaming of rule R in P of the form p(ā) :- G3 such that

10 Martin Sulzmann and Peter J. Stuckey

fv(p(ā) :- G3) ∩ fv(G) = ∅, we create new goal G′ ≡ G1 ∧ [t̄/ā]G3 ∧G2. We write

this as G R G′.

A derivation for goal G using program P exhaustively applies SLD resolution,

written G
∗
P G′. The derivation is failed if G′ is not a constraint or |=X ¬∃̃G′ when

G′ is a constraint, and successful otherwise. An answer for successful derivation is

∃̄fv(G).G
′.

Example 6 Given the program for Example 3:

g(t, l) :- t = ty → t1 ∧ l = [tx] ∧ tg = tx → t1 ∧ tg = t

f(t, l) :- t = tx → t2 ∧ l = [] ∧ g(tx → t2, [tx])

The goal f(a, []) has the successful derivation:

f(a, []) f a = t ∧ [] = l ∧ t = tx → t2 ∧ l = [] ∧ g(tx → t2, [tx])

g a = t ∧ [] = l ∧ t = tx → t2 ∧ l = [] ∧ tx → t2 = t′ ∧ [tx] = l′

∧ t′ = t′y → t′1 ∧ l′ = [t′x] ∧ t′g = t′x → t′1 ∧ t′g = t′

↔ a = t′x → t′1 ∧ l = [] ∧ t = t′x → t′1 ∧ tx = t′x ∧ t2 = t′1
∧ t′ = t′x → t′1 ∧ l′ = [t′x] ∧ t′g = t′x → t′1

where the last step simply gives an equivalent form of the constraints by substitu-

tion. The answer is the constraint ∃t′x∃t′1.a = t′x → t′1.

We will restrict ourselves to programs P which have at most one rule for each

predicate symbol, that is there are no two rules p(ā) :- G and p(ā′) :- G′ with

the same predicate symbol in the head. For these programs we can interpret the

rule L :- G as a logical formula: ∀̃.L ↔ ∃̄fv(L).G. Variables appearing exclusively

on the right-hand side of a rule are existentially quantified. For example, the rule

from Example 1 f(t) :- t = tx → tx is interpreted as ∀t.f(t) ↔ (∃tx.t = tx → tx).

The logical interpretation of a program P , written [[P]], is simply the conjunction

of the interpretation of each rule. This is a simplified form of the program comple-

tion (Jaffar et al., 1998) which defines the logical semantics of a CLP(X) program.

The following result is a consequence of the usual soundness and completeness

results for CLP(X) (Jaffar & Lassez, 1987; Jaffar et al., 1998).

Theorem 1 (Soundness and Completeness of CLP(X) derivations)

Let P be a program, where for each predicate symbol there is at most one rule.

Then G
∗
P G′ implies that [[P]] |= G ↔ ∃̄fv(G).G

′

2.2 The HM(X) Framework

We review the basics of the HM(X) system. In (Odersky et al., 1999; Sulzmann,

2000), the constraint domain X was described in terms of a cylindric algebra (Henkin

et al., 1971) which represents an algebraic formulation of a first-order theory. Here,

we follow the CLP(X) description and describe X semantically in terms of a first

order logic.

The types t of the HM(X) scheme are simply terms in X and constraints C for

the HM(X) scheme are simply constraints in X. In (Odersky et al., 1999; Sulzmann,

Journal of Functional Programming 11

(HMVar) C, Γ ⊢ v : σ (v : σ ∈ Γ)

(HMEq)
C, Γ ⊢ e : t1 C |=X t1 = t2

C, Γ ⊢ e : t2
(HMLet)

C, Γ ⊢ e : σ

C, Γ++[f : σ] ⊢ e′ : t′

C, Γ ⊢ let f = e in e′ : t′

(HMAbs)
C, Γ++[x : t1] ⊢ e : t2

C, Γ ⊢ λx.e : t1 → t2
(HMApp)

C, Γ ⊢ e1 : t1 → t2

C, Γ ⊢ e2 : t1

C, Γ ⊢ e1 e2 : t2

(HM∀ Intro)
C ∧ D, Γ ⊢ e : t ā 6∈ fv(Γ, C)

C ∧ ∃ā.D, Γ ⊢ e : ∀ā.D ⇒ t
(HM∀ Elim)

C, Γ ⊢ e : ∀ā.D ⇒ t′

C |=X [t̄/ā]D

C, Γ ⊢ e : [t̄/ā]t′

(HM∃ Intro)
C, Γ ⊢ e : σ a 6∈ fv(Γ, σ)

∃a.C, Γ ⊢ e : σ
(HMRec)

C, Γ++[f : t] ⊢ e : t

C, Γ ⊢ rec f in e : t

Fig. 1. HM(X) typing rules

2000) we also introduced some subtype constraints which we ignore here for simplic-

ity. We can straightforwardly support subtype constraints as long as the constraint

domain X facilitates them.

Notice that constraints may be existentially quantified, see the upcoming typing

rules (HM∀ Intro) and (HM∃ Intro).

The language of expressions and types schemes for HM(X) is as follows.

Expressions e ::= f | x | λx.e | e e | let f = e in e | rec f in e

Type Schemes σ ::= t | ∀ā.C ⇒ t

We support the usual expressions such as function application and abstraction, non-

recursive let-defined functions and monomorphic recursive functions. Notice that

source expressions containing recursive let-defined functions such as

let g = let f = λx.f x in e

must be de-sugared into

let g = (let f = (rec f ′
in λx.f ′ x) in e

W.l.o.g., we assume that λ-bound and let-bound variables have been renamed to

avoid name clashes. We commonly use x, y, z, . . . to refer to λ-bound variables and

f, g, h, . . . to refer to user- and pre-defined functions. Both sets of variables are

recorded in a variable environment Γ. We treat Γ as a list of type assignments of

the form [x1 : σ1, . . . , xn : σn]. We use list concatenation ++ to indicate extension

of environment Γ with type assignment (x : σ) written Γ++[x : σ]. We write

(x : σ) ∈ [x1 : σ1, . . . , xn : σn] to denote that x is equal to xi and σ is equal to σi

for some i ∈ {1, ..., n}. We assume that fv([x1 : σ1, ..., xn : σn]) = fv(σ1)∪...∪fv(σn).

12 Martin Sulzmann and Peter J. Stuckey

We use common shorthand notation let f x1 · · · xn = e for let f = λx1. · · ·λxn.e

and omit the leading let for top-level functions.

We briefly discuss the typing rules in Figure 1 which make use of typing judg-

ments of the form C, Γ ⊢ e : t where C is a constraint, Γ an environment, e an

expression and t a type. In rule (HMVar), we assume that v either refers to a λ- or

let-bound variable. Rule (HMEq) allows us to change the type t1 of expression e to

t2 if both types are equivalent under the (assumption) constraint C. This rule is not

strictly necessary but is convenient to have in some proofs such as the upcoming

proof of Theorem 4 (Soundness of CLP(X) style type inference) in the Appendix. In

rule (HM∀ Intro), we build type schemes by pushing in the “affected” constraint D.

The existentially quantified constraint ∃ā.D in the conclusion guarantees that if the

“final” constraint in a typing derivation is satisfiable all “intermediate” constraints

must be satisfiable as well. In rule (HM∀ Elim), we build a type instance by de-

manding that any model of our constraint domain X which satisfies C also satisfies

the instantiated constraints [t̄/ā]D, written C |=X [t̄/ā]D. Rule (HM∃ Intro) al-

lows us to simplify constraints by “hiding” variables not appearing anywhere but

in constraint C. This is very useful when presenting inferred types to the user in

our CLP(X) style inference scheme. See the upcoming discussion in Section 4.2

right after Theorem 4. Some readers may expect to find a dual rule (HM∃ Elim).

Elimination of ∃ is a form of weakening which is a meta rule of the system. See

Lemma 2 in the Appendix.

Rule (HMRec) allows for arbitrary (monomorphic) recursive values, not just for

functions. This requires that the dynamic semantics of our language is non-strict.

In case of a strict language, we simply must guarantee that recursive values are

functions. We briefly addressed how to deal with polymorphic recursion in the

introduction. The remaining rules are those familiar from Hindley/Milner.

A point worth mentioning is that we do not require types to be in certain syn-

tactic canonical form. For example, function λx.x can be given types ∀a.a → a and

∀a, b.a = b ⇒ a → b. Both types are equivalent but we may favor ∀a.a → a for

presentation purposes. In case of standard Hindley/Milner, we can always achieve

a canonical representation of types by building the most general unifier. Perhaps

surprisingly, there are variants of Hindley/Milner where a wrong choice of canoni-

cal form leads to incomplete type inference. We refer to (Kennedy, 1996; Sulzmann,

2001) for a discussion. Hence, we do not enforce syntactic canonical forms of types

here. For an expression to be well-typed, we only require that the constraints ap-

pearing in type judgments must be satisfiable.

Before we introduce our CLP(X) style type inference approach, we review the

classic algorithm W in the next section.

3 Constraint-based Algorithm W

In Figure 2, we introduce an algorithm W style inference system to give a syntax-

directed description of the typing rules from the previous section. We employ infer-

ence judgments of the form Γ, e ⊢W (C a) where environment Γ and expression

e are input values and constraint C and type a are output values. We maintain

Journal of Functional Programming 13

(TIVar)
x : (∀ā.D ⇒ t) ∈ Γ b fresh

Γ, x ⊢W (∃ā.(b = t ∧ D) b)

(TIAbs)
Γ++[x : a], e ⊢W (C c) a, b fresh

Γ, λx.e ⊢W (∃a.∃c.(b = a → c ∧ C) b)

(TIApp)
Γ, e1 ⊢W (C1 a1) Γ, e2 ⊢W (C2 a2) a fresh

Γ, e1 e2 ⊢W (∃a1.∃a2.(C1 ∧ C2 ∧ a1 = a2 → a) a)

(TILet)
Γ, e ⊢W (C1 a) Γ++[f : ∀a.C1 ⇒ a], e′ ⊢W (C3 b)

Γ, let f = e in e′ ⊢W ((∃a.C1) ∧ C3 b)

(TIRec)
Γ++[f : a], e ⊢W (C b) a fresh

Γ, rec f in e ⊢W (∃b.(C ∧ a = b) a)

Fig. 2. HM(X) Type inference Algorithm W-Style

the invariant that a is a variable and fv(C) = fv(Γ) ∪ {a}. Such a canonical rep-

resentation of inference judgments, also found in (Zenger, 1999), makes building

of type schemes in case of let-defined functions rather straightforward. See rule

(TILet) which combines the rules for quantifier introduction with the rule for let

statements.

Rules (TIAbs), (TIApp) and (TIRec) generate the appropriate constraints out

of the program text. Like other inference algorithms we need to generate “fresh”

variables. We could represent “freshness” in a sufficiently rich logic (Urban et al.,

2004) but we choose here to use a “half-logical” formulation of inference. As it is

standard, rule (TIVar) combines variable introduction with quantifier elimination.

In contrast to (Odersky et al., 1999) where we follow the “classic” formulation

and thread through a substitution, representing the most general unifier of the

constraints accumulated so far, we choose here a purely constraint-based formula-

tion. For example, the constraint a = b → b ∧ b = Int represents the substitution

[Int → Int/a, Int/b]. In general, the output pair (C t) is a representation of the

solutions in X of t.

We can straightforwardly verify that any inference derivation is also derivable in

the system from the previous section.

Theorem 2 (Soundness of W Style Type Inference) Let Γ be an envi-

ronment and e an expression such that Γ, e ⊢W (C a) for some constraint C

and type a. Then, C, Γ ⊢ e : a.

The result can be proven by straightforward induction over ⊢W .

To state completeness, we introduce a comparison relation ⊢i
X among type

schemes. We define C1 ⊢i
X (∀ā2.C2 ⇒ t2) � (∀ā3.C3 ⇒ t3) iff C1 ∧ C3 |=X

∃ā2.(C2 ∧ t2 = t3) where we assume that there are no name clashes between ā2 and

14 Martin Sulzmann and Peter J. Stuckey

ā3. The comparison relation can be easily extended to types by considering t as a

short-hand for ∀a.a = t ⇒ a where a is fresh.

In case C ⊢i
X σ1 � σ2 we say that σ1 is more general than σ2. We will verify

that for any type derived by the HM(X) typing rules there is a more general type

derived by the inference algorithm.

We say that Γ is realizable in C iff for each x : σ ∈ Γ there exists a type t such

that C ⊢i
X σ � t.

Theorem 3 (Completeness of W Style Type Inference) If C, Γ ⊢ e :

σ and Γ is realizable in C then Γ, e ⊢W (C′ a) such that C ⊢i
X (∀a.C′ ⇒

a) � σ and C |=X ∃a.C′.

The realizability condition is necessary to establish C |=X ∃a.C′ in case of variables.

In case of let statements, we need C |=X ∃a.C′ to establish C ⊢i
X (∀a.C′ ⇒ a) � σ.

The details of the proof are given in Appendix A.

The constraint-based reformulation of algorithm W represents a first step in

rephrasing HM(X) type inference as CLP(X) solving. Constraint generation pro-

ceeds in the same way. The major difference is that each let-defined function is

turned into a CLP(X) rule. This is what we discuss next.

4 HM(X) Type Inference is CLP(X) Solving

As highlighted, the basic idea is that for each definition f = e, we introduce a

CLP(X) rule of the form f(t, l) :- G by performing a form of lambda-lifting

on the level of types. A similar concept was introduced previously in (Birkedal &

Tofte, 2001). The type parameter t refers to the type of f whereas l refers to the

set of types of λ-bound variables in scope (i.e. the set of types of free variables

which come from the enclosing definition). The reason for l is that we must ensure

that λ-bound variables remain monomorphic. The goal G contains the constraints

generated out of expression e plus some additional constraints restricting l. Thus,

we can explain HM(X) type inference as running the CLP(X) program resulting

from e on the constraints generated out of e. Before we dive into the formal details,

we explain one more subtle point of our CLP(X) style type inference scheme.

So far, we assumed that at the definition and call sites of f we set l to the exact

set of types of all free (λ) variables in scope. Hence, we actually need to compute

the exact set before we can generate the CLP(X) program. We can avoid these

tedious computations by using a slightly different approach. The following example

shows how this works.

Example 7 Consider

k z = let h w = (w,z)

in let f x = let g y = (x,y)

in (g 1, g True, h 3)

in f z

Journal of Functional Programming 15

A (partial) description of the CLP(X) program resulting from the above program

text might look as follows. For simplicity, we leave out the constraints generated

out of expressions. We write tx to denote the type of λ-bound variable x and so on.

(k) k(t, l) :- l = [] ∧ · · ·

(h) h(t, l) :- l = [tz] ∧ · · ·

(f) f(t, l) :- l = [tz] ∧ · · ·

(g) g(t, l) :- l = [tz , tx] ∧ · · ·

In each CLP(X) rule, the l parameter refers exactly to the set of types of all free

(λ) variables in scope of the corresponding function.

Consider the sub-expression (g 1, g True, h 3). At each instantiation site, we

need to specify correctly the sequence of types of λ-bound variables which were in

scope at the function definition site. For example, λ-variables z and x are in scope

of g y = ... whereas only z is in scope of h w = Among others, we generate

g(t1, l1) ∧ l1 = [tz, tx] ∧ t1 = Int → t′1 ∧ g(t2, l2) ∧ l2 = [tz, tx] ∧ t2 = Bool → t′2
∧ h(t3, l3) ∧ l3 = [tz] ∧ t3 = Int → t′3 ∧ · · ·

The point is that at function instantiation sites our constraint generation algorithm

needs to remember correctly the sequence of types of λ-variables which were in

scope at the function definition site. To avoid such tedious calculations the sequence

of types of λ-bound variables in scope for function definitions is left “open”. We

indicate this by writing t1 : · · · : tn : r which denotes a (type-level) list with

an n-element list [t1, ..., tn], representing the types of λ-bound variables, but an

unbounded tail represented by a fresh type variable r. The set of types of λ-bound

variables at function instantiation sites corresponds to stack of type of lambda-

bound variables in the sequence of their definition.

Based on this scheme, our actual translation scheme yields the following result.

(k) k(t, l) :- t = t1 → t2 ∧ f(t, l1) ∧ l1 = [tz] ∧ t1 = tz
(h) h(t, l) :- l = tz : r ∧ t = tw → (tw, tz)

(f) f(t, l) :- l = tz : r ∧ t = (t′1, t
′
2, t

′
3) ∧ g(t1, l1)

∧ l1 = [tz, tx] ∧ t1 = Int → t′1
∧ g(t2, l2) ∧ l2 = [tz , tx] ∧ t2 = Bool → t′2
∧ h(t3, l3) ∧ l3 = [tz, tx] ∧ t3 = Int → t′3

(g) g(t, l) :- l = tz : tx : r ∧ t = ty → (tx, ty)

In the h rule we require that variable z, whose type is tz, is in scope plus possibly

some more variables (see underlined constraint). Please observe that in rule f , we

pass in the (somewhat redundant) variable tx as part of the x parameter at the

instantiation site of h (see underlined constraint). There is no harm in doing so,

because there is no reference to variable tx on the right hand side of rule h.

For example, consider the following derivation step

h(t3, l3) ∧ l3 = [tz, tx] h l3 = t′z : r′ ∧ t3 = t′w → (t′w, t′z) ∧ l3 = [tz, tx]

where we denote renamed rule variables via a prime. We find that l3 = t′z : r′∧ l3 =

[tz, tx] implies t′z = tz and r′ = [tx]. Thus, we establish that both references of tz

16 Martin Sulzmann and Peter J. Stuckey

(CGVar-x)
(x : t) ∈ Γ

E, Γ, x ⊢Cons (True t)

(CGVar-f)
f ∈ E t, l fresh

E, [x1 : t1, . . . , xn : tn], f ⊢Cons (f(t, l) ∧ l = [t1, . . . , tn] t)

(CGAbs)
E, Γ++[x : t1], e ⊢Cons (G t2) t1 fresh

E, Γ, λx.e ⊢Cons (G t1 → t2)

(CGApp)
E, Γ, e1 ⊢Cons (G1 t1) E, Γ, e2 ⊢Cons (G2 t2) t fresh

E, Γ, e1 e2 ⊢Cons (G1 ∧ G2 ∧ t1 = t2 → t t)

(CGLet)

E ∪ {f}, Γλ, e2 ⊢Cons (G t)

Γλ = [x1 : t1, . . . , xn : tn] a,l fresh

E, Γλ, let f = e1 in e2 ⊢Cons (G ∧ f(a, l) ∧ l = [t1, ..., tn] t)

(CGRec)
E, Γ++[f : a], e ⊢Cons (G t) a fresh

E, Γ, rec f in e ⊢Cons (G ∧ a = t t)

Fig. 3. Constraint Generation

in rules h and f refer to the same type without having to compute the exact set of

λ-bound variables in scope of h at the call site h(t3, l3).

We are now well-prepared to take a look at the formal translation scheme which

consists of two main parts: Generating constraints from expressions and building

of CLP(X) rules for function definitions.

4.1 Translation to CLP(X)

Constraint generation is similar as for algorithm W (see Figure 2). A minor dif-

ference is that we return type terms, not just variables. The essential difference is

that we additionally need to record information about the predicates connected to

let-defined (or primitive) functions. Hence, we use constraint generation judgments

of the form E, Γ, e ⊢Cons (G t) where the environment E of all let-defined and

pre-defined functions, environment Γ of lambda-bound variables, and expression e

are input parameters and goal G and type t are output parameters. The details are

in Figure 3.

In rule (CGVar-x) we simply look up the type of a λ-bound variable in Γ. In

rule (CGVar-f), the goal f(t, l) ∧ l = [tx1
, . . . , txn

] demands on instance of f on

type t where (tx1
, . . . , txn

) refers to the set of types of λ-bound variables in scope.

In essence, we build a generic instance of f’s type. The actual type of f will be

described by a CLP(X) rule where the set of types of λ-bound variables is left

open. Notice that in case f 6∈ E function f is undefined. If f is defined we will

Journal of Functional Programming 17

(RGVar) E, Γ, v ⊢Def ∅

(RGAbs)
E,Γ++[x : t], e ⊢Def P t fresh

E, Γ, (λx.e) ⊢Def P

(RGApp)
E, Γ, e1 ⊢Def P1 E,Γ, e2 ⊢Def P2

E, Γ, e1 e2 ⊢Def P1 ∪ P2

(RGLet)

E, Γ, e1 ⊢Cons (G t) Γ = [x1 : t1, . . . , xn : tn] l, r fresh

E,Γ, e1 ⊢Def P1 E ∪ {f}, Γ, e2 ⊢Def P2

P = P1 ∪ P2 ∪ {f(t, l) :- G ∧ l = t1 : ... : tn : r}

E, Γ, let f = e1 in e2 ⊢Def P

(RGRec)
E, Γ, e ⊢Def P

E, Γ, rec f in e ⊢Def P

Fig. 4. CLP(X) Rule Generation

add f to E when typing the body of the let statement. See the upcoming rule

(RGLet) for rule generation in Figure 4. Type assignments in the environment Γ

are ordered according to the scope of variables. See rule (CGAbs). Rules (CGApp)

and (CGRec) contain no surprises.

In rule (CGLet), we process a let statement by recording the predicate associated

to the CLP(X) rule of let f = e1 in e2. Then, we collect the constraints arising from

the let body e2. In algorithm W we also collect the constraints from e1. In the

CLP(X)-style inference scheme we collect these constraints by querying the type of

f via its predicate. We say a let-defined function f is let-realizable if f is actually

used in the let-body e2. If this is the case, the constraint f(a, l) ∧ l = [t1, ..., tn] is

redundant (and can therefore can be omitted) because the goal G already contains

a call to f . In the upcoming section, we will provide examples explaining this point

in more detail.

Generation of CLP(X) rules is formulated in terms of judgments of the form

E, Γ, e ⊢Def P where input parameters E, Γ and e are as before and the set P of

CLP(X) rules is the output parameter. For each function definition we generate a

new rule. See Figure 4 for details. As discussed, we leave the set of types of lambda-

bound variables open at definition sites. See rule (RGLet). If Γ is empty, we set

l = r.

4.2 Type Inference via CLP(X) Solving

The actual type inference applies the CLP(X) program, that is the set of CLP(X)

rules generated, to the resulting constraint. More formally, let (Γ, e) be a HM(X)

type inference problem where we assume that Γ can be split into a component

Γinit and Γλ such that fv(Γinit) ⊆ fv(Γλ) and types in Γλ are simple, i.e. not

18 Martin Sulzmann and Peter J. Stuckey

universally quantified. In essence, we demand that if a type scheme in Γ contains

an unbound variable, it must be mentioned in some simple type. For each function

f in Γinit we introduce a binary predicate symbol f which we record in Einit. We

build a set PEinit
of CLP(X) rules by generating for each f : ∀ā.C ⇒ t ∈ Γinit the

rule f(t′, l) :- C ∧ t′ = t where t′ and l are fresh. In such a situation, we write

PEinit
, Einit ∼ Γinit, Γλ.

Type inference proceeds as follows: We first compute Einit, Γλ, e ⊢Cons (G t)

and Einit, Γλ, e ⊢Def P . To infer the type of e, we run P ∪ PEinit
on goal G. By

construction P ∪ PEinit
is terminating. That is, G

∗
P∪PEinit

D for some D where

D is a constraint (it only contains predicates defined by the constraint domain

X). If D is unsatisfiable we report a type error. Otherwise, we can conclude that

expression e has type ∀ā.D ⇒ t where ā = fv(D, t) − fv(Γλ).

The termination argument for P ∪ PEinit
goes as follows. To each let-defined

function symbol f we assign a unique number based on a depth-first left-to-right

traversal of the abstract syntax tree. We assume that numbers will increase during

the traversal. Then, for each generated rule f(t, l) :- G ∧ l = t1 : ... : tn : r in P

we find that the number of let-defined function symbols appearing in G is greater

than the number of f . Immediately, we can conclude that the generated CLP(X)

P program is non-recursive. Hence, running any goal on P ∪ PEinit
will terminate.

We can verify that the types thus computed are derivable in the HM(X) type

system from Section 2.2 (soundness) and any HM(X) type can be computed by the

CLP(X) style inference scheme (completeness).

Theorem 4 (Soundness of CLP(X) Style Type Inference)

Let PEinit
, Einit ∼ Γinit, Γλ, and Einit, Γλ, e ⊢Cons (G t) and Einit, Γλ, e ⊢Def

P such that G
∗
PEinit

∪P D. Then, D, Γinit ∪ Γλ ⊢ e : t.

For presentation purposes, we may want to “normalize” the constraint D and

type t into an equivalent but more readable form. Let us consider Example 2 again.

Our (slightly abbreviated) translation scheme for the program text

g y = let f x = (y,x) in (f True, f y)

generates

g(t, l) :- t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1 ∧ f(tf2, [ty])

∧ tf2 = ty → t2
f(t, l) :- t = tx → (ty, tx) ∧ l = ty : r

Function f is let-realizable, i.e. used in the body of the let statement. Therefore,

we abbreviate the translation by omitting the constraint f(a, l) ∧ l = [ty] which

would usually appear on the right-hand side of the CLP(X) rule g according to the

constraint generation rule (CGLet).

We infer g’s type by executing

Journal of Functional Programming 19

g(t, []) g t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t′x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t′x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1
∧ tf2 = t′′x → (t′′y , t′′x) ∧ [ty] = t′′y : r′′ ∧ tf2 = ty → t2

Based on the above soundness result we find that g has type

∀t, t1, t2, tf1, t
′
x, t′y, r′, ty, tf2, t

′′
x, t′′y , r′′.

(

t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t′x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1
∧ tf2 = t′′x → (t′′y , t′′x) ∧ [ty] = t′′y : r′′ ∧ tf2 = ty → t2

)

⇒ t

In this example, we employ the Herbrand domain H , i.e. HM(H). Hence, we can

normalize the above type by building the most general (Herbrand) unifier.

∀t, t1, t2, tf1, t
′
x, t′y, r′, ty, tf2, t

′′
x, t′′y , r′′.

t = ty → ((ty,Bool), (ty, ty)) ∧ t1 = (ty,Bool), t2 = (ty, ty)

∧ tf1 = Bool → (ty,Bool) ∧ t′x = Bool ∧ ty = t′y ∧ r′ = []

∧ tf2 = ty → (ty, ty) ∧ t′′x = ty ∧ ty = t′′y ∧ r′′ = []

 ⇒ t

Notice that in general all equations [s1, ..., sn] = s′1 : ... : s′k : r where k ≤ n

can be replaced by si = s′i for i = 1, ..., k and r = [sk+1, ..., sn]. Recall that · : ·

and [] are Herbrand constructors. For the above example, we therefore find that

[ty] = t′y : r′ ∧ [ty] = t′′y : r′′ are replaced by ty = t′y ∧ ty = t′′y ∧ r′ = []∧ r′′ = []. Since

r′ and r′′ appear nowhere else we can remove the constraints r′ = [] and r′′ = [].

This is justified by typing rule (HM∃ Intro) in Figure 1 and the fact that ∃r′.r′ = []

is equivalent to True. Thus, we arrive at a “pure” constraint without the added

constructors · : · and [].

In fact, we can also remove the constraints connected to variables t1, t2, tf1,

t′x, t′y, tf2, t′′x and t′′y because they do not appear in the “output” constraint t =

ty → ((ty,Bool), (ty, ty)). This step is again justified by typing rule (HM∃ Intro) in

Figure 1 and the fact that

∃t1, t2, tf1, t
′
x, t′y, tf2, t

′′
x, t′′y .

t = ty → ((ty ,Bool), (ty , ty)) ∧ t1 = (ty,Bool), t2 = (ty, ty)

∧ tf1 = Bool → (ty,Bool) ∧ t′x = Bool ∧ ty = t′y
∧ tf2 = ty → (ty, ty) ∧ t′′x = ty, ty = t′′y

is equivalent to t = ty → ((ty,Bool), (ty, ty). Hence, g’s type can be equivalently

represented by

∀t, ty.t = ty → ((ty,Bool), (ty, ty)) ⇒ t

which we can display as ∀ty .ty → ((ty ,Bool), (ty , ty))

In general, normalization of types will depend on the specific constraint domain

X in use. For instance, in Haskell 98 (Peyton Jones, 2003) we remove “redundant”

superclass constraints, e.g. ∀a.(Ord a ∧Eq a) ⇒ a is normalized to ∀a.Ord a ⇒ a.

Next, we discuss the purpose of the “let-realizability” constraint f(a, l) ∧ l =

[t1, ..., tn] in rule (CGLet).

20 Martin Sulzmann and Peter J. Stuckey

Example 8 Consider the following ill-typed expression.

e = let f = True True

in False

If we omit the constraint f(a, l)∧ l = [t1, ..., tn] in rule (CGLet), the translation to

CLP(X) yields

f(t) :- t1 = Bool ∧ t1 = t2 → t3 ∧ t2 = Bool ∧ t3 = t

e(t) :- t = Bool

For simplicity, we also omit the l component which does not matter here.

Type inference for expression e succeeds, although function f is ill-typed. We

find that e(t)
∗ t = Bool . The problem is that there is no occurrence of f in the

let body, hence we never execute the CLP(X) rule belonging to f. In a traditional

inference approach such as W , inference for e proceeds by first inferring the type of

f immediately detecting that f is not well-typed. Therefore, our actual translation

scheme generates

f(t) :- t1 = Bool ∧ t1 = t2 → t3 ∧ t2 = Bool ∧ t3 = t

e(t) :- t = Bool ∧ f(a)

The conclusion is that the “let-realizability” constraint f(a, l) ∧ l = [t1, ..., tn] in

rule (CGLet) is necessary to guarantee soundness of the CLP(X) style inference

scheme with respect to the HM(X) typing rules. We conjecture that under a non-

strict semantics rule (CGLet) is still sound (in the sense of programs will not go

wrong at run-time) if we omit f(a, l) ∧ l = [t1, ..., tn]. In this respect, typing of

programs in CLP(X) seems more flexible than typing in HM(X).

We conclude this section by stating completeness.

Theorem 5 (Completeness of CLP(X) Style Type Inference)

Let PEinit
, Einit ∼ Γinit, Γλ and C′, Γinit∪Γλ ⊢ e : t′. Then, Einit, Γλ, e ⊢Cons

(G t) and Einit, Γλ, e ⊢Def P for some goal G, type t and CLP(X) program P

such that C′ ⊢i
X (∀ā.D ⇒ t) � t′ where G

∗
PEinit

∪P D and ā = fv(D, t) −

fv(Γλ).

Proofs for the above results can be found in Appendix B.

5 Related Work and Discussion

There are numerous works which study type inference for Hindley/Milner style

systems. We refer to (Pottier & Rémy, 2005) and the references therein.

Most works on Hindley/Milner style type inference focus on the domain specific

solver X and employ a standard inference algorithm such as W , M etc. The basic

structure of such standard algorithms is the same. Type inference proceeds by

generating constraints out of the program text while traversing the abstract syntax

tree. We will need to solve these constraints at the latest once we visit a let node in

order that we can build a type scheme. We refer to (Fuh & Mishra, 1990; Aiken &

Wimmers, 1992; Palsberg & Smith, 1996) for a selection of early works on solving

constraints. To the best of our knowledge, the first work on solving constraints via

Journal of Functional Programming 21

CHRs in the context of type inference is our own work reported in (Glynn et al.,

2000) which subsequently led to (Stuckey & Sulzmann, 2005). Further works on

using CHRs to solve type constraints include (Alves & Florido, 2002; Coquery &

Fages, 2002).

There are only a few works which consider a fundamentally different inference

approach where the entire type inference is mapped to a constraint problem.

The earliest reference we can find in the literature is some work by Dietzen and

Pfenning (1991) who employ λProlog’s (Nadathur & Miller, 1988) higher-order ab-

straction facilities for type inference. Effectively, they translate the Hindley/Milner

inference problem into a “nested” Horn clause program. For instance, the program

text

g y = let f x = (y,x) in (f True, f y)

from the earlier Example 2 is (roughly) translated to

g(t) :-

(

t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1, f(tf2) ∧ tf2 = ty → t2
∧ (f(t) :- t = tx → (ty, tx))

)

in Dietzen’s and Pfenning’s approach. Notice the “nested” Horn clause f which

captures the type of f and also has a reference to the type variable tx from the

enclosing function g. Hence, different calls to f will refer to the same tx.

Similar ideas of phrasing Hindley/Milner type inference in terms of a calcu-

lus with higher-order abstraction can be found in the work by Müller (1994) and

Liang (1997). Pottier and Rémy (2005) introduce a constraint domain with an

explicit “let” construct for the exact same purpose.

In contrast to these works, Mycroft and O’Keefe (1984) map Hindley/Milner type

checking of logic programs to a logic program. In some later work, Lakshman and

Reddy (1991) established a semantic soundness result which was missing in (Mycroft

& O’Keefe, 1984). Demoen, Garćıa de la Banda and Stuckey (1999) extend this

approach to allow inference and ad-hoc overloading. They also provide a specialized

solver for disjunctive Herbrand constraints to improve worst case behavior.

6 Conclusion

In this work we extend the approach of (Demoen et al., 1999) to handle expres-

sions containing nested let definitions (which do not arise in logic programs). To

translate HM(X) type inference to CLP(X) rules and solving, we perform a form

of lambda-lifting on the level of types. A similar idea can be found in the work by

Birkedal and Tofte (2001). Most importantly, we abstract away from the Herbrand

constraint domain, to an arbitrary constraint domain X. We formally verify for the

first time that Hindley/Milner inference is equivalent to CLP(X) solving. We can

cover a wide range of Hindley/Milner style systems by appropriately instantiat-

ing X with a domain specific solver. The Chameleon system (Sulzmann & Wazny,

2007) implements the CLP(X) style inference scheme where the constraint domain

is specifiable in terms of CHRs.

In general, the complexity of Hindley/Milner type inference is exponential (Kanel-

lakis et al., 1991). Experience shows that type inference works well in practice. This

22 Martin Sulzmann and Peter J. Stuckey

observation is supported by some theoretical studies, for example consider (McAllester,

2003). The approach defined in this paper is highly practical and is implemented

in the Chameleon (Sulzmann & Wazny, 2007) system where X is specifiable using

Constraint Handling Rules (Frühwirth, 1995).

Acknowledgments

We thank the reviewers for their helpful feedback on earlier drafts of this paper.

References

Aiken, Alexander, & Wimmers, Edward L. (1992). Solving systems of set constraints.
Pages 329–340 of: Seventh IEEE symposium on logic in computer science, santa cruz,
california. Los Alamitos, California: IEEE Computer Society Press.

Alves, S., & Florido, M. (2002). Type inference using constraint handling rules. Electr.
notes theor. comput. sci., 64.

Birkedal, L., & Tofte, M. (2001). A constraint-based region inference algorithm. Theor.
comput. sci., 258(1-2), 299–392.

Coquery, E., & Fages, F. (2002). TCLP: Overloading, subtyping and parametric polymor-
phism made practical for CLP. Page 480 of: Proc. of iclp ’02, vol. 2401. Springer-Verlag.

Damas, L., & Milner, R. (1982). Principal type-schemes for functional programs. Pages
207–212 of: Proc. of POPL’82. ACM Press.

Demoen, B., Garćıa de la Banda, M., & Stuckey, P. J. (1999). Type constraint solving for
parametric and ad-hoc polymorphism. Pages 217–228 of: Proc. of the 22nd Australian
Computer Science Conference. Springer-Verlag.

Dietzen, S., & Pfenning, F. (1991). A declarative alternative to ”assert” in logic program-
ming. Pages 372–386 of: Proc. of ISLP’91.

Eo, H., Lee, O., & Yi, K. (2003). Proofs of a set of hybrid let-polymorphic type inference
algorithms. New generation comput., 22(1).

Fordan, Andreas, & Yap, Roland H. C. (1998). Early projection in CLP(R). Pages 177–191
of: CP ’98: Proceedings of the 4th international conference on principles and practice of
constraint programming. London, UK: Springer-Verlag.

Frühwirth, T. (1995). Constraint handling rules. Constraint programming: Basics and
trends. LNCS. Springer-Verlag.

Fuh, Y.-C., & Mishra, Prateek. (1990). Type inference with subtypes. Theoretical computer
science, 73, 155–175.

Glynn, K., Stuckey, P. J., & Sulzmann, M. (2000). Type classes and constraint
handling rules. Workshop on rule-based constraint reasoning and programming.
http://xxx.lanl.gov/abs/cs.PL/0006034.

Henglein, F. (1992). Simple closure analysis. DIKU Semantics Report D-193.

Henglein, Fritz. (1993). Type inference with polymorphic recursion. Transactions on
programming languages and systems, 15(1), 253–289.

Henkin, L., Monk, J.D., & Tarski, A. (1971). Cylindric algebra. North-Holland Publishing
Company.

Jaffar, J., & Lassez, J-L. (1987). Constraint logic programming. Pages 111–119 of: Proc.
of POPL’87.

Jaffar, J., Maher, M., Marriott, K., & Stuckey, P.J. (1998). The semantics of constraint
logic programs. Journal of logic programming, 37(1–3), 1–46.

Journal of Functional Programming 23

Kanellakis, P. C., Mairson, H. G., & Mitchell, J. C. (1991). Unification and ML-type recon-
struction. Pages 444–478 of: Computational logic - essays in honor of Alan Robinson.
MIT Press.

Kennedy, A. J. 1996 (September). Type inference and equational theories. Tech. rept.
LIX/RR/96/09. LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France.

Lakshman, T. L., & Reddy, U/ S. (1991). Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. Pages 202–217 of: Proc. of ISLP’91. MIT Press.

Lee, O., & Yi, K. (1998). Proofs about a folklore let-polymorphic type inference algorithm.
ACM transactions on programming languages and systems, 20(4), 707–723.

Liang, C. (1997). Let-polymorphism and eager type schemes. Pages 490–501 of: TAP-
SOFT ’97: Proceedings of the 7th international joint conference CAAP/FASE on theory
and practice of software development. Springer-Verlag.

Maher, M. (1988). Complete axiomatizations of the algebras of finite, rational and infinite
trees. Pages 348–357 of: Proc. 3rd logic in computer science conference.

McAllester, D. A. (2003). Joint RTA-TLCA invited talk: A logical algorithm for ML type
inference. Pages 436–451 of: Proc. of RTA’03. LNCS, vol. 2706. Springer-Verlag.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(Dec), 348–375.

Mitchell, J. (2002). Concepts of programming languages. Cambridge University Press.

Müller, M. (1994). A constraint-based recast of ML-polymorphism. 8th international
workshop on unification. Also available as Technical Report 94-R-43, Université de
Nancy.

Mycroft, A., & O’Keefe, R. (1984). A polymorphic type system for Prolog. Artificial
intelligence, 23, 295–307.

Nadathur, G., & Miller, D. (1988). An overview of λprolog. Bowen, K., & Kowalski, Robert
(eds), Fifth international conference and symposium on logic programming. MIT Press.

Odersky, M., Sulzmann, M., & Wehr, M. (1999). Type inference with constrained types.
Theory and practice of object systems, 5(1), 35–55.

Palsberg, J., & Smith, S. (1996). Constrained types and their expressiveness. Acm trans.
program. lang. syst., 18(5), 519–527.

Peyton Jones, S. (ed). (2003). Haskell 98 language and libraries: The revised report.
Cambridge University Press.

Pottier, F. (1998). A framework for type inference with subtyping. Pages 228–238 of:
Proc. of ICFP’98. ACM Press.

Pottier, F., & Rémy, D. (2005). The essence of ML type inference. Chap. 10, pages 389–
489 of: Pierce, Benjamin C. (ed), Advanced topics in types and programming languages.
MIT Press.

Rémy, D. (1993). Type inference for records in a natural extension of ML. Gunter,
Carl A., & Mitchell, John C. (eds), Theoretical aspects of object-oriented programming.
types, semantics and language design. MIT Press.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12, 23–41.

Stuckey, P. J., & Sulzmann, M. (2005). A theory of overloading. ACM transactions on
programming languages and systems (TOPLAS), 27(6), 1–54.

Stuckey, P. J., Sulzmann, M., & Wazny, J. (2003a). The Chameleon type debugger.
Pages 247–258 of: Proc. of fifth international workshop on automated debugging (aade-
bug 2003). Computer Research Repository (http://www.acm.org/corr/).

Stuckey, P. J., Sulzmann, M., & Wazny, J. (2004). Improving type error diagnosis. Pages
80–91 of: Proc. of Haskell’04. ACM Press.

24 Martin Sulzmann and Peter J. Stuckey

Stuckey, P.J., Sulzmann, M., & Wazny, J. (2003b). Interactive type debugging in Haskell.
Pages 72–83 of: Proc. of Haskell’03. ACM Press.

Stuckey, P.J., Sulzmann, M., & Wazny, J. (2006). Type processing by constraint reasoning.
Pages 1–25 of: Proc. of APLAS’06. LNCS, vol. 4279. Springer-Verlag.

Sulzmann, M. 2000 (May). A general framework for Hindley/Milner type systems with
constraints. Ph.D. thesis, Yale University, Department of Computer Science.

Sulzmann, M. (2001). A general type inference framework for Hindley/Milner style sys-
tems. Pages 246–263 of: Proc. of FLOPS’01. LNCS, vol. 2024. Springer-Verlag.

Sulzmann, M., & Wazny, J. (2007). Chameleon. http://www.comp.nus.edu.sg/
˜ sulzmann/chameleon.

Sulzmann, M., Odersky, M., & Wehr, M. (1997). Type inference with constrained types.
FOOL4: 4th. int. workshop on foundations of object-oriented programming languages.

Sulzmann, M., Müller, M., & Zenger, C. (1999). Hindley/Milner style type systems in
constraint form. Research Report ACRC-99-009. University of South Australia, School
of Computer and Information Science.

Urban, C., Pitts, A. M., & Gabbay, M. J. (2004). Nominal unification. Theor. comput.
sci., 323(1-3), 473–497.

Wadler, P., & Blott, S. (1989). How to make ad-hoc polymorphism less ad-hoc. Pages
60–76 of: Proc. of POPL’89. ACM Press.

Zenger, C. (1999). Indizierte Typen. Ph.D. thesis, Universität Karlsruhe.

A Proof of Theorem 3 (Completeness of W Style Type Inference)

We verify Theorem 3 by induction over the typing derivation. To ensure that the

inductive proof will go through we will strengthen the statement (an idea which

dates back to (Damas & Milner, 1982)).

First, we introduce some notation. We write C ⊢i
X Γ′ � Γ if Γ = [x1 : σ1, ..., xn :

σn] and Γ′ = [x1 : σ′
1, ..., xn : σ′

n] and for each x : σ′ ∈ Γ′, x : σ ∈ Γ we have that

C ⊢i
X σ′ � σ.

The completeness result follows from the following more general lemma.

Lemma 1 Let C, Γ ⊢ e : σ, Γ be realizable in C, C′′ ⊢i
X Γ′ � Γ and C′′ |=X

C. Then Γ′, e ⊢W (C′ a) for some C′, a such that C′′ ⊢i
X (∀a.C′ ⇒ a) � σ

and C′′ |=X ∃a.C′.

Proof

Recall that Γ is realizable in C iff for each x : σ ∈ Γ there exists a type t such that

C ⊢i
X σ � t.

In the proof, we often omit parentheses by assuming that ∧ binds tighter than

∃. Hence, ∃a.C1 ∧ C1 is a short form for ∃a.(C1 ∧ C1).

The proof proceeds by induction over the derivation C, Γ ⊢ e : σ. We omit cases

(HMEq), (HM∃ Intro) and (HMRec) for simplicity.

Case (HMVar) We find the following situation

C, Γ ⊢ v : σ (v : σ ∈ Γ)

Let us assume that σ is of the form ∀ā.D ⇒ t and v : ∀ā′.D′ ⇒ t′ ∈ Γ′.

Journal of Functional Programming 25

We find that

Γ′, v ⊢W (∃ā′.b = t′ ∧ D′ b)

We have to show that

C′′ ⊢i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā.D ⇒ t)

which follows immediately from C′′ ⊢i
X Γ′ � Γ and the fact that

C′′ ⊢i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā′.D′ ⇒ t′)

We yet need to verify that C′′ |=X ∃b, ā′.b = t′∧D′. The realizability assumption

implies that C |=X ∃ā.D. Hence, we also find C′′ |=X ∃ā.D (1) because of C′′ |=X C

(by assumption). From

C′′ ⊢i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā.D ⇒ t)

we can see that

C′′ ∧ D |=X ∃b, ā′.b = t′ ∧ D′ (2)

We know that ā does not appear in D′. Hence, from (2) we can conclude

C′′ ∧ ∃ā.D |=X ∃b, ā′.b = t′ ∧ D′ (3)

From (1) and (3) we can finally conclude C′′ |=X ∃b, ā′.b = t′ ∧ D′.

Case (HMAbs) We find the following situation:

C, Γ++[x : t] ⊢ e : t′

C, Γ ⊢ λx.e : t → t′

We have that C′′ ⊢i
X Γ′ � Γ and C′′ |=X C. Then,

C′′ ∧ a = t ⊢i
X Γ++[x : a] � Γ++[x : t]

where a is fresh. Application of the induction hypothesis to the premise yields

Γ′++[x : a], e ⊢W (C′ a′)

C′′ ∧ a = t ⊢i
X (∀a′.C′ ⇒ a′) � t′ (1)

C′′ ∧ a = t |=X ∃a′.C′ (2)

for some constraint C′ and type variable a′. Application of the (TIAbs) rule yields

Γ′, λx.e ⊢W (∃a, a′.(C′ ∧ a′′ = a → a′) a′′)

where a′′ is a new type variable. We first show that

C′′ ⊢i
X (∀a′′.∃a, a′.(C′ ∧ a′′ = a → a′) ⇒ a′′) � t → t′

The above is equivalent to C′′ |=X ∃a′′, a′, a.C′ ∧ a′′ = a → a′ ∧ a′′ = t → t′ (3).

From (1), we can conclude that

C′′ ∧ a = t |=X ∃a′.C ∧ a′ = t′

which implies that

φ(C′′ ∧ a = t) |=X φ(∃a′.C ∧ a′ = t′) (4)

where φ = [t/a]. We can assume that a 6∈ fv(C′′). Hence, φ(C′′ ∧ a = t) = C′′. We

write = to denote logical equivalence among constraints. The constraint φ(∃a′.C ∧

a′ = t′) is equivalent to ∃a, a′.C ∧ a′ = t′ ∧ a = t. We simply represent substitution

26 Martin Sulzmann and Peter J. Stuckey

via existential quantification. Hence, from (4) we can conclude

C′′ |=X ∃a, a′.C ∧ a′ = t′ ∧ a = t

which implies (3) by introducing the “intermediate” variable a′′.

It remains to verify that

C′′ |=X ∃a, a′, a′′.C′ ∧ a′′ = a → a′

From (2) via a similar reasoning as above, we can conclude

C′′ |=X ∃a, a′.C ∧ a = t

which implies (by weakening) C′′ |=X ∃a, a′.C. Variable a′′ does not appear in C.

Hence, we can conclude that

C′′ |=X ∃a, a′, a′′.C ∧ a′′ = a → a′

and we are done.

Case (HMApp) We have the following situation:

C, Γ ⊢ e1 : t1 → t2 C, Γ ⊢ e2 : t1

C, Γ ⊢ e1 e2 : t2

Application of the induction hypothesis to the left and right premise yields

Γ′, e1 ⊢W (C1 a1) Γ′, e2 ⊢W (C2 a2)

C′′ ⊢i
X (∀a1.C1 ⇒ a1) � t1 → t2 C′′ ⊢i

X (∀a2.C2 ⇒ a2) � t1
C′′ |=X ∃a1.C1 C′′ |=X ∃a2.C2

(A 1)

for some constraints C1, C2 and type variables a1, a2. We can assume that the set

of freshly generated type variables in Γ′, e1 ⊢W (C1 a1) and Γ′, e2 ⊢W (C2 a2)

are disjoint.

Application of the (TIApp) rule yields

Γ′, e1 e2 ⊢W (∃a1, a2.(C1 ∧ C2 ∧ a1 = a2 → a3) a3)

where a3 is a fresh type variable.

From A1, we an conclude that

C′′ |=X ∃a1.(C1 ∧ a1 = t1 → t2) C′′ |=X ∃a2.(C2 ∧ a2 = t1) (A 2)

which yields

C′′ ⊢i
X (∀a3.∃a1, a2.(C1 ∧ C2 ∧ a1 = a2 → a3) ⇒ a3) � t2

From A2 we can conclude that

C′′ |=X ∃a1, a2.C1 ∧ C2 ∧ a1 = t1 → t2 ∧ a2 = t1

Recall that a1 does not appear in C2 and a2 does not appear in C1. The above

implies

C′′ |=X ∃a1, a2, a3.C1 ∧ C2 ∧ a1 = a1 → a3 ∧ a2 = t1 ∧ a3 = t2

and via weakening we obtain

C′′ |=X ∃a1, a2, a3.C1 ∧ C2 ∧ a1 = a1 → a3

Thus, we are done.

Journal of Functional Programming 27

Case (HM∀ Elim) We have the following situation:

C, Γ ⊢ e : ∀ā.D ⇒ t C |=X [t̄/ā]D

C ∧ D, Γ ⊢ e : [t̄/ā]t

Application of the induction hypothesis yields

Γ′, e ⊢W (C′ a)

C′′ ⊢i
X (∀a.C′ ⇒ a) � (∀ā.D ⇒ t)

C′′ |=X ∃a.C′

for some constraint C′ and type variable a. It immediately follows that

C′′ ⊢i
X (∀a.C′ ⇒ a) � [t̄/ā]t

which establishes the induction step.

Case (HM∀ Intro) We have the following situation:

C ∧ D, Γ ⊢ e : t ā 6∈ fv(C) ∪ fv(Γ)

C ∧ ∃ā.D, Γ ⊢ e : ∀ā.D ⇒ t

W.l.o.g. ā 6∈ fv(Γ′, C′′). We have that C′′∧D |=X C∧D. Application of the induction

hypothesis yields
Γ′, e ⊢W (C′ a)

C′′ ∧ D ⊢i
X (∀a.C′ ⇒ a) � t

C′′ ∧ D |=X ∃a.C′

We can conclude that

C′′ ⊢i
X (∀a.C′ ⇒ a) � (∀ā.D ⇒ t)

and C′′ ∧∃ā.D |=X ∃a.C′ (we existentially quantify over ā on both sides, note that

ā do not appear in C′) which establishes the induction step.

Case (HMLet) We have the following situation:

C, Γ ⊢ e : σ C, Γ++[f : σ] ⊢ e′ : t′

C, Γ ⊢ let f = e in e′ : t′

We apply the induction hypothesis to the left premise and obtain

Γ′, e ⊢W (C1 a1)

C′′ ⊢i
X (∀a1.C1 ⇒ a1) � σ

C′′ |=X ∃a1.C1 (1)

for some constraint C1 and type variable a1. We conclude that

C′′ ⊢i
X Γ′++[f : (∀a1.C1 ⇒ a1)] � Γ++[f : σ]

Thus, we are in the position to apply the induction hypothesis to the right premise

which yields
Γ′

x++[f : (∀a1.C1 ⇒ a1)], e
′ ⊢W (C2 a2)

C′′ ⊢i
X (∀a2.C2 ⇒ a2) � t′ (2)

C′′ |=X ∃a2.C2

for some constraint C2 and type variable a2. Application of rule (TILet) yields

Γ′, let f = e in e′ ⊢W ((∃a1.C1) ∧ C2 a2)

28 Martin Sulzmann and Peter J. Stuckey

We have to show that

C′′ ⊢i
X (∀a2.((∃a1.C1) ∧ C2) ⇒ a2) � t′

The above is equivalent to C′′ |=X ∃a2.(∃a1.C1) ∧ C2 ∧ a2 = t. Note that a2 does

not appear in C1 and a1 does not appear in C2. Hence, it is sufficient to show that

C′′ |=X ∃a1.C1 and C′′ |=X ∃a2.C2 ∧ a2 = t. The first statement follows from (1)

and the second statement follows from (2). Thus, we are done.

B Soundness and Completeness of CLP(X) Style Type Inference

First, we verify soundness. In preparation, we slightly generalize the ∼ relation

among CLP(X) rules PE , environments E, Γ and Γλ. We assume that

Termfv ([x1 : σ1, ..., xn : σn]) = {x1, ..., xn}

We define PE , E ∼ Γ, Γλ iff

1. Γλ only consists of simple types, Termfv (Γ) = E, fv(Γ) ⊆ fv(Γλ),

2. For each (f : ∀ā.D ⇒ t) ∈ Γ we have that ā = fv(D, t)−fv(Γλ) and f(t, l)∧l =

[t1, ..., tn]
∗
PE

D′ where Γλ = [x1 : t1, ..., xn : tn] and |=X ∃̄fv(Γλ,t).D ↔

∃̄fv(Γλ,t).D
′.

The second item states that we can compute the types in Γ by running the CLP(X)

program PE on the goal f(t, l) ∧ l = [t1, ..., tn]. In the result D′ we may have

references to irrelevant type variables which we can project away as stated by

|=X ∃̄fv(Γλ,t).D ↔ ∃̄fv(Γλ,t).D
′. Implicitly, we make use of Theorem 1 which ensures

that the logical meaning of the resulting constraint D′ is equivalent to f(t, l) ∧ l =

[t1, ..., tn] with respect to PE .

In the upcoming soundness proof we make use of the following Weakening Lemma

which is Lemma 13 in (Sulzmann, 2000).

Lemma 2 (Weakening) Let C, Γ ⊢ e : σ such that C′ ⊢i
X σ � σ′ and

C′ |=X C. Then, C′, Γ ⊢ e : σ′.

The above lemma says that expression e is still derivable under a stronger con-

straint but weaker type.

We verify soundness of the CLP(X) style type inference scheme.

Theorem 4 (Soundness of CLP(X) Style Type Inference)

Let PE , E ∼ Γ, Γλ and E, Γλ, e ⊢Cons (G t) and E, Γλ, e ⊢Def P such that

G
∗
P∪PE

D. Then, D, Γ++Γλ ⊢ e : t.

Proof

The proof proceeds by structural induction over e. We only show some of the more

interesting cases.

Journal of Functional Programming 29

Case (CGVar-f) and (RGVar): We have that

f ∈ E t, l fresh

E, [x1 : t1, . . . , xn : tn], f ⊢Cons (f(t, l) ∧ l = [t1, . . . , tn] t)

E, Γ, f ⊢Def ∅

By assumption, (f : ∀ā.D ⇒ t) ∈ Γ we have that ā = fv(D, t) − fv(Γλ) and

f(t, l) ∧ l = [t1, ..., tn]
∗
PE

D′

where |=X ∃̄fv(Γλ,t).D ↔ ∃̄fv(Γλ,t).D
′ (1). Hence,

D, Γ++Γλ ⊢ f : t

by application of typing rules (HMVar) and (HM∀ Elim). Another (HM∃ Intro)

application step leads to

∃̄fv(Γλ,t).D, Γ++Γλ ⊢ f : t

From (1) and Lemma 2 we can conclude that

∃̄fv(Γλ,t).D
′, Γ++Γλ ⊢ f : t

Recall that C |=X ∃a.C for any constraint C and variable a. Hence, by another

application of the Lemma 2 we find that

D′, Γ++Γλ ⊢ f : t

and we are done.

Case (CGAbs) and (RGAbs): We have that

E, Γλ++[x : t1], e ⊢Cons (G t2) t1 fresh

E, Γλ, (λx.e) ⊢Cons (G t1 → t2)

E, Γλ++[x : t1], e ⊢Def P t1 fresh

E, Γλ, (λx.e) ⊢Def P

W.l.o.g. we can assume that both rules share the same fresh type variable t1. By

assumption G
∗
PE∪P D. Application of the induction hypothesis to e yields

D, Γ++Γλ++[x : t1] ⊢ e : t2

We apply the typing rule (HMAbs) and find that

D, Γ++Γλ ⊢ λx.e : t1 → t2

and we are done.

Case (CGApp) and (RGApp):

E, Γλ, e1 ⊢Cons (G1 t1) E, Γλ, e2 ⊢Cons (G2 t2) t fresh

E, Γλ, e1 e2 ⊢Cons (G1 ∧ G2 ∧ t1 = t2 → t t)

E, Γλ, e1 ⊢Def P1 E, Γλ, e2 ⊢Def P2

E, Γλ, e1 e2 ⊢Def P1 ∪ P2

30 Martin Sulzmann and Peter J. Stuckey

By assumption G1 ∧ G2 ∧ t1 = t2 → t
∗
PE∪P1∪P2

D. Function symbols in goal

G1 only appear in PE ∪P1 and function symbols in goal G2 only appear in PE ∪P2.

Hence, we can conclude that G1
∗
PE∪P1

D1 (1) and G2
∗
PE∪P2

D2 (2) for some

D1 and D2 such that D |=X D1 ∧ D2 ∧ t1 = t2 → t (3).

Based on (1) and (2), we can apply the induction hypothesis to the left and right

premise which yields
D1, Γ++Γλ ⊢ e1 : t1
D2, Γ++Γλ ⊢ e2 : t2

From (3) and the Weakening Lemma, we conclude that

D, Γ++Γλ ⊢ e1 : t1
D, Γ++Γλ ⊢ e2 : t2

From (3) and application of rule (HMEq), we conclude that

D, Γ++Γλ ⊢ e1 : t2 → t

We are in the position to apply rule (HMApp) which leads to

D, Γ++Γλ ⊢ e1 e2 : t

and we are done.

Case (CGLet) and (RGLet): We have that

E ∪ {f}, Γλ, e2 ⊢Cons (G t)

Γλ = [x1 : t1, . . . , xn : tn] a,l fresh

E, Γλ, let f = e1 in e2 ⊢Cons (G ∧ f(a, l) ∧ l = [t1, ..., tn] t)

E, Γλ, e1 ⊢Cons (G′ t′) Γλ = [x1 : t1, . . . , xn : tn] l, r fresh

E, Γλ, e1 ⊢Def P1 E ∪ {f}, Γ, e2 ⊢Def P2

P = P1 ∪ P2 ∪ {f(t′, l) :- G′ ∧ l = t1 : ... : tn : r}

E, Γλ, let f = e1 in e2 ⊢Def P

By assumption we find that G
∗
PE∪P D. Because of the (anonymous) call to f

(we refer here to the constraint f(a, l)∧ l = [t1, ..., tn]) there exists a sub-derivation

G′

∗
PE∪P1

D′ (1) where D |=X ∃̄fv(Γλ).D
′ (2).

Based on (1), we can apply the induction hypothesis to e1, which yields

D′, Γ++Γλ ⊢ e1 : t′

Then, we apply the typing rule (HM∃ Intro) and obtain

∃̄fv(Γλ,t′).D
′, Γ++Γλ ⊢ e1 : t′

Next, we apply typing rule (HM∀ Intro) and find

∃ā.∃̄fv(Γλ,t′).D
′, Γ++Γλ ⊢ e1 : ∀ā.∃̄fv(Γλ,t′).D

′ ⇒ t′ (3)

where ā = fv(D′, t′) − fv(Γλ).

We set

PE∪{f} = PE ∪ {f(t, l) :- G ∧ l = t1 : ... : tn : r} ∪ P1

Journal of Functional Programming 31

and immediately find that

PE∪{f}, E ∪ {f} ∼ Γ++[f : ∀fv(D′, t′) − fv(Γλ).D′ ⇒ t′], Γλ

We are in the position to apply the induction hypothesis to e2 and obtain that

D, Γ++Γλ++[f : ∀fv(D′, t′) − fv(Γλ).D′ ⇒ t′] ⊢ e2 : t (4)

W.l.o.g., we assume that t′ is a fresh variable. Then, from (2) we can conclude

that

D |=X ∃ā.∃̄fv(λλ,t′).D
′ (5)

From (3), (5) and the Weakening Lemma we obtain that

D, Γ++Γλ ⊢ e1 : ∀ā.∃̄fv(Γλ,t′).D
′ ⇒ t′

Together with (4) we conclude by application of typing rule (HMLet) that

D, Γ++Γλ ⊢ let f = e1 in e2 : t

and we are done.

Next, we consider completeness. For convenience, we will make use of a slightly

different formulation of rule (HMLet) from Figure 1. We combine the rule for quan-

tifier introduction with the rule for let statements.

(HMLet’)

D′′, Γ′′ ⊢ e1 : t′′

ā = fv(D′′, t′′) − fv(Γ′′) σ = ∀ā.D′′ ⇒ t′′

D′, Γ′′++[f : σ] ⊢ e2 : t′

(∃ā.D′′) ∧ D′, Γ′′ ⊢ let f = e1 in e2 : t′

In essence, the above rule corresponds to the inference rule (TILet) from Figure 2.

It should be clear that we can replace rules (HM∀ Intro) and (HMLet) by (HMLet’)

without changing the set of typable programs.

The completeness result follows from the following lemma. As in case of Lemma 1,

we provide a slightly stronger statement than necessary so that the induction will

go through.

Lemma 3 Let PE , E ∼ Γ′, Γλ and fv(Γ) ⊆ fv(Γλ) and ⊢ Γ′ � Γ and D′, Γ++Γλ ⊢

e : t′. Then, E, Γλ, e ⊢Cons (G t) and E, Γλ, e ⊢Def P for some goal G,

type t and CLP(X) program P such that D′ |=X ∃̄fv(Γλ,t′)
.D ∧ t = t′ where

G
∗
PE∪P D.

Proof

The proof proceeds by structural induction. We only show the case for let-defined

functions.

Case (HMLet’): We have that

D′′, Γ++Γλ ⊢ e1 : t′′

ā = fv(D′′, t′′) − fv(Γλ) σ = ∀ā.D′′ ⇒ t′′

D′, Γ++Γλ++[f : σ] ⊢ e2 : t′

(∃ā.D′′) ∧ D′, Γ++Γλ ⊢ let f = e1 in e2 : t′

where we assume that Γλ = [x1 : t1, ..., xn : tn].

32 Martin Sulzmann and Peter J. Stuckey

Application of the induction hypothesis to the left premise yields

E, Γλ, e1 ⊢Cons (G1 t′1) E, Γλ, e1 ⊢Def P1

such that D′′ |=X ∃̄fv(Γλ,t′′).D1 ∧ t′′ = t′1 (1) where G1
∗
PE∪P1

D1 (2). We can

conclude that

⊢i
X (∀fv(D1, t

′
1) − fv(Γλ).D1 ⇒ t′1) � (∀fv(D′′, t′′) − fv(Γλ).D′′ ⇒ t′′)

We have that

PE∪{f}, E ∪ {f} ∼ Γ′++[f : ∀fv(D1, t
′
1) − fv(Γλ).D1 ⇒ t′1], Γλ

where PE∪{f} = PE ∪ {f(t′1, l) :- G1 ∧ l = t1 : ... : tn : r} ∪P1. Notice that PE∪{f}

includes P1, hence, G1 will be reduced to D1.

We can then apply the induction hypothesis to e2 which yields

E ∪ {f}, Γλ, e2 ⊢Cons (G t) E ∪ {f}, Γλ, e2 ⊢Def P2

such that D′ |=X ∃̄fv(Γλ,t′).D ∧ t′ = t (3) where G
∗
PE∪{f}∪P2

D (4).

Application of the rules (CGLet) and (RGLet) yields

E, Γλ, e2 ⊢Cons (G ∧ f(a, l) ∧ l = [t1, ..., tn] t)

E, Γλ, let f = e1 in e2 ⊢Def P

where P = P1 ∪ P2 ∪ {f(t′1, l) :- G1 ∧ l = t1 : ... : tn : r}.

We yet need to verify that G ∧ f(a, l) ∧ l = [t1, ..., tn] t
∗
PE∪P D′′′ for some

D′′′ such that (∃ā.D′′) ∧ D′ |=X ∃̄fv(Γλ,t′).D
′′′ ∧ t′ = t. From (2) we can conclude

that
f(a, l) ∧ l = [t1, ..., tn]

PE∪P [a/t′1]G1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

∗
PE∪P [a/t′1]D1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

and therefore from (4) we can conclude that

G∧f(a, l)∧ l = [t1, ..., tn] t
∗
PE∪P D∧ [a/t′1]D1∧ l = t1 : ... : tn : r∧ l = [t1, ..., tn]

From (1) and (3) we can conclude that ∃ā.D′′ |=X ∃̄fv(Γλ,t′).D1 and D′ |=X

∃̄fv(Γλ,t′).D∧ t′ = t. Constraints D and D1 only share variables in fv(Γλ, t′). Hence,

we can conclude that (∃ā.D′′)∧D′ |=X ∃̄fv(Γλ,t′).D1∧D∧t′ = t. Variable t′1 does not

appear in fv(Γλ, t′) and ∃l, r.l = t1 : ... : tn : r ∧ l = [t1, ..., tn] is a true statement.

Hence, we can conclude that

(∃ā.D′′) ∧ D′ |=X ∃̄fv(Γλ,t′).D ∧ [a/t′1]D1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

and we are done.

