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Abstract

Functional dependencies are a popular and useful extension to Haskell style type classes.
We give a reformulation of functional dependencies in terms of Constraint Handling Rules
(CHRs). In previous work, CHRs have been employed for describing user-programmable
type extensions in the context of Haskell style type classes. Here, we make use of CHRs to
provide for the first time a concise result that under some sufficient conditions, functional
dependencies allow for sound, complete and decidable type inference. The sufficient con-
ditions imposed on functional dependencies can be very limiting. We show how to safely
relax these conditions and suggest several sound extensions of functional dependencies.
Our results allow for a better understanding of functional dependencies and open up the
opportunity for new applications.

1 Introduction

Functional dependencies describe properties of relations, a functional dependency
a→ b for a relation R(a, b, c) states that in the relation R for a given value of the
first argument a there is a unique possible value for the second argument b. So for
example the relation {(1, 2, 3), (1, 2, 1), (2, 3, 1)} satisfies the functional dependency
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while {(1, 2, 3), (1, 1, 2)} does not. Functional dependencies have a long history of
use in the database community (?; ?) for query and index optimization. In this
paper we are concerned with functional dependencies as they are applied to Haskell
style type classes. Their principal use is for type improvement and the issues are
quite distinct from their use in databases.

Functional dependencies, introduced by Mark Jones (Jones, 2000), have proved
to be a very attractive extension to multi-parameter type classes in Haskell. For
example, consider a class intended to describe a collection of type c containing
values of type e:

class Coll c e | c -> e where

empty :: c

insert :: c -> e -> c

member :: c -> e -> Bool

The part “| c -> e” is a functional dependency, and indicates that fixing the
collection type c should fix the element type e. These functional dependencies have
proved very useful, because they allow the programmer to control the type inference
process more precisely. We elaborate on the background in Section 2.

The goal of our work is to explore and consolidate the design space of functional
dependencies (FDs). The main tool we use in this exploration is the reformulation
of FDs in terms of Constraint Handling Rules (CHRs) (Frühwirth, 1995; ?). The
current paper is an extended and revised version of (Duck et al., 2004). In summary,
our contributions are:

• Despite their popularity, functional dependencies have never been formalised,
so far as we know. CHRs give us a language in which to explain more pre-
cisely what functional dependencies are. In particular, we are able to make
the so-called “improvement rules” implied by FDs explicit in terms of CHRs
(Section 4).

• Based on this understanding, we provide the first proof that the restrictions
imposed by Jones on functional dependencies (Jones, 2000) ensure sound,
complete and decidable type inference (Section 5).

• Jones’ restrictions can be very limiting. We propose several useful extensions
(Section 6) such as more liberal FDs (Section 6.1), sound non-full FDs (Sec-
tion 6.2) and multi-range FDs (Section 6.3).

Related work is discussed in Section 7. We conclude in Section 8. Proofs can be
found in the Appendix.

2 Background: Functional Dependencies in Haskell

We begin by reviewing functional dependencies, as introduced by Jones (Jones,
2000), assuming some basic familiarity with Haskell-style type classes.

Example 1 Recall the collection class
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class Coll c e | c -> e where

empty :: c

insert :: c -> e -> c

member :: c -> e -> Bool

plus the following

instance Eq a => Coll [a] a where ...

ins2 xs a b = insert (insert xs a) b

Consider the function ins2. In the absence of functional dependencies, type infer-
ence would give

ins2 :: (Coll c e1, Coll c e2) => c -> e1 -> e2 -> c

which is of course not what we want: we expect a and b to have the same type, and
hence the expected type is

ins2 :: Coll c e => c -> e -> e -> c

The functional dependency c->e expresses the idea that the collection type c fixes
the element type e, and hence that e1 and e2 must be the same type. In such a
situation, we commonly say that types are “improved” (Jones, 1995).

2.1 Examples of Functional Dependencies

Functional dependencies are useful in many different contexts. Here are some rep-
resentative examples.

Example 2 Consider the following class for representing state monads and two
instances

class SM m r | m->r, r->m where

new :: a -> m (r a)

read :: r a -> m a

write :: r a -> a -> m ()

instance SM IO IORef where

new = newIORef

read = readIORef

write = writeIORef

instance SM (ST s) (STRef s) where

new = newSTRef

read = readSTRef

write = writeSTRef

The part “| m->r, r->m” gives two functional dependencies, and indicates that
fixing the monad type m should fix the reference type r as well, and vice versa. Now
consider the code
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f x = do { r <- new x; print "Hello"; return r }

The call to print, whose type is String -> IO (), makes it clear that f is in the
IO monad, and hence, by the functional dependency, that r must be an IORef. So
we infer the type

f :: a -> IO (IORef a)

From this example we can see the main purpose of functional dependencies: they
allow the programmer to place stronger conditions on the set of constraints gener-
ated during type inference, and thus allow more accurate types to be inferred. In
their absence, we would infer the type

f :: (SM IO r) => IO (r a)

which is needlessly general. In other situations, ambiguity would be reported. For
example:

g :: a -> IO a

g x = do { r <- new x ; read r }

Without functional dependencies, the type system cannot work out which reference
type to use, and so reports an ambiguous use of new and read.

Example 3 Consider the following application allowing for (overloaded) multipli-
cation among base types such as Int and Float and user-definable types such as
vectors. For simplicity, we omit the obvious function bodies.

class Mul a b c | a b -> c where

(*)::a->b->c

instance Mul Int Int Int where ...

instance Mul Int Float Float where ...

type Vec b = [b]

instance Mul a b c => Mul a (Vec b) (Vec c) where ...

The point here is that the argument types of (*) determine its result type. In the
absence of this knowledge an expression such as (a*b)*c cannot be typed, because
the type of the intermediate result, (a*b), is not determined. The type checker
would report type ambiguity, just as it does when faced with the classic example
of ambiguity, (read (show x)).

Example 4 Here is an another useful application of FDs to encode a family of zip
functions.

zip2 :: [a]->[b]->[(a,b)]

zip2 (a:as) (b:bs) = (a,b) : (zip2 as bs)

zip2 _ _ = []

class Zip a b c | c -> b, c -> a where

zip :: [a] -> [b] -> c



Journal of Functional Programming 5

instance Zip a b [(a,b)] where

zip = zip2

instance Zip (a,b) c e => Zip a b ([c]->e) where

zip as bs cs = zip (zip2 as bs) cs

These definitions make zip into an n-ary function, so that, for example, if xs::[Int]
and ys::[Bool], then we can write

rs1 :: [(Int,Bool)]

rs1 = zip xs ys

rs2 :: [((Int,Bool),Int)]

rs2 = zip xs ys xs

Without the functional dependencies, however, this function fails to type check:

z3 :: [a] -> [b] -> [c] -> [(a, (b,c))]

z3 xs ys zs = zip xs (zip ys zs)

The compiler emits a message something like

No instance for (Zip a b1 [(a, (b, c))])

arising from use of ‘zip’ at Zip.hs:26:15-17

Indeed, the first instance declaration contains a repeated use of a, and hence does
not match the constraint, unless b1 is instantiated to (b,c) — and that is precisely
what the functional dependencies cause to happen.

2.2 Functional Dependencies are Tricky

As we have seen, functional dependencies allow the programmer to exert control
over the type inference process. However, used uncritically, this additional control
can have unexpected consequences. Specifically: they may lead to inconsistency,
whereby the type inference engine deduces nonsense such as Int = Bool; and they
may lead to non-termination, whereby the type inference engine goes into an infinite
loop. We illustrate each of these difficulties with an example.

Example 5 Suppose we add instance Mul Int Float Int to Example 3. That
is, we have the following declarations:

class Mul a b c | a b -> c

instance Mul Int Float Float -- (I1)

instance Mul Int Float Int -- (I2)

Note that the first two parameters are meant to uniquely determine the third pa-
rameter. In case type inference encounters Mul Int Float a we can either argue
that a=Int because of instance declaration (I2). However, declaration (I1) would
imply a=Float. These two answers are inconsistent, so allowing both (I1) and
(I2) makes the whole program inconsistent, which endangers soundness of type
inference.
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Example 6 Assume we add the following function to the classes and instances in
Example 3.

f b x y = if b then (*) x [y] else y

The program text gives rise to the constraint Mul a (Vec b) b. The improvement
rules connected to instance Mul a b c => Mul a (Vec b) (Vec c) imply that
b=Vec c for some c; applying this substitution gives the constraint Mul a (Vec

(Vec c)) (Vec c). But this constraint can be simplified using the instance decla-
ration, giving rise to the simpler constraint Mul a (Vec c) c. Unfortunately, now
the entire chain of reasoning simply repeats! We find that type inference becomes
suddenly non-terminating. Note that the instances (without the functional depen-
dency) are terminating.

2.3 Summary

The bottom line of our informal overview is this. We want type inference to be
sound, complete and decidable. Functional dependencies threaten this happy situa-
tion. The obvious solution is to place restrictions on how functional dependencies
are used, as Jones indeed did, so that type inference remains well-behaved. But
the situation is quite complicated, and we should prove that type inference is well
behaved, something that no one has yet done.

3 Background: Constraint Handling Rules

In this section we introduce a useful notation called Constraint Handling Rules
(CHRs), which has a rich theory (Frühwirth, 1998) with strong connections to type
classes (?). Our plan is to translate a Haskell program into CHRs, and thereby give
a more precise account of exactly what functional dependencies mean; and give
formal proofs about sound and decidable type inference.

We begin with an informal account of CHRs and their relationship to functional
dependencies.

Example 7 Let us return to the collection example:

class Coll c e | c -> e where

empty :: c

insert :: c -> e -> c

member :: c -> e -> Bool

class Eq a => Ord a where

(>=) :: a -> a -> Bool

instance Ord a => Coll [a] a where ...

From the functional dependency c->e we generate the following two constraint
handling rules:
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rule Coll c e1, Coll c e2 ==> e1=e2

rule Coll [a] b ==> a=b

Informally, the first rule says that if the two constraints (Coll c e1) and (Coll

c e2) both hold, then it must be that e1 and e2 are the same type. This rule is
generated from the class declaration alone, and expresses the idea that c uniquely
determines e. The second rule is generated from the instance declaration, together
with the functional dependency, and states that if (Coll [a] b) holds, then it
follows that a = b. During type inference, the inference engine is required to solve
sets of constraints, and it can apply these improvement rules to narrow its choices.

These CHRs have one or more type-class constraints on the left hand side, and
one or more equality constraints on the right. The logical interpretation of ==> is
implication. Its operational interpretation — that is, its effect on the type inference
process — is this: when the type inference engine sees constraints matching the left
hand side, it adds the constraints found on the right-hand side.

Superclass relations also generate CHR rules. The superclass relationship class

Eq a => Ord a where... generates the CHR

rule Ord a ==> Eq a

Informally, the rule states that if the constraint Ord a holds then also the constraint
Eq a holds. During typing this rule is used to check that all superclass constraints
are also satisfied.

The instance declaration for Coll [a] a also generates the following CHR rule,
which allows us to simplify sets of constraints to remove class constraints which are
known to hold.

rule Coll [a] a <==> Ord a

Informally, the rule states that the constraint Coll [a] a holds if and only if Ord a

holds. The logical interpretation of the <==> is bi-implication, while the operational
interpretation is to replace the constraints on the left hand side by those on the
right hand side.

In the result of this Section we define CHRs more formally.

3.1 Definition of Constraint Handling Rules

For our purposes, CHRs are of the following two forms

Simplification rule c <==> d1, . . . , dm

Propagation rule c1, . . . , cn ==> d1, . . . , dm

In these rules c, c1, . . . , cn are type class constraints; and d1, . . . , dm are type class
constraints or equations. The simplification rule states that given constraint c we
can replace it by constraint d1, . . . , dm. The propagation rule states that given
constraint c1, . . . , cn, we can add d1, . . . , dm. We say a CHR is single-headed if the
left hand side has exactly one user-defined constraint. A CHR system is a set of
CHR rules.

CHR rules can also be interpreted as first-order formulae. We assume that the
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reader is familiar with substitutions, renamings, most general unifiers (m.g.u.) and
the basics of first-order logic (Shoenfield, 1967; Lassez et al., 1987). In the following,
we assume that ↔ denotes Boolean equivalence and ⊃ denotes Boolean implication.
We often write ō to abbreviate a sequence of objects o1,...,on. We write fv(o) to
denote the set of free variables in some object o. The translation function [[·]] from
CHR rules to first-order formulae is:

[[rule c <==> d1, . . . , dm]] = ∀ā′(c↔ (∃b̄ d1 ∧ · · · ∧ dm))

[[rule c1, . . . , cn ==> d1, . . . , dm]] = ∀ā(c1 ∧ · · · ∧ cn ⊃ (∃b̄ d1 ∧ · · · ∧ dm))

where ā′ = fv(c), ā = fv(c1 ∧ · · · ∧ cn) and b̄ = fv(d1 ∧ · · · ∧ dm)− ā. We define the
translation of a set of CHRs as the conjunction of the translation of each individual
CHR rule.

The operational semantics of CHRs are straightforward. CHRs manipulate con-
straint stores, i.e. sets of primitive constraints. In contrast to the original CHR
semantics which is based on multi-set rewriting, we use a set based operational
semantics to match more closely the logical semantics. We can apply a rule R in
program P to a constraint C if the left-hand side of a R is a subset of C (we as-
sume that substitutions represented by equations have already been applied, see
examples below). The resulting constraint C ′ replaces this subset by the right hand
side of the rule (if it is a simplification rule), or adds the right hand side of the
rule to C (if it is a propagation rule). This derivation step is denoted C �R C ′, or
sometimes C �P C ′ when we do not want to specify which particular rule in CHR
system P is being applied.

More precisely, we assume that each constraint C is split into a set of type class
constraints Cu and a set of equations Ce, i.e. C = Cu∪Ce. Variables in CHR rules R
are renamed before rule application. We distinguish among the following derivation
steps:

(Solve Step) Cu ∪ Ce �P φCu ∪ Ce

φ mgu of Ce

(Simp) Cu ∪ Ce �P (Cu − c′) ∪ Ce ∪ θ(d̄)
if rule c <==> d̄ ∈ P and there exists a subset c′ ⊆ Cu

and a substitution θ on variables in the rule
such that θ(c′) ≡ c

(Prop) Cu ∪ Ce �P Cu ∪ Ce ∪ θ(d̄)
if rule c̄ ==> d̄ ∈ P and there exists a subset c̄′ ⊆ Cu

and a substitution θ on variables in the rule
such that θ(c̄′) ≡ c̄

In (Solve Step), we assume that we normalize stores by building most general uni-
fiers. We often perform this step implicitly. In rules (Simp) and (Prop) we implicitly
assume that we use new renamed copies of rules in P to avoid variable clashes. We
write ≡ to denote syntactic equality.
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To prevent the infinite application of CHR propagation rules we assume that these
rules are only applied once on the same set of constraints. We refer to (Abdennadher,
1997) for more details. Examples explaining CHR application steps follow shortly.

3.2 Properties of CHRs

A set of CHRs may or may not have three important properties, namely confluence,
termination, and range-restrictedness. We define all three here for later reference.

A derivation, denoted C �∗
P C ′ is a sequence of derivation steps using rules in

P where no derivation step is applicable to C ′. A derivation C �∗
P C ′ is successful

iff C ′
e is satisfiable; that is, the set of equations in C ′ has a unifier.

Termination means that every derivation sequence terminates:

Definition 1 (Termination) A CHR system P is terminating iff for any con-

straint C there exists a constraint C ′ such that C �∗
P C ′.

Confluence means that different derivations starting from the same point can
always be brought together again:

Definition 2 (Confluence) A CHR system P is confluent iff for each con-

straint C0 for any two possible derivation steps applicable to C0, say C0 �P C1

and C0 �P C2, then there exist derivations C1 �∗
P C3 and C2 �∗

P C4 such that

C3 is equivalent (modulo new variables introduced) to C4, i.e. |= (∃̄fv(C0)C3) ↔
(∃̄fv(C0)C4).

In this definition, we write |= to denote the model-theoretic entailment relation;
and we write ∃̄āC as a short-hand for ∃b̄.C where b̄ = fv(C)− ā.

Note that, when a set of CHRs are terminating, we can easily test for confluence
by checking that all “critical pairs” are joinable (Abdennadher, 1997).

Finally, range-restrictedness for a CHR means that all variables on the right-hand
side are bound by variables on the left-hand side. Silently, we assume that equations
on the right-hand side of a CHR, say lhs ==> rhs, have a unifier. Otherwise, we
can effectively replace the right-hand side by False which yields the equivalent (and
range-restricted) CHR lhs ==> False.

Definition 3 (Range-Restricted) A CHR lhs <==> rhs (or lhs ==> rhs)

is range-restricted iff fv(ψ(rhs)) ⊆ fv(ψ(lhs)) where ψ is an m.g.u. of all equa-

tions in rhs.

For the purposes of this paper, we often use a more specific definition.

Definition 4 (Variable-Restricted) A CHR lhs <==> rhs (or lhs ==> rhs)

is variable-restricted iff fv(rhs) ⊆ fv(lhs).

Note that each variable-restricted CHR is immediately range-restricted. However,
the other direction does not hold necessarily. As an example, consider F a <==> G a b, a =
[b] which is range-restricted. Because, applying the unifier of the right-hand side
yields F [b] <==> G [b] b. However, F a <==> G a b, a = [b] is not variable-
restricted because b 6∈ fv(F a).
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Type variables a, b, c
Type constructors T
Type classes TC
Types t ::= a | t → t | T t̄
Type Schemes σ ::= t | ∀ā.C ⇒ t

Class constraint CC ::= TC t̄
Context C, D ::= CC | C, C
Functional dependencies fd ::= a1, . . . an → a
Declarations d ::= class C => TC ā | fd1, . . . , fdm

| instance C => TC t̄

Fig. 1. Syntax of type and class declarations

4 Using CHRs to understand Haskell with Functional Dependencies

Now that we have said what CHRs are, we are ready to show how to use CHRs
to understand Haskell extended with functional dependencies, a language we call
“Haskell-FD”. By “understand” we mean several things: we can give the meaning
of a Haskell-FD program by translating it to CHRs (Section 4.2); we can use CHRs
to reason about the equivalence of Haskell-FD programs (Section 4.3); we can use
CHRs as a framework for type inference for Haskell-FD (Section 4.4). Lastly, in
Section 5 we verify that Jones’ restrictions allow us to establish some essential
conditions in terms of CHRs which are the basis for sound, complete and decidable
type inference.

We begin by fixing the language we consider. For the moment, we consider only
the class and instance declarations, whose syntax is given in Figure 1. We include
expressions later in Section 4.4 where we consider the formal type inference system.

To make the type-class system well behaved, Haskell imposes a number of con-
ditions on the class and instance declarations, which we adopt:

Definition 5 (Basic Conditions) The Basic Conditions on class and instance

declarations are these:

• The context C of a class and instance declaration can mention only type

variables, not type constructors, and in each individual class constraint CC

all the type variables are distinct.

• In an instance declaration instance C => TC t1 . . . tn, at least one of the

types ti must not be a type variable.

• The instance declarations must not overlap. That is, for any two instances

declarations instance C => TC t1 . . . tn and instance C ′ => TC t′1 . . . t
′
n

there is no substitution φ such that φ(t1) = φ(t′1),....,φ(tn) = φ(t′n).

Functional dependencies, written fd in Figure 1, appear only in class declarations:

class C => TC a1 ... an | fd1, ..., fdm

Each functional dependency takes the form

ai1 , ..., aik
-> ai0
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where {i0, i1, ..., ik} ⊆ {1...n}. We commonly refer to ai1 , ..., aik
as the domain and

ai0 as the range of the functional dependency.
Some Haskell systems (HUGS, n.d.; GHC, n.d.) that allow functional dependen-

cies usually allow dependencies of the form a -> b c, with multiple type variables
to the right of the arrow. We refer to such FDs as multi-range FDs, as opposed to
single-range FDs which have a single variable to the right of the arrow. Initially we
only consider the single-range form, later in Section 6.3 we will consider multi-range
FDs.

4.1 Jones’ Functional Dependency Restrictions

In Jones’ original paper (Jones, 2000), the following two restrictions are imposed
on functional dependencies:

Definition 6 (Consistency Condition) Consider a declaration for class TC

and any pair of instance declarations for that class:

class C => TC a1 ... an | fd1, ..., fdm

instance D1 => TC t1...tn
instance D2 => TC s1...sn

Then, for each functional dependency fdi, of form ai1 , ..., aik
-> ai0 , the following

condition must hold: for any substitution φ such that

φ(ti1 , ..., tik
) = φ(si1 , ..., sik

)

we must have that φ(ti0) = φ(si0).

Definition 7 (Coverage Condition) Consider a declaration for class TC,

and any instance declaration for that class:

class C => TC a1 ... an | fd1, ..., fdm

instance D => TC t1...tn

Then, for each functional dependency fdi = ai1 , ..., aik
-> ai0 , we require that

fv(ti0) ⊆ fv(ti1 , . . . , tik
)

The Consistency Condition is easy to motivate: it rules out inconsistent instance
declarations (see Example 5). The motivation for the Coverage Condition1 was that
determining the types in the domain of the dependency should fully determine the
type in the range. For example, consider the recursive Vec instance given earlier
(Example 3):

class Mul a b c | a b -> c

instance Mul a b c => Mul a (Vec b) (Vec c) where ...

Fixing the first two arguments of Mul to (say) Int and Vec Int does not immedi-
ately fix the third argument c; formally c 6∈ fv(a, Vec b). Instead, the programmer
intends that it is fixed via the context (Mul a b c) of the instance declaration.

1 Note that in the conference version (Duck et al., 2004) we referred to the Coverage Condition as
the “Termination Condition”. We will shortly see why our new terminology is more appropriate.
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The fact that the instance declaration does not satisfy the Coverage Condition
leads directly to the non-termination we saw in Example 6.

As it stands the two conditions above are not sufficient to ensure sound, complete
and decidable type inference. However, adding a third restriction, the “Bound
Variable Condition”, does guarantee sound, complete and decidable type inference:

Definition 8 (Bound Variable Condition) For each class declaration

class C => TC a1 ... an | fd1, ..., fdm

we require that fv(C) ⊆ {a1, . . . , an}. Furthermore, for each instance declaration

instance C => TC t1...tn

we require that fv(C) ⊆ fv(t1, . . . , tn).

We will often refer to the three conditions (Coverage, Consistency, and Bound
Variable) as the FD-Conditions. In Section 5 we discuss and motivate each of the
FD-Conditions, and prove that they guarantee sound, complete and decidable type
inference.

4.2 Translation to CHRs

We are now in the position to formalize the translation of class and instance dec-
larations, including functional dependencies, into CHRs. The translation is given
in Figure 2. The important point is that the translation makes explicit all improve-
ment rules which are implied by the logical reading of the functional-dependency,
super-class, and instance relations.

It is convenient to have names for particular sets of CHRs:

Definition 9 If p is a set of class and instance declarations, we define the

following set of CHRs:

• MPTC(p) denotes set of all class and instance CHRs generated from p. (The

class and instance CHRs are defined in Figure 2.) These CHRs simply reflect

the basic type-class system, ignoring functional dependencies.

• FD(p) denotes set of all functional-dependency and instance-improvement

CHRs generated from p (see Figure 2). These are the CHRs generated by the

functional dependencies.

• CHR(p) = MPTC(p) ∪ FD(P ) denotes set of all CHRs generated from p.

4.3 Using CHRs to reason about FDs: Implicit Improvement Rules

CHRs give us a way to reason formally about the effect of adding or removing
functional dependencies.

Example 8 Consider the following class and instance declarations.

class D a b | a->b

class D a b => C a b
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To translate a set of Haskell class and instance declarations into CHRs, proceed
as follows. For each class declaration

class C => TC a1 ... an | fd1, ..., fdm

where each fdi is of the form ai1 , ..., aik -> ai0 , we generate the following CHRs:

• The class CHR:

rule TC a1 . . . an ==> C

• The functional-dependency CHRs: for each functional dependency fdi in
the class declaration, we generate

rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0

where θ(bij ) = aij , j > 0 and θ(bl) = bl if ¬∃j.l = ij .

In addition, for each instance declaration of the form

instance C => TC t1 . . . tn

we generate the following CHRs:

• The instance CHR:

rule TC t1 . . . tn <==> C

If the context C is empty, we introduce the always-satisfiable constraint
True on the right-hand side of generated CHRs.

• The instance-improvement CHRs: for each functional dependency fdi in
the class declaration, we generate

rule TC θ(b1) . . . θ(bn) ==>ti0 = bi0

where b1 . . . bn are distinct type variables, θ(bij ) = tij , j > 0 and θ(bl) = bl

if ¬∃j.l = ij .

Here, a substitution θ = [t1/a1, . . . , tn/an] simultaneously replaces each ai by its
corresponding ti.

Fig. 2. Translation of class and instance declarations into CHRs

instance D [a] a

instance C [a] a

Would it make any difference if we added a functional dependency to the class
declaration for C, thus?

class D a b => C a b | a->b

Intuitively, we might expect that it would have no effect, because D is superclass of
C, and D has the functional dependency. And indeed, that turns out to be the case.
Here are the CHRs arising from the original text:

rule D a b, D a b’ ==> b=b’ -- (FD-D) Functional-dependency CHR for D

rule D [a] a <==> True -- (Inst-D) Instance CHR for D

rule D [a] b ==> a=b -- (Imp-D) Instance-improvement CHR for D

rule C a b ==> D a b -- (Cls-C) Class CHR for C

rule C [a] a <==> True -- (Inst-C) Instance CHR for C

Adding the functional dependency to class C would add two new rules
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(Var)
(x : σ) ∈ Γ

C, Γ ` x : σ
(Let)

C, Γ ` e : σ

C, Γ, x : σ ` e′ : t′

C, Γ ` let x = e in e′ : t′

(Abs)
C, Γ, x : t ` e : t′

C, Γ ` λx.e : t → t′
(App)

C, Γ ` e1 : t1 → t2

C, Γ ` e2 : t1

C, Γ ` e1 e2 : t2

(∀ Elim)

C, Γ ` e : ∀ā.C′ ⇒ t

[[P ]] |= C ⊃ [t̄/ā]C′

C, Γ ` e : [t̄/ā]t

(∀ Intro)

C ∧ C′, Γ ` e : t

ā 6∈ fv(C, Γ)

C, Γ ` e : ∀ā.C′ ⇒ t

(Class)

ā = fv(t̄)− fv(Γ) Γ′ = Γ ∪ {xi : ∀ā, b̄i.TC t̄ ∧ C′
i ⇒ ti | i ∈ I}

C, Γ′ ` p : σ′

C, Γ ` class C′ ⇒ TC ā | fd1, . . . , fdm where [xi : ∀b̄i.C
′
i ⇒ ti]i∈I in p : σ′

(Inst)

C, Γ ` p : σ′′

C, Γ ` ei : ∀ā′i.C′
i ⇒ t′i (xi : ∀āi.TC t̄ ∧ C′′

i ⇒ ti) ∈ Γ for i ∈ I

[[P ]] |= (∀ā′i.(TC t̄′ ∧ C′
i) ⇒ t′i) � (∀āi.(TC t̄ ∧ C′′

i ∧ t̄′ = t̄) ⇒ ti) for i ∈ I

C, Γ ` instance C′ ⇒ TC t̄′ where [xi = ei]i∈I in p : σ′′

Fig. 3. Typing rules

rule C a b, C a b’ ==> b=b’ -- (FD-C) Functional dependency CHR for C

rule C [a] b ==> a=b -- (Imp-C) Instance-improvement CHR for C

But it is easy to see that these two new rules are derivable from the previous set.
For example, starting with the left-hand-side of (FD-C), we can reason thus:

C a b,C a b′

�Cls−C C a b,C a b′, D a b,D a b′

�Imp−D C a b,C a b′, D a b,D a b′, b = b′

Hence, rule (FD-C) adds nothing new: the CHR systems with and without the two
new rules are equivalent

4.4 Type Inference for Type Classes

Next, we show how the process of type inference for type classes is connected to
our CHR encoding. The following material is taken from (?). We introduce type
class systems as an extension of the Hindley/Milner system. We assume the type
language from Figure 1 but additionally introduce expressions. For brevity, we
ignore recursive functions. We assume that a program consists of an expression,
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possibly preceded by a sequence of class and instance declarations.

Expressions e ::= x |λx.e | e e | let x = e in e

Programs p ::= e

| class C ⇒ TC ā | fd1, . . . , fdm

where [xi : σi]i∈I in p

| instance C ⇒ TC t̄where [xi = ei]i∈I in p

4.4.1 Typing rules

The typing rules for programs are described in Figure 3. Typing judgments are of
the form C,Γ ` p : σ where C is a (global) constraint, Γ is a type environment
associating free variables with their type and σ is a type scheme. Always implicit is
the type class theory P describing the set of CHRs obtained from the translation of
classes, instances and functional dependencies in p (see Figure 2). We say a program
is well-typed if we can build a derivation tree according to the typing rules and the
constraint in the final typing judgment is satisfiable.

Rules (Var) – (∀ Intro) are the standard type class rules which can also be
found in the theory of qualified types (Jones, 1992). We assume that let-bound
and method identifiers are a-renamed to avoid name clashes. The set of free vari-
ables of an environment are computed by taking fv({x1 : σ1, ..., xn : σn}) to be
equal to fv(σ1, ..., σn). In case of type schemes, we assume that fv(∀ā.C ⇒ t) =
fv([b/a]C, [b/a]t)− b̄ where b̄ are fresh variables and [b/a] is a renaming.

In rule (∀ Elim) the statement [[P ]] |= C ⊃ [t̄/ā]C ′ requires that constraint C
implies the instantiated constraint [t̄/ā]C ′ (with ā replaced by t̄) in any model of
[[P ]] (we refer here to the logical reading of CHRs). In rule (Class) we process class
declarations by adding the method declarations to the environment. Rule (Inst)
defines an instance of class TC. We require that the type of each member function
for a particular instance is subsumed by the type specified by the class declaration.
We define F |= (∀ā1.C1 ⇒ t1) � (∀ā2.C2 ⇒ t2) iff F |= C2 ⊃ ∃ā1.(C1 ∧ t1 = t2)
where we assume there are no name clashes between a1 and a2 (i.e. ā1 ∩ ā2 = ∅)
and F is a first-order formula. We say σ1 subsumes σ2 w.r.t. F if F |= σ1 � σ2.

Example 9 Consider the program

class C a where f :: a->a

instance C Int where f x = x

instance C Bool where f x = 1

The class declaration states that x has type ∀a.C a⇒ a→ a. The first instance dec-
laration implements an instance of C at type Int where the member function x has
type ∀a.a → a. This is correct but more general than the Int → Int required. The
second instance has a member function of type ∀a.a → Int which is incompatible
with the type Bool → Bool required.
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4.4.2 Ambiguity

An important restriction usually made on types appearing in typing derivations is
that that they be unambiguous. This is an essential requirement to ensure a well-
defined semantics for programs (Jones, 1993; ?). An expression whose is ambiguous
does not have a well-specified run-time behavior.

Example 10 Consider

class Show a where

show :: a->String

read :: String->a

f s = show (read s)

Note that the right-hand side expression show (read s), and the lambda-bound
variable s, are both of type String. Additionally we find the constraint Show a, so
f would get the inferred type

f :: Show a => String -> String

This type is ambiguous. The type variable a is not mentioned in the part after the
“=>”, and hence a call of f cannot specify which Show instance to pick. Yet the
chosen instance may make a difference at runtime: do we read a Float from s and
then convert it back to a String? Or do we read a Bool? Or what? Clearly, such
ambiguous programs must be rejected.

Example 11 Functional dependencies require us to revise the definition of ambi-
guity. Consider

class C a b | a -> b

g :: C a b => a -> a

g = ...

Here, g’s type should be unambiguous even though b is not mentioned in the part
after the “=>”, because fixing a fixes b, via the functional dependency.

We revise the definition of unambiguity to require simply that all variables ap-
pearing in the constraint component can be uniquely determined from the type
component w.r.t. program theory P . An unambiguous type is then formally de-
fined as follows:

Definition 10 (Unambiguity) Let P be the program theory and ρ be a vari-

able renaming on ā. Then ∀ā.C ⇒ t is unambiguous iff [[P ]] |= (C ∧ ρ(C)∧ (t =
ρ(t))) ⊃ (a = ρ(a)) for each a ∈ ā.
We can easily extend the definition of unambiguity from types to judgments.

The judgement C,Γ ` p : t is unambiguous iff ∀ā.C ⇒ t is unambiguous where

ā = fv(C, t)− fv(Γ).

We demand that all typing judgments and type schemes appearing in a typing
derivation are unambiguous. This requirement, together with the assumption that
CHR derivations are unambiguous, leads to a well-defined semantics for programs (?).
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(Var)
(x : ∀ā.C ⇒ t) ∈ Γ b̄ new

Γ, x `inf ([b̄/ā]C, [b̄/ā]t)
(Let)

Γ, e `inf (C1, t)

σ = gen(C1, Γx, t) unambig(P, σ)

Γ, x : σ, e′ `inf (C3, t
′)

sat(P, C3)

Γ, let x = e in e′ `inf (C3, t
′)

(Abs)
Γ, x : a, e `inf (C, t′) a new

Γ, λx.e `inf (C, a → t′)
(App)

Γ, e1 `inf (C1, t1)

Γ, e2 `inf (C2, t2)

C′ = C1 ∧ C2 ∧ (t1 = t2 → a)

a new sat(P, C′)

Γ, e1 e2 `inf (C′, a)

(Class)

ā = fv(t̄)\fv(Γ) Γ′ = Γ ∪ {xi : ∀ā, b̄i.TC t̄ ∧ C′
i ⇒ ti | i ∈ I}

Γ′, p `inf (C, t′)

Γ,
class C′ ⇒ TC ā | fd1, . . . , fdm

where [xi : ∀b̄i.C
′
i ⇒ ti]i∈I

in p `inf (C, t′)

(Inst)

Γ, ei `inf (C′
i, t

′
i) σ′

i = gen(Γ, C′
i, t

′
i)

(xi : ∀āi.(TC t̄ ∧ Ci) ⇒ ti) ∈ Γ ā′i = fv(t′i, C
′
i)\fv(Γ)

unambig(P,∀ā′i.(TC t̄′ ∧ C′
i) ⇒ t′i)

subsumes(P, (∀ā′i.(TC t̄′ ∧ C′
i) ⇒ t′i), (∀āi.(TC t̄ ∧ C′′

i ∧ t̄′ = t̄) ⇒ ti))

for i ∈ I

Γ, p `inf (C′′, t′′)

sat(P, C′′′)

Γ, instance c1, . . . , cm ⇒ TC t̄′ where [xi = ei]i∈I in p `inf (C′′, t′′)

Fig. 4. Inference System

4.4.3 Type inference

To support type inference for type classes, we follow the standard approach, by
generating constraints from the program text and checking whether constraints are
satisfiable and types are unambiguous. In case of type annotations, we perform an
additional subsumption check. The important point is that all three checks can be
phrased in terms of the following CHR-based procedures. In Figure 4 we specify
an inference system in terms of judgments of the form Γ, p `inf (C, t) where en-
vironment Γ and program p are input parameters and constraint C and type t are
output parameters. Note that in rule (Var) we assume as an invariant that types
in the environment are unambiguous and their constraint component is satisfiable.
In rule (Let) and (Inst) we make use of a generalization procedure to build type
schemes. We define gen(Γ, C, t) = σ where ā = fv(C, t)\fv(Γ), σ = ∀ā.C ⇒ t and
fresh variables b̄.

The satisfiability check is defined as follow:
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sat(P,C)
= True if C �∗

P C ′ such that |= ∃fv(C ′
e).C

′
e

= False otherwise
We simply build a CHR derivation for C (assuming the CHRs are terminating) and
check that the equations in the final store have a unifier. Note that C ′

e refers to all
equations in C ′

e and the condition |= ∃fv(C ′
e).C

′
e holds if a unifier exists.

Unambiguity is checked as follow:

unambig(P,∀ā.C ⇒ t)
= True if C ∧ ρ(C) ∧ t = ρ(t) �∗

P C ′

such that |= C ′ ⊃ (a = ρ(a)) for each a ∈ ā
where ρ is a variable renaming on ā

= False otherwise

Note that w.l.o.g. we assume that ā ⊆ fv(C, t).
The subsumption checking procedure is defined as follows:

subsumes(P,∀ā.C ⇒ t,∀ā′.C ′ ⇒ t′)
= True if C ′ ∧ t′ = a′ ∧ a = a′ �∗

P C1, and
C ′ ∧ t′ = a′ ∧ a = a′ ∧ t = a ∧ C �∗

P C2

such that |= (∃̄V C1) ↔ (∃̄V C2)
where a, a′ are new variables and
V = fv(C ′ ∧ t′ = a′ ∧ a = a′) ∪ fv(∀ā.C ⇒ t)

= False otherwise
The idea here is to rewrite ∀ā.C ⇒ t into the equivalent type scheme ∀ā, a.C ∧ t =
a⇒ a where a is a new variable, and then use equivalence testing to test implication.

We know, from earlier work (?), that these procedures are sound for arbitrary
CHRs. That is all answers are correct. We also know that if CHRs are confluent,
terminating, and range-restricted (Section 3.2), then these procedures are:

• decidable: the algorithm always terminates; and

• complete: if there is an answer then the algorithm will find it.

In fact, the completeness result for the subsumption procedure additionally de-
mands that the inferred type must be unambiguous. We refer the interested reader
to (?) for more details.

Under what conditions does a source program involving functional dependencies
generate a set of CHRs that enjoys these properties? That is the question to which
we now turn.

5 Main Result

Our main result is that type inference for Haskell-FD programs that satisfy the
three FD-Conditions of Section 4.1 is sound, complete, and decidable.

We prove this result in two steps.

Theorem 1 (Completeness and Decidability) Let p be a set of class and

instance declarations (Definition 1). Then, if the CHR system MPTC(p) is
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confluent, terminating, and range-restricted, and p satisfies the FD-Conditions

(Section 4.3), then CHR(p) is also confluent, terminating, and range-restricted.

(Recall that MPTC(p) and CHR(p) were defined Section 4.2.)

The theorem says that, given any variant of Haskell (not necessarily even satis-
fying the Basic Conditions of Definition 5) that is well-behaved (by which we mean
the CHR system is confluent, terminating, and range-restricted) without functional
dependencies, adding functional dependencies to it maintains this good behavior,
provided the FD-conditions hold. A proof is given in Appendix A.1.

The Basic Conditions were chosen by the designers of Haskell as a simple, syntac-
tic way to guarantee that the type class system is well behaved. More precisely, if
program p satisfies the Basic Conditions, then MPTC(p) is confluent, terminating,
and range-restricted. Our desired corollary follows immediately:

Corollary 1 (Basic FD-Conditions Completeness and Decidability)
Type inference is sound, complete, and decidable for a Haskell program that sat-

isfies both the Basic Conditions and the FD-Conditions.

Ross Paterson recently proposed the following “alternative” conditions for class
and instance declarations.

Definition 11 (Paterson Conditions) The Paterson Conditions on class and

instance declarations are these:

• The context C of a class declaration can mention only type variables, not type

constructors, and in each individual class constraint CC all the type variables

are distinct.

• For each declaration instance C => TC t1 . . . tn:

— No variable has more occurrences in a type class constraint in the context

C than the head TC t1 . . . tn.

— Each type class constraint in the context C has fewer constructors and

variables (taken together counting repetitions) than the head.

• The instance declarations must not overlap. That is, for any two instances

declarations instance C => TC t1 . . . tn and instance C ′ => TC t′1 . . . t
′
n

there is no substitution φ such that φ(t1) = φ(t′1),....,φ(tn) = φ(t′n).

The first Basic Condition is only enforced on class declarations whereas the second
Basic Condition is completely replaced by some alternative conditions. The third
Basic Condition remains unchanged.

If we only focus on instances, the Paterson Conditions strictly subsume the Basic
and Bound Variable Conditions. That is, any instance which satisfies the Basic and
Bound Variable Conditions also satisfies the Paterson Conditions. For example, the
first part of the second Paterson Condition implies that each variable in the context
must appear in the head of a instance declaration. Otherwise, there would be more
occurrences in the head than the context. Hence, the Bound Variable Condition for
instances is satisfied.

However, there are instances which satisfy the Paterson Conditions but not the
Basic Conditions. For example, the following is a legal Paterson program.
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class C a b

instance (C b b, C b [a]) => C [a] (b,b)

But this this program does not satisfy the Basic Conditions. The constraint C b

[a] mentions a type constructor and there are repeated occurrences of b in C b b.
In order to apply our Theorem 1 to Paterson programs p, we first need to ver-

ify that the Paterson Conditions indeed guarantee termination and confluence of
MPTC(p). Roughly, the proof goes as follows.

Following (?), we show that there exists a ranking function such that for each dec-
laration instance (CC1, ..., CCn) => Head we have that rank(Head) > rank(CCi)
for each i = 1, ..., n. There is no interaction between derivations of context con-
straints, hence, it is sufficient to compare them individually against the head. As
our ranking function we take rank(TC t1 . . . tn) = rank(t1 ) + ... + rank(tn) and
rank(T t1 . . . tn) = 1 +rank(t1 )+ ...+rank(tn) where rank(a) > 0 for each variable
a. Constant type class constraints are ignored from consideration. This “termina-
tion” order implies that instances are terminating. A similar argument applies to
class rules. The third Paterson Condition guarantees confluence. Hence, we obtain
the following result.

Lemma 1 Let p be a Haskell program satisfying the Paterson Conditions. Then,

MPTC(p) is confluent and terminating.

As an immediate consequence, we can restate Corollary 1 for Paterson programs.

Corollary 2 (Paterson FD-Conditions Completeness and Decidability)
Type inference is sound, complete, and decidable for a Haskell program that sat-

isfies both the Paterson Conditions and the FD-Conditions.

In the rest of this section we explain exactly why the three FD-Conditions ensure
that the CHRs are well-behaved. Many useful programs do not satisfy the FD-
Conditions, though, and we discuss ways to weaken them in Section 6.

5.1 Confluence

It is essential that the CHR system is confluent (Definition 2), or else all is lost.
The improvement rules are essential to guarantee confluence for program satisfying
the FD-Conditions.

Example 12 Consider again Example 7, which satisfies the three FD-Conditions.
It translates to the following CHRs:

rule Ord a ==> Eq a -- (Super)

rule Coll [a] a <==> Ord a -- (Inst)

rule Coll [a] b ==> a=b, -- (Imp)

rule Coll c e1, Coll c e2 ==> e1=e2 -- (FD)

This CHR system is indeed confluent. For any goal, all possible derivations will lead
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to the same result. We illustrate this on a single example, the critical pair between
the (Imp) and (FD) rule.

Coll [a] a,Coll [a] c
�FD Coll [a] a, a = c

�Inst Ord a, a = c

�Super Ord a,Eq a, a = c

In the first step, we apply rule (FD). Note that we assume set semantics. Hence,
we remove the duplicate copy of Coll [a] a. Note that there is another derivation
which yields the same result.

Coll [a] a,Coll [a] c
�Inst Ord a,Coll [a] c
�Imp Ord a,Coll [a] a, a = c

�Inst Ord a, a = c

�Super Ord a,Eq a, a = c

Here, we apply rule (Inst) first instead of rule (FD). Note that in the second step, we
immediately normalize the store by applying the unifier to user-defined constraints.
The important observation is that both derivations yield equivalent final stores.
Indeed, the above CHRs are confluent. Note that if we remove rule (Imp), the
CHRs become non-confluent.

Non-confluence can arise in several ways. Recall Example 5, which does not satisfy
the Consistency Condition. Its translation to CHRs is as follows:

rule Mul a b c, Mul a b d ==> c=d -- (M1)

rule Mul Int Float c <==> True -- (M2)

rule Mul Int Float c ==> c=Float -- (M3)

rule Mul Int Float c <==> True -- (M4)

rule Mul Int Float c ==> c=Int -- (M5)

We can easily find two contradicting CHR derivations. For example, consider

Mul Int F loat c �M3,M2 c = Float

Mul Int F loat c �M5,M4 c = Int

Hence, the CHR system is not confluent.
It is rather intuitive that the Consistency Condition is necessary to guarantee

confluence. It is much less obvious that the Consistency Condition alone is not
sufficient. Here is a counter-example:

Example 13 The following code fragment forms part of a type-directed evaluator.

data Nil = Nil

data Cons a b = Cons a b

data ExpAbs x a = ExpAbs x a

class Eval env exp t | env exp -> t where

-- env represents environment, exp expression

-- and t is the type of the resulting value

eval :: env->exp->t

instance Eval (Cons (x,v1) env) exp v2
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=> Eval env (ExpAbs x exp) (v1->v2) where

eval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) exp

The Consistency Condition is trivially fulfilled, because there is only one instance.
The translation to CHRs yields

rule Eval env exp t1, Eval env exp t2 ==> t1=t2 -- (E1)

rule Eval env (ExpAbs x exp) v <==>

v=(v1->v2), Eval (Cons (x,v1) env) exp v2 -- (E2)

These CHRs are terminating but non-confluent! Examining the critical pair for
rules (E1) and (E2), we find that (applying (E2) twice)

Eval env (ExpAbs x exp) t1, Eval env (ExpAbs x exp) t2
�∗ t1 = v1 → v2, Eval (Cons (x, v1) env) exp v2,

t2 = v3 → v4, Eval (Cons (x, v3) env) exp v4
Note that rule (E1) cannot be applied on constraints in the final store. But there
is also another non-joinable derivation (applying rule (E1) then (E2))

Eval env (ExpAbs x exp) t1, Eval env (ExpAbs x exp) t2
�∗ t1 = t2, t1 = v5 → v6, Eval (Cons (x, v5) env) exp v6

It turns out that adding the Coverage Condition (which is violated in this example)
is sufficient to guarantee confluence.

5.2 Termination

If type inference is to be decidable, then the CHR system must be terminating
(Definition 1). One very obvious way in which non-termination can arise, even
without functional dependencies, is by allowing instance declarations such as:

instance Foo [Maybe a] => Foo [a]

The context of the declaration includes a constraint Foo [Maybe a] that is no
smaller than the head of the declaration, Foo [a]. Although such instance declara-
tions can sometimes be extremely useful, they are excluded by the Basic Conditions,
and we do not consider them further here. Indeed, the CHRs generated from a pro-
gram satisfying the Basic Conditions, and without functional dependencies, are
always terminating.

Adding functional dependencies changes the picture.

Example 14 Recall these declarations from Example 3:

class Mul a b c | a b -> c

instance Mul a b c => Mul a (Vec b) (Vec c)

whose instance declaration does not satisfy the Coverage Condition. The corre-
sponding instance-improvement CHR is this:

rule Mul a (Vec b) d <==> d=Vec c, Mul a b c -- (M4)
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The program text in Example 6 gives rise to Mul a (Vec b) b; notice the repeated
type variable b. Applying the rules, we find that

Mul a (V ec b) b
�M4 Mul a (V ec c) c, c = V ec b

�M4 Mul a (V ec d) d, d = V ec c, c = V ec b

. . .

Since the last line contains a copy of the first, the CHR derivation, and hence
type inference, is non-terminating. The problem arises because fixing the first two
arguments of Mul to t1 and (Vec t2) respectively fixes the third argument to (Vec t3),
but does not fix the type t3.

The Coverage Condition does not, by itself, guarantee a terminating set of CHRs:
we need the Bound Variable Condition as well.

Example 15 Consider the program.

class D a

class F a b | a->b

instance F [a] [[a]]

instance (D c, F a c) => D [a]

This program satisfies the Consistency and Coverage Conditions, but the instance
declaration for D [a] violates the Bound Variable Condition — the variable c in
the context is not mentioned in the instance head D [a].

Translating these declarations to CHRs gives these rules, among others:

rule F [a] b <==> b=[[a]] -- (R1)

rule D [a] <==> D c, F a c -- (R2)

Note that breaking the Bound Variable Condition results in non-range restricted
(therefore also non-variable-restricted) CHR (R2). Now we can get the following
derivation:

D [[a]]
�R2 D c, F [a] c
�R1 D [[a]], F [a] [[a]], c = [[a]]

The last line contains a copy of the first, so we have found a non-terminating
derivation. The intuition is that while the context of the instance, (D c, F a c),
looks innocuous enough, F’s dependency forces c = [[a]] causing the loop.

5.3 Range Restriction

Example 15 from the previous section shows that non-range-restricted CHRs may
lead to non-termination. Hence, range-restriction is an important condition which
must be satisfied. Interestingly, even if we can establish termination in some other
way, range-restriction in itself is important to guarantee completeness of type in-
ference.
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Example 16 Consider the following program.

class Q a where q :: a

class R a b

instance R a b => Q [a] -- (Q)

instance R Bool Float -- (R1)

instance R Bool Char -- (R2)

exp1 = q :: [Bool]

Note that expression exp1 demands a subsumption check.2 The instance declara-
tion (Q) violates the Bound Variable Condition, and hence the resulting set P of
CHRs is not range-restricted. However, the CHRs are nevertheless confluent and
terminating:

rule Q [a] <==> R a b -- (Q)

rule R Bool Float <==> True -- (R1)

rule R Bool Char <==> True -- (R2)

The trouble is that (a) the program is well-typed (Section 4.4.1), (b) the typing
derivation is unambiguous (Definition 10), but nevertheless (c) the meaning of the
program depends on an arbitrary choice of which instance declaration to use. To
see this, consider the subsumption test for exp1, namely [[P ]] |= (∀a.Q a ⇒ a) �
[Bool]; i.e., the inferred type subsumes the annotated type. This holds if [[P ]] |=
(∃b.R Bool b) and, in the logical reading of CHRs, we can replace the existentially
quantified variable b by either Float or Char.

This arbitrary choice would affect the meaning of the program, just as described
in Section 4.4.2, and hence the inference procedure which tests for subsumption
among (∀c.Q c⇒ c) and Bool w.r.t. P fails. Concretely, following the subsumption
procedure in Section 4.4.3 gives

Bool = a′, a = a′ �∗ Bool = a′, a = a′

and

Bool = a′, a = a′, c = a,Q c �∗ Bool = a′, a = a′, c = a,R Bool b

Note that the two final stores are not logically equivalent.

The requirement that the CHRs be range-restricted, conservatively guarantees
that this situation cannot arise, in much the same way as the restriction to unam-
biguous types and judgements (Section 4.4.2). Range restriction of the CHR system
is in turn guaranteed by the Coverage and Bound Variable Conditions on the source
program.

2 We do not explicitly allow for type annotated expressions in our syntax. It should be clear that
this extension is straightforward.
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6 Variations of Functional Dependencies

Thus far we have used CHRs to prove that the three FD-conditions (Coverage,
Consistency and Bound Variable) are sufficient to guarantee sound, complete, and
decidable type inference. However, while they are sufficient, they are not always
necessary. In particular, the Coverage and Bound Variable Conditions exclude rea-
sonable and useful programs, as we saw in Section 4.1. In contrast, the Consistency
Condition seems entirely reasonable, and is essential for confluence. Hence, our
goal is to seek for more “liberal” FDs which safely break the Bound Variable and
Coverage Condition.

First, in Section 6.1 we show how to safely weaken the Coverage Condition in
a fairly natural way while maintaining confluence. We know from the earlier Sec-
tion 5.2 that the Coverage Condition is essential for termination. Hence, we will
assume termination from now on. It turns out, that the resulting CHRs can be
non-confluent, unless the original FDs are “full”, which again surprised us. In Sec-
tion 6.2, we establish some sufficient conditions under which can transform non-full
FDs to full FD programs such that we achieve confluence. Abandoning the Cover-
age Condition allows us to make use of a richer class of FDs which we discuss in
Section 6.3.

As said we must assume termination once we break the Coverage Condition.
Though, this may be a too strong requirement because CHRs may only terminate for
some goals. Fortunately, all of our results from Section 6.1 apply to “terminating”
goals. Similarly, we can safely drop the Bound Variable Condition as long as we
can guarantee that a specific inference goal is “range-restricted”. This is what we
discuss in Section 6.4.

6.1 Weakening the Coverage Condition

Our next goal is to explore various ways to weaken the Coverage Condition that
still ensure confluence.

Given an instance declaration

instance C => TC t1...tn

and a functional dependency ai1 , ..., aik
-> ai0 for class TC, our key intuition is

this:

fixing ti1 , ..., tik
should fix ti0

But that might happen because of the functional dependencies expressed by the
context C, rather than simply because fv(ti0) ⊆ fv(ti1 , ..., tik

), and that is what the
Weak Coverage Condition says.

Definition 12 (Weak Coverage Condition) For each functional dependency

ai1 , ..., aik
-> ai0 for class TC and instance declaration

instance C => TC t1...tn
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we must have that fv(ti0) ⊆ closure(C, fv(ti1, . . . , tik)) where

closure(C, vs) =
⋃

TC t1 . . . tn ∈ C
TC a1 . . . an | ai1 , ..., aik

-> ai0

{fv(ti0) | fv(ti1 , . . . , tik
) ⊆ vs}

The Weak Coverage and Consistency Condition are essential though not sufficient
to guarantee confluence.

Example 17 Consider the following program.

class F a b c | a->b

instance F Int Bool Char

instance F a b Bool => F [a] [b] Bool

Here is the translation to CHRs.

rule F a b1 c, F a b2 d ==> b1=b2 -- (FD)

rule F Int Bool Char <==> True -- (Inst1)

rule F Int a b ==> a=Bool -- (Imp1)

rule F [a] [b] Bool <==> F a b Bool -- (Inst2)

rule F [a] c d ==> c=[b] -- (Imp2)

Now consider two CHR reduction sequences, both starting with F [a] [b]Bool, F [a] b2 d:

F [a] [b] Bool, F [a] b2 d
�FD F [a] [b] Bool, F [a] [b] d, b2 = [b]
�Inst2 F a b Bool, F [a] [b] d, b2 = [b]

and
F [a] [b] Bool, F [a] b2 d

�Inst2 F a b Bool, F [a] b2 d
�Imp2 F a b Bool, F [a] [c] d, b2 = [c]

The final stores of the two sequences are not logically equivalent, and hence, the
above CHRs are non-confluent. In essence, the above derivations show that the
critical pair between the FD rule and the second instance is not joinable.

The gist of the (non-confluence) problem here is that the FD is not “full”. That
is, in the declaration class F a b c | a->b not all class parameters are involved
in the FD.

Definition 13 (Full Functional Dependencies) We say the functional de-

pendency class TC a1 . . . an|ai1 , ..., aik
-> ai0 for a type class TC is full iff

k = n− 1.

For full FDs we can “shorten” the translation to CHRs by combining the instance
improvement and instance rules into one rule.

Lemma 2 (Full FD Translation Equivalence) For full functional depen-

dencies we can equivalently express the instance and instance improvement CHR

in terms of one single CHR. Specifically, for each

instance C => TC t1 . . . tn
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and full functional dependency ai1 , ..., aik
-> ai0 we generate the following CHR

(instead of the instance and instance improvement CHR):

rule TC θ(b1) . . . θ(bn) <==> ti0 = bi0 , C

where θ(bij ) = tij , j > 0 and θ(bl) = bl if ¬∃j.l = ij .

The real benefit of full FDs is that together with the Weak Coverage Condition
they guarantee confluence

Let’s consider a variant of the example in which the functional dependency is
“full”; we simply drop the third parameter. Using Lemma 2, we can combine the
instance CHR and instance improvement CHR into one rule. For simplicity, we
leave out the rule corresponding to the first instance.

rule F a b1, F a b2 ==> b1=b2 -- (Full-FD)

rule F [a] c ==> c=[b], F a b -- (Full-Inst-Imp)

Now, we find that

F [a] [b], F [a] b2
�Full−FD F [a] [b], b2 = [b]
�Full−Inst−Imp F a b, b2 = [b]

and
F [a] [b], F [a] b2

�Full−Inst−Imp F a b, F [a] b2
�Full−Inst−Imp F a b, F a c, b2 = [c]
�Full−FD F a b, b2 = [b], c = b

Final stores are logically equivalent. Hence, the critical pair between the full FD rule
and the second instance is now joinable. Note that the Weak Coverage Condition
is crucial (see last step in the second derivation).

The above example shows that we need to assume Consistency and Weak Cover-
age and FDs are full. We say that a program p satisfies the Liberal-FD Conditions
iff the Consistency and Weak Coverage Conditions are satisfied.

Theorem 2 (Liberal-FD Confluence) Let p be a set of Haskell class and

instance declarations such that all FDs are full, p satisfies the Liberal-FD Condi-

tions and the CHR system MPTC(p) is confluent and terminating. If the CHR

system CHR(p) is terminating the CHR(p) is also confluent.

A proof is given in Appendix A.2. In our (confluence) proof we only check that
critical pairs are joinable. From that we can conclude confluence if we have termi-
nation. Hence, termination is a necessary assumption because Weak Coverage does
not guarantee termination in general.

Though, we can identify a class of programs for which we can guarantee termi-
nation.

Example 18 Here is an excerpt of the Control.Monad library in GHC.

class (Monad m) => MonadReader r m | m -> r

instance (Monoid w, MonadReader r m) => MonadReader r (WriterT w m)
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The instance breaks the Coverage Condition because r 6∈ fv(WriterT w m). But
variable r is fixed by MonadReader r m. Hence, the Weak Coverage Condition is
clearly satisfied. What is interesting about this example is that the resulting CHRs
are terminating.

rule MonadReader r1 m, MonadReader r2 m ==> r1=r2

rule MonadReader r (WriterT w m) <==> Monoid w, MonadReader r m

rule MonadReader r’ (WriterT w m) ==> r’=r

The last rule is the instance improvement rule. In case we break the Coverage
Condition such rules introduce fresh variables and therefore CHRs may become
non-terminating (see the earlier Example 14). Though, this rule is trivial here.
Effectively, we can replace this rule by

rule MonadReader r (WriterT w m) ==> True

Hence, CHRs are terminating. Then, Theorem 2 applies and thus we obtain con-
fluence. Our program also satisfies the Bound Variable Condition. Hence, type
inference is complete and decidable here.

The conclusion is that if the range FD parameter in the instance head is a vari-
able, the resulting instance improvement rule is trivial and therefore does not en-
danger termination of CHRs.

Definition 14 (Terminating Weak Coverage Condition) For each func-

tional dependency ai1 , ..., aik
-> ai0 for class TC and instance declaration

instance C => TC t1...tn

where the Coverage Condition is broken, we must have that the Weak Coverage

Condition is satisfied and ti0 is a variable.

It follows immediately that such programs maintain the good CHR properties.

Corollary 3 Let p be a set of class and instance declarations such that the

CHR system MPTC(p) is confluent, terminating, and range-restricted, all FDs

are full, the Terminating Weak Coverage and Consistency Condition is satisfied.

Then, CHR(p) is also confluent, terminating, and range-restricted.

In the event that we cannot guarantee termination and range-restriction in gen-
eral not all is lost as long as we restrict ourselves to “terminating” and “range-
restricted” goals.

Corollary 4 Let p be a set of Haskell class and instance declarations such that

all FDs are full, p satisfies the Liberal-FD Conditions and MPTC(p) is confluent.

Let C be constraint for which CHRs are terminating and range-restricted. Then,

the CHR solver is confluent for goal C.

The above follows from results which we discuss in the upcoming Section 6.4.
The following example shows that we can generalise the Weak Coverage Condition

still further.
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Example 19 Consider

class G a b | a->b

class H a b | a->b

class F a b | a->b

instance (G a c, H c b) => F [a] [b]

The above instance does not satisfy the Weak Coverage condition. However, the
range variable b is captured by H c b where c is captured by G a c where a is
in the domain of the FD. A more realistic example is given in Appendix B (see
instance (S3)). The difference to our previous definition is that as long there is a
“sequence” of FDs which captures the range variable, we are fine.

Definition 15 (Refined Weak Coverage Condition) For each functional

dependency ai1 , ..., aik
-> ai0 for class TC and

instance C => TC t1...tn

we must have that fv(ti0) ⊆ closure(C, fv(ti1, . . . , tik). where closure(C, vs) is

the least fix-point of the following equation.

F (X) =
⋃

TC t1 . . . tn ∈ C
TC a1 . . . an | ai1 , ..., aik

-> ai0

{fv(ti0) | fv(ti1 , . . . , tik
) ⊆ X}

It is not difficult to restate Theorem 2 (and Corollaries 3 and 4) using the Refined
Weak Coverage Condition, where the functional dependencies are full.

6.2 Sound Non-Full Functional Dependencies

We investigate the issue of non-confluence raised by non-full FDs in Example 17.
Our goal is to transform non-full FD programs into full FD programs such that we
can apply Theorem 2 to the resulting program. The idea is to remove non-full FD
relations and introduce appropriate subclasses with full FD relations instead.

Example 20 Recall Example 17.

class F a b c | a->b

instance F Int Bool Char

instance F a b Bool => F [a] [b] Bool

As observed the CHR arising out of the above program are non-confluent. We
perform a simple transformation where we drop F’s FD a->b but introduce a sub-
class G a b | a->b. Additionally, we project all of F’s instances onto G.

class G a b | a->b

class G a b => F a b c

instance F Int Bool Char

instance F a b Bool => F [a] [b] Bool

instance G Int Bool

instance G a b => G [a] [b]
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The new class G is somewhat artificial. Its sole purpose is to encode the improvement
condition specified by F’s non-full FD. Consider the CHR arising.

rule F a b c ==> G a b -- (Super)

rule F Int Bool Char <==> True -- (F-Inst1)

rule F [a] [b] Bool <==> F a b Bool -- (F-Inst2)

rule G a b, G a c ==> b=c -- (G-FD)

rule G Int Bool <==> True -- (G-Inst1)

rule G Int a ==> a=Bool -- (G-Imp1)

rule G [a] [b] <==> G a b -- (G-Inst2)

rule G [a] c ==> c=[b] -- (G-Imp2)

For example, rule (FD) in Example 17 is encoded by rules (Super) and (G-FD).
Similarly, we find that the all other improvement rules in Example 17 are repre-
sented. Note that the above CHRs are “stronger” than the ones in Example 17
due to the presence of the new type class G. The benefit of the encoding is that
the above CHRs are confluent. Note that FDs are now full and the introduction of
G does not introduce any non-confluence which would not have been there before.
Hence, Theorem 2 applies. Consider the previously problematic goal which is now
joinable.

F [a] [b] Bool, F [a] b2 d
�2

Super F [a] [b] Bool, F [a] b2 d,G [a] [b], G [a] b2
�G−FD F [a] [b] Bool, F [a] [b] d,G [a] [b], G [a] [b], b2 = [b]
�F−Inst2 F a b Bool, F [a] [b] d,G [a] [b], G [a] [b], b2 = [b]
�G−Inst2 F a b Bool, F [a] [b] d,G a b,G [a] [b], b2 = [b]

and
F [a] [b] Bool, F [a] b2 d

�F−Inst2 F a b Bool, F [a] b2 d
�Super F a b Bool, F [a] b2 d,G [a] b2
�G−Imp2 F a b Bool, F [a] [c] d,G [a] [c], b2 = [c]
�Super F a b Bool, F [a] [c] d,G a b,G [a] [c], b2 = [c]
�G−Inst2 F a b Bool, F [a] [c] d,G a b,G a c, b2 = [c]
�G−FD F a b Bool, F [a] [c] d,G a b,G a c, b2 = [b], c = b

The crucial difference is that even after using F-Inst2 in the second derivation we
are still able, eventually, to use the G-FD rule to equate second arguments.

The above transformation trick only works if we can guarantee that the projection
onto the “full” part of a non-full FD instance is unique.

Example 21 Consider the following variant of our running example

class F a b c | a->b

class H a b c | a->b

instance F a b Bool => F [a] [b] Bool -- (F1)

instance H a b => F [a] [b] Char -- (F2)

We cannot apply our transformation trick from above. Otherwise, we obtain two
overlapping instances (G1) and (G2) which results in a non-confluent program.
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class G a b | a->b

class G a b => F a b c

class I a b | a->b

class I a b => H a b c

instance F a b Bool => F [a] [b] Bool -- (F1)

instance H a b => F [a] [b] Char -- (F2)

instance G a b => G [a] [b] -- (G1)

instance I a b => G [a] [b] -- (G2)

Our solution is to apply the transformation from non-full to full FDs to only
those programs which satisfy the following condition.

Definition 16 (Transformable Non-Full FDs) Consider a class declara-

tion

class C => TC a1 ... an | fd1, ..., fdm

We say that TC is transformable to a full FD iff for each FD fdi ≡ ai1 , ..., aik
-> ai0

there are no two declarations instance C => TC t1...tn and instance C ′ => TC t′1...t
′
n

such that φ(ti1) = φ(t′i1), ..., φ(tik
) = φ(t′ik

) for some substitution φ.

Definition 17 (Non-Full to Full FD Translation) Given a type class pro-

gram p where each type class is transformable to a full FD, we apply the following

transformations exhaustively yielding a type class program p′ where p′ only con-

tains full FDs.

For each class declaration

class C => TC a1 ... an | fd1, ..., fdm

in p where for some I we have that fdi is not full if i ∈ I, otherwise fdi is full.

We replace the above class declaration by

class (C,
⋃

i∈I TCfdi) => TC a1 ... an |
⋃

j∈{1,...,m}−I fdj

class TCfdi
ai1 ... aik

| fdi for i ∈ I
where TCfdi

is a new subclass of TC.

For each instance declaration

instance C => TC t1...tn

in p with a non-full FD fdi we additionally introduce

instance proj(C) => TCfdi
ti1 ... tik

where

proj(CC1, ..., CCn) = proj(CC1) ∪ .... ∪ proj(CCn)
proj(TC t1...tn) ={

TCfdi
ti1 ... tik

| class C => TC a1 ... an | fd1, ..., fdm ∈ p,
fdi is not full

}
∪

{
TC t1...tn | class C => TC a1 ... an | fd1, ..., fdm ∈ p,

fdi is full

}
All other instances remain unchanged.

For each non-full FD we introduce an additional superclass with a full FD but
drop the non-full FD from the class declaration. Thus, all resulting FDs are full.
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For convenience, we abuse notation and use set notation to denote a sequence of
constraints and FDs. For each instance declaration with a non-full FD we build the
projection onto its full part.

We find that all improvement conditions imposed by non-full FDs in the original
program are equivalently represented by super-classes with full FDs in the trans-
formed program. Therefore, the above transformation is sound in the sense that the
logical reading of CHRs resulting from the transformed program logically entails
the CHRs from the original program.

Lemma 3 (Sound Transformation) Let p be a set of Haskell class and in-

stance declarations. where Let p′ be p’s transformation to full FDs as defined by

Definition 17. Then [[MPTC(p′)]] |= [[MPTC(p)]].

We can also verify that confluence and range-restriction of instances/super-classes
and the Liberal-FD Conditions are preserved. By assumption type classes are trans-
formable. Hence, none of the new instances will break confluence. The same applies
to range-restriction. By construction, the newly generated instances inherit the
Liberal-FD Conditions from the classes and instances they were derived from.

Lemma 4 (Liberal-FD and MPTC(p) Conf/RR Preservation) Let p be

a set Haskell class and instance declarations such that each type class is trans-

formable to a full FD, p satisfies the Liberal-FD Conditions and MPTC(p) is

confluent and range-restricted. Let p′ be p’s transformation to full FDs as defined

by Definition 17. Then, p′ satisfies the Liberal-FD Conditions and MPTC(p′) is

confluent and range-restricted.

We conjecture that also termination is preserved but leave detailed investigations
to future work. Note that termination is of less concern here because instances
involved in the full FD transformation do not satisfy the Coverage Condition. Hence,
termination must be enforced by additional checks anyway.

In summary, based on the above results we can avoid non-confluence in case of
transformable non-full FDs. We simply generate a stronger set of CHRs (Defini-
tion 17). Hence, Theorem 2 is applicable.

6.3 Multi-Range Functional Dependencies

In case of more liberal FDs we may make use of a richer class of FDs of the form
ai1 , ..., aik

-> aj1 , ..., aji0
where {i1, ..., ik} and {j1, ..., ji0} are two disjoint subsets

of {1...n}. We refer to such FDs as multi-range FDs. Compare this to the FDs
described before which are of single-range. It is straightforward to translate multi-
range FDs to CHRs.

Definition 18 (Multi-Range FD Translation) Consider a class declara-

tion

class C => TC a1 ... an | fd1, ..., fdm

where fdi may be multi-range FDs.

Multi-Range FD CHR: For each multi-range FD ai1 , ..., aik
-> aj1 , ..., aji0

we generate
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rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> aj1 = bj1 , . . . , aji0
= bji0

where θ(bij ) = aij , j ∈ {1, ..., k} and θ(bl) = bl otherwise.

Multi-Range Instance Improvement CHR: For each multi-range FD

ai1 , ..., aik
-> aj1 , ..., aji0

and instance declaration instance C => TC t1 . . . tn
we generate

rule TC θ(b1) . . . θ(bn) ==> tj1 = bj1 , . . . , tji0
= bji0

where θ(bij ) = aij , j ∈ {1, ..., k} and θ(bl) = bl otherwise.

The translation of instances and super-classes remains unchanged.

We note that multi-range FDs impose strictly stronger improvement when the
Coverage Condition is violated. Hence, they represent a more expressive class of
FDs.

Example 22 Consider the following program which breaks the Coverage Condi-
tion.

class C a b c | a->b c

instance C a b b => C [a] [b] [b]

The translation to CHRs is as follows.

rule C a b c, C a d e ==> b=d, c=e -- (FD)

rule C [a] [b] [b] <==> C a b b -- (Inst)

rule C [a] c d ==> c=[b], d=[b] -- (Imp)

Let us compare this against the following translation resulting from the program
where we have replaced C a b c | a->b c by C a b c | a->b, a->c

rule C a b c, C a d e ==> b=d -- (FD1)

rule C a b c, C a d e ==> c=e -- (FD2)

rule C [a] [b] [b] <==> C a b b -- (Inst)

rule C [a] c d ==> c=[b] -- (Imp1)

rule C [a] c d ==> d=[b] -- (Imp2)

Let P1 be the set of CHRs consisting of rules (FD), (Inst) and (Imp) and let
P2 be the set of CHRs consisting of rules (FD1-2), (Inst) and (Imp1-2). Then,
C [a] c d �∗

P1
C a b b, c = [b], d = [b] and C [a] c d �∗

P2
C [a] [b1] [b2], c =

[b1], d = [b2]. Clearly, rules (Imp1-2) are weaker than rule (Imp). We are unable to
establish a connection between variables b1 and b2. Hence, P1 enforces “stronger”
improvement than P2.

The next obvious question is under which conditions single-range FDs are equiv-
alent to multi-range FDs. The above example suggests that we can in general safely
break multi-range FDs into a sequence of single-range FDs if for each instance the
variables in the range component are distinct.

Definition 19 (Transformable Multi-Range FDs) Consider a class dec-

laration

class C => TC a1 ... an | fd1, ..., fdm
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where fdi may be multi-range FDs. We say that TC is transformable to single-

range FDs iff for each multi-range FD ai1 , ..., aik
-> aj1 , ..., aji0

and instance

declaration instance C => TC t1 . . . tn we have that fv(tjl
) ∩ fv(tjm

) = ∅ for

jl, jm ∈ {j1, ..., ji0} and jl 6= jm.

Under the above condition, we can safely break instance improvement rules with
multiple equations on the right-hand side into a sequence of rules with a single
equation on the right-hand side. Both sets of rules impose equivalent improvement
conditions. Thus, we can conclude the following.

Lemma 5 In case the Transformable Condition is satisfied we can express multi-

range FDs ai1 , ..., aik
-> aj1 , ..., aji0

equivalently in terms of single-range FDs

ai1 , ..., aik
-> aj1 , ...., ai1 , ..., aik

-> aji0
.

Note that the Transformable Condition is always satisfied if instances satisfy the
Coverage Condition. Hence, we can conclude the following.

Lemma 6 In case the Coverage Condition is satisfied we can express multi-range

FDs equivalently in terms of single-range FDs.

Analogously to the previous development we define consistency and weak cover-
age for multi-range FDs.

Definition 20 (Multi-Range Consistency Condition) Consider a decla-

ration for class TC and any pair of instance declarations for that class:

class C => TC a1 ... an | fd1, ..., fdm

instance D1 => TC t1...tn
instance D2 => TC s1...sn

Then, for each functional dependency fdi, of form ai1 , ..., aik
-> aj1 , ..., aji0

, the

following condition must hold: for any substitution φ such that

φ(ti1 , ..., tik
) = φ(si1 , ..., sik

)

we must have that φ(tj1) = φ(sj1),..., φ(tji0
) = φ(sji0

).

Definition 21 (Multi-Range Weak Coverage Condition) For each multi-

range functional dependency ai1 , ..., aik
-> aj1 , ..., aji0

for class TC and instance

declaration

instance C => TC t1...tn
we must have that fv(tj1 , ..., tji0

) ⊆ closure(C, fv(ti1, . . . , tik)) where

closure(C, vs) =
⋃

TC t1 . . . tn ∈ C
TC a1 . . . an | ai1 , ..., aik

-> aj1 , ..., aji0

{fv(tj1 , ..., tji0
) | fv(ti1 , . . . , tik

) ⊆ vs}

All the results of Sections 6.1 and 6.2 carry over to multi-range FDs. Note that we
retain the consistency and weak coverage condition when translating transformable
multi-range FDs into single-range FDs. There are in fact also cases where we can
transform single-range FDs into equivalent multi-range FDs. This has the advantage
that non-full single-range FDs become full multi-range FDs and then we can apply
the results from Section 6.1.
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Example 23 Here are parts of Example 4.

class Zip a b c | c -> b, c -> a

instance Zip a b [(a,b)]

instance Zip (a,b) c e => Zip a b ([c]->e)

The program satisfies the Liberal-FD Conditions but the FD is not full. As we will
see shortly, the above program is equivalent to the following full multi-range FD
program.

class Zip a b c | c -> a b

instance Zip a b [(a,b)]

instance Zip (a,b) c e => Zip a b ([c]->e)

Here are the CHRs for the multi-range version (see Definition 18).

rule Zip a b c, Zip d e c ==> b=e, a=d -- (Z1)

rule Zip d e [(a,b)] <==> e=b, d=a -- (Z2)

rule Zip d f ([c]->e) <==> d=a, f=b, Zip (a,b) c e -- (Z3)

Rule (Z1) represents the multi-range FD. The multi-range FD is full and therefore
we can shorten the translation to CHRs by combining the instance and instance
improvement CHR, see rules (Z2) and (Z3). In case of the single-range version we
would instead find the following CHRs (see Figure 2).

rule Zip a b c, Zip d e c ==> b=e -- (Z1-1)

rule Zip a b c, Zip d e c ==> a=d -- (Z1-2)

rule Zip d e [(a,b)] <==> True -- (Z2-1)

rule Zip d e [(a,b)] ==> e=b -- (Z2-2)

rule Zip d e [(a,b)] ==> d=a -- (Z2-3)

rule Zip d f ([c]->e) <==> d=a, Zip (a,f) c e -- (Z3-1)

rule Zip d f ([c]->e) <==> f=b, Zip (d,b) c e -- (Z3-2)

These rules are equivalent to (Z1), (Z2) and (Z3) and therefore the single-range
and multi-range version are equivalent. The above programs violate the Coverage
Condition (see the second instance declaration) but satisfy the (Multi-Range) Con-
sistency and Weak Coverage Condition. As we know from earlier sections, breaking
the Coverage Condition has the danger that we introduce new variables (see rule
(Z3) where a and b are new variables on the right-hand side) which in turn may
lead to non-termination of CHRs. However, the introduction of new variables is
harmless here. Effectively, we can replace rule (Z3) by

rule Zip a b ([c]->e) <==> Zip (a,b) c e -- (Z3’)

which is equivalent to the instance CHR. In the earlier Example 18 we have made
a similar observation. Hence, generated CHRs are always terminating. Hence, the
multi-range version of Theorem 2 applies.
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6.4 Local Termination, Range-Restriction and Confluence Check

The results of the previous sections are derived from results stated in (?). There,
the proofs to establish completeness of the satisfiability, subsumption and unam-
biguity checks, rely only on the property that all derivations for a particular goal
are confluent, range-restricted and terminating. Hence, we can give up the “global”
CHRs properties of termination, range-restriction and confluence as long as we can
verify that these properties hold “locally”. Concretely, inference is complete for a
specific program program if we can show that for the specific inference goal arising
out of this program all derivations are confluent, range-restricted and terminating.

In case we have termination and confluence, there is an easy test to check for
local range-restriction, without having to explore all derivations.

Lemma 7 Let D be a constraint for which all derivations are confluent. Let

D �∗
P C for some C such that fv(C) ⊆ fv(D). Then, we have that if D �∗

P C ′

for any C ′ then fv(C ′) ⊆ fv(D).

Proof
We have that D �∗

P C for some C such that fv(C) ⊆ fv(D) and D �∗
P C ′.

Confluence implies that |= (∃̄fv(D).C
′) ↔ C (1). Assume we find a ∈ fv(C ′) such

that a 6∈ fv(D) (2). W.l.o.g., variable a appears in a type class constraint. Condition
(1) implies that type class constraints in C ′ and C must be renamings of each other
modulo variables in D (3). However, all variables in C are mentioned in D. Hence,
(2) and (3) is a clear contradiction.

The lemma says that if one derivation is range-restricted then all other possible
derivations must be range-restricted as well, provided we have confluence.

7 Related Work

The idea of improving types in the context of Haskell type classes is not new. For
example, Chen, Hudak and Odersky (Chen et al., 1992) introduce type classes which
can be parameterized by a specific parameter. For example, the declaration class

SM m r | m->r from Example 2 can be expressed as the parametric declaration
class m::SM r. Interestingly, they impose conditions similar to Jones’ Consistency
and Coverage Condition to achieve sound and decidable type inference. However,
their approach is more limited than ours. Functional dependencies must be always of
the form a->b where b is not allow to appear in the domain of any other functional
dependency. Furthermore, they do not consider any extensions such as more liberal
FDs as discussed in Section 6.

In (Jones, 1995), Jones introduces a general theory of simplifying and improving
types as a refinement of his theory of qualified types (Jones, 1992). His description
relies on the logical interpretation of type classes whereas we actually show how to
solve them (which is the central task of type inference). Hence, he does not answer
the question which improvement strategies lead to sound, complete and decidable
type inference. Subsequently, Jones extended multi-parameter type classes with
functional dependencies (Jones, 2000). He imposes on them the Consistency and
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Coverage Conditions. In this paper we finally could verify that in combination
with the Basic and Bound Variable Condition, these conditions are sufficient to
ensure sound, complete and decidable type inference. Surprisingly, he introduces
Example 3 (which breaks the Coverage Condition) as a motivation for functional
dependencies.

Duggan and Ophel (Duggan & Ophel, 2002) describe an improvement strat-
egy, domain-driven unifying overload resolution, which is very similar to functional
dependencies. Indeed, they were the first to point out the potential problem of non-
termination of type inference. However, they do not discuss any extensions such as
liberal FDs nor do they consider how to cope with the termination problem.

Stuckey and Sulzmann (?) introduce a general CHR-based formulation for type
classes. They establish some general conditions, e.g. termination and confluence,
in terms of CHRs under which type inference is sound and decidable. Here, we
rephrase functional dependencies as a particular instance of their framework.

In (Chakravarty et al., 2005b), Chakravarty, Keller, Peyton Jones and Marlow
introduce a system where each class comes with a set of methods and a set of asso-
ciated data types (ADTs). Chakravarty, Keller and S. Peyton Jones (Chakravarty
et al., 2005a) later extend ADTs to associated type synonyms (ATs). In essence,
ATs allow one to establish a mapping between types. Here is a simple example

class C a where

type T a

op :: a->T a

instance C Int where

type T Int = Int

op x = x+1

For each instance we need to define the particular type mapping. The advantage of
such an approach is that we can avoid “redundant” parameters. Though, we can
mimic such style of programming rather straightforwardly via FDs. Here is the FD
“equivalent” of the above AT program.

class C a where

op :: T a b => a->b

instance C Int where

op x = x+1

class T a b | a->b

instance T Int Int

The type function type T a is simply represented by the the functional dependency
a->b imposed on class T a b. Each occurrence of T a is replaced by some fresh
variable b under the constraint T a b. We consider it an important task to study the
precise connection between FDs, ADTs and ATs, by translating both to CHRs, so
that we can evaluate their relative benefits. We believe that the methods developed
in this paper will be highly useful for this task.
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8 Conclusions and Future Work

We have given a new perspective on functional dependencies by expressing the
improvement rules implied by FDs in terms of CHRs. We have verified, for the
first time, that the Basic, Bound Variable, Consistency and Coverage Conditions
(see Definitions 5, 8, 7 and 6) guarantee that resulting CHRs are range-restricted,
terminating and confluent (see Theorem 1) and thus we obtain sound, complete
and decidable type inference (see Corollary 1). The Basic Conditions could be
replaced by alternatives such as the Paterson Conditions (see Corollary 2) as long
as we can guarantee that CHRs resulting from instances and super-classes are
terminating, confluent and range-restricted. A maybe surprising observation was
that Consistency, Coverage and the Bound Variable Conditions are essential for
completeness and decidability (see the discussion in Sections 5.1, 5.2). Specifically,
the Consistency and Coverage Condition are essential for confluence (complete type
inference) whereas the Coverage and Bound Variable Condition are essential for
termination (decidable type inference). The Bound Variable Condition on its own
is also essential for complete type inference because this condition prevents us from
guessing types.

There are many examples which demand dropping the Coverage Condition. Hence,
our focus was to find weaker conditions under which we can maintain confluence as-
suming that we can guarantee termination via some other means. For this purpose,
we have introduced more liberal FDs in Section 6.1. We have identified conditions
(Consistency, Weak Coverage and fullness of FDs) which guarantee confluence (see
Theorem 2). For a certain class of programs we could even show that breaking the
Coverage Condition will not break termination (see Corollary 3). We could also
show that in some situations non-full FDs can be transformed into full FD (thus we
can apply Theorem 2) by generating a slightly stronger set of CHRs (Section 6.2).
For more liberal FDs, we could show that a new class of multi-range FDs provides
for additional expressiveness (Section 6.3).

In Section 6.4, we have shown that we can drop all three essential CHR con-
ditions (range-restriction, termination and confluence) if we can guarantee that
the derivations for a particular goal are range-restricted, terminating and conflu-
ent. Effectively, inference becomes semi-decidable but we retain completeness (see
Corollary 4).

In turn, we briefly elaborate on some further future research topics. For our
proposed extensions of FDs (Section 6) it becomes much harder to guarantee de-
cidability unless the instance improvement rules generated are trivial. By trivial we
mean that the right-hand side of CHRs can be replaced by the always true con-
straint. This is always the case if the range component of an instance is a variable
(see Examples 18 and 23). To ensure termination for larger classes of programs we
need to devise static and/or dynamic termination checks or alternative termination
conditions.

So far, we were mostly concerned with relaxing the Coverage Condition. In an-
other line of future work we plan to investigate how to safely relax the Consistency
Condition. Consider
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class Insert ce e | ce -> e where insert :: e->ce->ce

instance Ord a => Insert [a] a

instance Insert [Float] Int

Our intention is to insert elements into a collection. The class declaration states
that the collection type uniquely determines the element type. The first instance
states that we can insert elements into a list if the list elements enjoy an ordering
relation. The second instance states that we have a special treatment in case we
insert Ints into a list of Floats (for example, we assume that Ints are internally
represented by Floats). This sounds reasonable, however, the above program is
rejected because the Consistency Condition is violated. To establish confluence we
seem to require a more complicated set of improvement rules.

An interesting extension not discussed so far is to allow the programmer to im-
pose stronger improvement rules by providing user-provided CHRs. This is useful
because there are situations where FDs do not enforce sufficient improvement. Re-
call Example 4. Assume we write the following definitions.

e1 = head (zip [True,False] [’a’,’b’,’c’])

e2 = head (zip [True,False] [’a’,’b’,’c’] [1::Int,2])

The inferred types of e1 and e2 are

e1 :: Zip Bool Char [a] => a

e2 :: Zip (Bool,Char) Int [a] => a

rather than

e1 :: (Bool,Char)

e2 :: ((Bool,Char),Int)

For example rule (Z2) (see Example 23) states that only if we see Zip d e [(a,b)]

we can improve e by b and d by a. However, in case of e2 we see Zip Bool Char

[a], and we would like to improve a to (Bool,Char). Indeed, in this context it is
“safe” to replace rule (Z2) by

rule Zip a d [c] ==> c=(a,d) -- (Z2’)

which imposes stronger improvement to achieve the desired typing of e2 and e3.
Note that rule (Z2’) respects the Consistency and Coverage Conditions (assum-
ing we enforce these conditions for user-provided improvement rules). Hence, we
retain confluence and termination of CHRs. An extended example making use of
user-provided improvement rules plus some of the other variants of functional de-
pendencies can be found in Appendix B.
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A Proofs

A.1 Proof of Theorem 1

Our assumptions are: Let p be a set of Haskell class and instance declarations
which satisfies the Haskell-FD restrictions. Let Simp(p) and Prop(p) be the sets of
CHRs defined by Figure 2. If the set Propclass(p) ∪ Simp(p) of CHRs is confluent,
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terminating and range-restricted then Simp(p)∪Prop(p) is confluent, terminating
and range-restricted.

Proof
The class and instance declarations satisfy the Haskell-FD restrictions. Hence, we
immediately find that Simp(p) ∪ Prop(p) is range-restricted.

For the (sub)proof that Simp(p) ∪ Prop(p) are terminating, we need an even
stronger propery though. None of the CHRs in Simp(p)∪Prop(p) will ever introduce
any new variables during CHR solving. This holds if Simp(p)∪Prop(p) is variable-
restricted. We call a CHR variable-restricted iff all variables on the right-hand side
already appear on the left-hand side.

Each simplification c <==> d̄ rule is range-restricted. Note that d̄ are user-defined
constraints. Hence, fv(d̄) ⊆ fv(c), hence each simplification rule is variable-restricted.

Similarly, we conclude that each range-restricted class CHR is variable-restricted.
We consider the propagation rules generated by our FD via CHR encoding. Con-

sider the CHR describing the FD.

rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0

We have that {ai0 , bi0} ⊆ fv(a1, . . . , an, θ(b1), . . . , θ(bn)), since θ(bi0) = bi0 hence
the rule is variable-restricted.

Consider the propagation rules arising from instance declarations, that is of the
form

rule TC θ(b1) . . . θ(bn) ==> ti0 = bi0

First since θ(bi0) = bi0 we have that fv(bi0) ⊆ fv(θ(b1), . . . , θ(bn)), while the Cover-
age Condition ensures that fv(ti0) ⊆ fv(θ(b1), . . . , θ(bn)), hence the rule is variable-
restricted.

1. Simp(p) ∪ Prop(p) are terminating: Assume the contrary. Hence, there must
be a non-terminating derivation D � . . . for some constraint D. Note that
new variables are never introduced since the rules are variable-restricted.
Hence, there is a limit on the number of equations we can add without adding
trivial equations, i.e. equations already logically contained in the store. Hence,
there exists D′ such that D �∗ D′ � . . . and the derivation from D′ on is not
terminating. Let θ be a substitution satisfying all equations in D′ and ground-
ing all variables. We say φ is a grounding substitution for a type t iff for each
a ∈ fv(t) we have that fv(φ(a)) = ∅. This naturally extends to constraints.
The grounded version of the (still non-terminating) derivation θ(D′) � . . .

consists only of simplification rule applications (we can safely skip propaga-
tion rule applications because such rules add only trivial information). This
is a contradiction to our assumption that Simp(p) is terminating.

2. Simp(p)∪Prop(p) are confluent: Note that by assumption the set of instance
and class CHRs is confluent. Hence, it is sufficient to consider all critical pairs
among instances rules and the functional dependency and instance improve-
ment rules.
First, we consider the critical pair between instance rule TC t1 . . . tn<==>C
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and the improvement rule generated from it TC θ(b1) . . . θ(bn)==>ti0 = bi0 .
This leads to derivations

TC t1 . . . tn
� C

TC t1 . . . tn
� TC t1 . . . tn, ti0 = ti0
� C, ti0 = ti0
↔ C

Note that the Consistency Condition ensures that any other applicable in-
stance improvement rule will lead to the same result.
Second the critical pair between the instance rule TC t1 . . . tn<==>C and the
functional dependency rule
rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0

is TC t1 . . . tn, TC θ(b1) . . . θ(bn) where θ(bij
) = tij

, 1 ≤ j ≤ ki and θ(bj) = bj
otherwise. Note that CHRs are variable-restricted. Hence, we do not need to
rename rules involved in rule application in the following derivations. Hence,

TC t1 . . . tn, TC θ(b1) . . . θ(bn)
� C, TC θ(b1) . . . θ(bn)
� C, TC θ(b1) . . . θ(bn), bi0 = ti0

TC t1 . . . tn, TC θ(b1) . . . θ(bn)
� TC t1 . . . tn, TC θ(b1) . . . θ(bn), ti0 = bi0
� C, TC θ(b1) . . . θ(bn), ti0 = bi0

We have verified that all critical pairs are joinable. CHRs are terminat-
ing. Hence, the result from (Abdennadher, 1997) allows us to conclude that
Simp(p) ∪ Prop(p) are confluent.

A.2 Proof of Theorem 2

Our assumptions are: Let p be a set of Haskell class and instance declarations
which satisfies the Liberal-FD restrictions and all FDs are full. Let Simp(p) and
Prop(p) be defined by Figure 2. If the set Simp(p) ∪ Prop(p)class is confluent and
range-restricted and Simp(p) ∪ Prop(p) is terminating, then Simp(p) ∪ Prop(p) is
confluent and range-restricted.

Proof
We immediately find that Simp(p)∪Prop(p) is range-restricted. As in the previous
proof, we prove confluence by verifying that critical pairs are joinable. W.l.o.g., we
assume that instances are strictly more liberal (i.e. the Coverage Condition is vio-
lated). We consider the functional dependency ai1 , ..., aik

-> ai0 and its associated
CHRs. Note that FDs are full.
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rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0 -- (FD)

rule TC θ(b1) . . . θ(bn) <==> ti0 = bi0 , C -- (Inst-Imp)

where θ(bij
) = aij

, j > 0 and θ(bl) = bl if ¬∃j.l = ij .
As before, there are two kind of critical pairs. For the critical pair among instance

improvement and instance rule, the Consistency Condition prevents any critical
pairs arising except between an instance and its instance improvement rule. Hence,
confluence follows immediately.

For the remaining critical pair (among FD and instance) the Weak Coverage Con-
dition becomes important. We make the following observation. Consider rule TC

θ(b1) . . . θ(bn) <==> ti0 = bi0 , C. Let ā = fv(C)\fv(t1, . . . , tn) and π be a renaming
substitution with domain ā. Let PropFDs(C) be the set of functional dependency
rules of all type classes in C. Then, C, π(C) �n

PropFDs(C) C, a1 = π(a1), . . . , al =
π(al) after some n number of derivation steps.

Let TC t1 . . . tn, TC θ(b1) . . . θ(bn) be the critical pair between the instance rule
TC t1 . . . tn<==>C and the functional dependency rule

rule TC a1 . . . an, TC θ(b1) . . . θ(bn) ==> ai0 = bi0

where θ(bij ) = tij , 1 ≤ j ≤ ki and θ(bj) = bj otherwise.
This leads to derivations

TC t1 . . . tn, TC θ(b1) . . . θ(bn)
�Inst−Imp π1(C), TC θ(b1) . . . θ(bn)

π1 renames local variables involved in rule application
�Inst−Imp π1(C), π2(C), π2(ti0) = bi0

FD is full, hence we combine (I-FD), (Inst)
π2 renames local variables involved in rule application

�∗
PropFDs(C) C, π2(ti0) = bi0 , π1(a1) = π2(a1), . . . , π1(al) = π2(al)

follows from the above observation

and
TC t1 . . . tn, TC θ(b1) . . . θ(bn)

�FD TC t1 . . . tn, ti0 = bi0
�Inst π′1(C), ti0 = bi0

π′1 renames local variables involved in rule application
We conclude that |= ∃̄V (C∧π2(ti0) = bi0∧π1(a1) = π2(a1)∧. . .∧π1(al) = π2(al)) ↔
∃̄V (π′1(C) ∧ ti0 = bi0) where V = fv(t1, . . . , tn, θ(t1), . . . , θ(tn)) which shows that
critical pairs are joinable.

B Stronger Improvement Example

We consider an encoding of extensible records. Such an encoding has been indepen-
dently considered in (Kiselyov et al., 2004). In our encoding, we drop the Bound
Variable Condition see upcoming instance (S3). Though, we can guarantee that
unbound variables are functionally defined by bound variables. Hence, our results
from Section 6.4 apply. We also drop the Coverage Condition. Instead we can guar-
antee the Refined Weak Coverage Condition from Section 6.1. It turns out that
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the improvement conditions resulting from liberal FDs are too weak. Therefore, we
impose additional CHRs to achieve the desired improvement.

-- Encoding records with type classes

-- we use singleton list to model records

data Nil = Nil

data Cons x xs = Cons x xs

-- we use singleton numbers to model record labels

data Zero = Zero

data Succ n = Succ n

-- result of type level computations

data T = T

data F = F

class EqR a b c | a b -> c where eq :: a->b->c

instance EqR Zero Zero T

instance EqR a b c => EqR (Succ a) (Succ b) c

-- we rely on trivial termination, hence CHRs are terminating

-- CHRs are also confluent

instance EqR Zero (Succ a) F

instance EqR (Succ a) Zero F

class Select r l a | r l -> a where select :: r->l->a

class Select’ r l t a | r l t -> a where select’ :: r->l->t->a

instance (Select’ (Cons (x1,v) e) x2 b v’, EqR x1 x2 b)

=> Select (Cons (x1,v) e) x2 v’ -- (S3)

-- the above instance satisfies the

-- Refined Weak Coverage Condition

-- note that we also break the Bound Variable Condition,

-- though b is ’functionally’ defined by x1 and x2

instance Select’ (Cons (x,v) e) x T v

instance Select e x2 v’ => Select’ (Cons (x1,v) e) x2 F v’ -- (S’3)

-- the improvement rules linked to the two recursive instances

-- are trivial, hence CHRs are terminating (Trivial Termination),

-- and also confluent

-- things we couldn’t do with FDs

-- stronger improvement rules

rule Select Nil l a ==> False

rule Select’ Nil l t a ==> False

rule Select’ (Cons (x1,v1) e) x2 T v2 ==> x1=x2, v1=v2
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-- we cannot enforce the following rule,

-- otherwise non-confluent with (S’3)

--rule Select’ (Cons (x,v1) e) x t v2 ==> v1=v2, t=T

-- sample code

l0 = Zero

l1 = Succ Zero

f r = select r l0

r1 = Cons (l0, True) (Cons (l1,’a’) Nil)

r2 = Cons (l1, False) (Cons (l0, ’b’) Nil)

e1 :: Bool

e1 = f r1

e2 :: Char

e2 = f r2


