
Inter-instance Nogood Learning in Constraint
Programming

Geoffrey Chu and Peter J. Stuckey

National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

Abstract. Lazy Clause Generation is a powerful approach to reducing
search in Constraint Programming. This is achieved by recording sets of
domain restrictions that previously led to failure as new clausal propaga-
tors called nogoods. This dramatically reduces the search and provides
orders of magnitude speedups on a wide range of problems. Current im-
plementations of Lazy Clause Generation only allows solvers to learn
and utilize nogoods within an individual problem. This means that ev-
erything the solver learns will be forgotten as soon as the current problem
is finished. In this paper, we show how Lazy Clause Generation can be
extended so that nogoods learned from one problem can be retained and
used to significantly speed up the solution of other, similar problems.

1 Introduction

Lazy Clause Generation (LCG) [8, 5] is a powerful approach to reducing search
in Constraint Programming (CP). Finite domain propagation is instrumented
to record an explanation for each inference. This creates an implication graph
like that built by a SAT solver [7], which may be used to derive nogoods that
explain the reason for the failure. These nogoods can be propagated efficiently
using SAT unit propagation technology, and can lead to exponential reductions
in search space on many problems. Lazy clause generation provides state of
the art solutions to a number of combinatorial optimization problems such as
resource constrained project scheduling [9] and carpet cutting [10].

Current implementations of Lazy Clause Generation derive nogoods which
are only valid within the problem in which they were derived. This means the
nogoods cannot be correctly applied to other problems and everything that is
learned has to be thrown away after the problem is finished. There are many real
life situations where a user might want to solve a series of similar problems, e.g.,
when problem parameters such as customer demands, tasks, costs or availability
of resources change. Clearly, it would be beneficial if the nogoods learned in one
problem can be used to speedup the solution of other similar problems.

There are many methods that attempt to reuse information learned from
solving previous problems in subsequent problems. However, the information
learned by such methods differ significantly from those discussed in this paper.
Portfolio based methods (e.g., [11]) use machine learning or similar techniques



to try to learn which solver among a portfolio of solvers will perform best on
a new problem given characteristics such as the problem size or the properties
of its constraint graph. Methods such as [6] attempt to learn effective search
heuristics for specific problem domains by using reinforcement learning or similar
techniques. In the case where we wish to find the solution to a modified problem
which is as similar to the old solution as possible, methods such as [1], which
keep track of the value of each variable in the old solution and reuses it as a
search heuristic, can be effective. In the special case where we have a series of
satisfaction problems where each problem is strictly more constrained than the
previous one, e.g. satisfaction based optimization, all nogoods can trivially be
carried on and reused in the subsequent problems. In this paper, we are interested
in the more general case where subsequent problems can be more constrained,
less constrained, or simply different because the parameters in some constraints
have changed. We show how to generalize Lazy Clause Generation to produce
parameterized nogoods which can be carried from instance to instance and used
for an entire problem class.

2 Background

Let ≡ denote syntactic identity,⇒ denote logical implication and⇔ denote log-
ical equivalence. A constraint optimization problem is a tuple P ≡ (V,D,C, f),
where V is a set of variables, D is a set of domain constraints v ∈ Dv, v ∈ V , C
is a set of constraints, and f is an objective function to minimize (we can write
−f to maximize). An assignment θ assigns each v ∈ V to an element θ(v) ∈ Dv.
It is a solution if it satisfies all constraints in C. An assignment θ is an optimal
solution if for all solutions θ′, θ(f) ≤ θ′(f). In an abuse of notation, if a symbol
C refers to a set of constraints {c1, . . . , cn}, we will often also use the symbol C
to refer to the conjunction c1 ∧ . . . ∧ cn.

CP solvers solve CSP’s by interleaving search with inference. We begin with
the original problem at the root of the search tree. At each node in the search
tree, we propagate the constraints to try to infer variable/value pairs which
cannot be taken in any solution to the problem. Such pairs are removed from the
current domain. If some variable’s domain becomes empty, then the subproblem
has no solution and the solver backtracks. If all the variables are assigned and
no constraint is violated, then a solution has been found and the solver can
terminate. If inference is unable to detect either of the above two cases, the solver
further divides the problem into a number of more constrained subproblems and
searches each of those in turn.

In an LCG solver, each propagator is instrumented to explain each of its
inferences with a clause called the explanation. Each clause consists of literals of
the form x = v, x 6= v, x ≥ v or x ≤ v where x is a variable and v is a value.

Definition 1. Given current domain D, suppose the propagator for constraint c
makes an unary inference m, i.e., c∧D ⇒ m. An explanation for this inference
is a clause: expl(m) ≡ l1 ∧ . . . ∧ lk → m s.t. c⇒ expl(m) and D ⇒ l1 ∧ . . . ∧ lk.

The explanation expl(m) explains why m has to hold given c and the current
domain D. We can consider expl(m) as the fragment of the constraint c from
which we inferred that m has to hold. For example, given constraint x ≤ y and



current domain x ∈ {3, 4, 5}, the propagator may infer that y ≥ 3, with the
explanation x ≥ 3→ y ≥ 3.

These explanations form an acyclic implication graph. Whenever a conflict is
found by an LCG solver, the implication graph can be analyzed in order to derive
a set of sufficient conditions for the conflict. This is done by repeatedly resolv-
ing the conflicting clause (the clause explaining the conflict) with explanation
clauses, resulting in a new nogood for the problem.

Example 1. Let C1 ≡ {x2 < x3, x1 + 2x2 + 3x3 ≤ 13}. Suppose we tried x1 = 1
and x2 = 2. We would infer x3 ≥ 3 from the first constraint with explanation:
x2 ≥ 2 → x3 ≥ 3. The second constraint would then fail with explanation:
x1 ≥ 1 ∧ x2 ≥ 2 ∧ x3 ≥ 3 → false. Resolving the conflicting clause with the
explanation clause gives the nogood: x1 ≥ 1 ∧ x2 ≥ 2→ false.

Let expls(n) be the set of explanations from which a nogood n was derived.
Then expls(n)⇒ n.

3 Parameterized Nogoods

Suppose we want to solve several similar problem instances from the same prob-
lem class. Currently, Lazy Clause Generation produces nogoods which are only
correct within the instance in which it was derived, thus we cannot carry such
nogoods from one instance to the next and reuse them. In this section, we show
how we can generalize the nogoods produced by Lazy Clause Generation to
parameterized nogoods which are valid for a whole problem class.

Each nogood derived by Lazy Clause Generation represents a resolution proof
that a certain subtree in the problem contains no solutions. For us to correctly
reuse this nogood in a different problem, we have to show that the resolution
proof is valid in the other problem. We have the following result:

Theorem 1. Let P1 ≡ (V,D,C1, f) and P2 ≡ (V,D,C2, f) be two constraint
optimization problems. Let n be a nogood derived while solving P1. If C2 ⇒
expls(n), then n is also a valid nogood for P2.

Proof. C2 ⇒ expls(n)⇒ n.

Theorem 1 tells us that if every explanation used to derive a nogood n is also
implied by a second problem P2, then n is also a valid nogood in P2.

Example 2. Let C1 ≡ {x1 < x2, x1+2x2 ≤ 9} and C2 ≡ {x1+1 < x2, x1+2x2 ≤
10}. Suppose we tried x1 = 3 in the first problem. We would infer x1 ≥ 3 →
x2 ≥ 4 from the first constraint, and the second constraint would then fail with
x1 ≥ 3 ∧ x2 ≥ 4 → false. The nogood would simply be x1 ≥ 3 → false. Now,
this nogood is also valid in the second problem because: x1 + 1 < x2 ⇒ x1 ≥
3→ x2 ≥ 4 and x1 + 2x2 ≤ 10⇒ x1 ≥ 3∧ x2 ≥ 4→ false, so both explanations
used to derive the nogood are implied in the second problem.

Note that the constraints in the second problem do not have to be the same
as the first. They can be stronger (like the first constraint in Example 2) or
weaker (like the second constraint in Example 2), and there can be more or



?>=<89:;1

>>>>>
?>=<89:;2

�����

?>=<89:;3

?>=<89:;1

>>>>>
?>=<89:;2

?>=<89:;3

?>=<89:;1

>>>>>
?>=<89:;2

�����

?>=<89:;3

P1 P2 P3

Fig. 1. 3 different graphs for colouring

fewer constraints, as long as the constraints are strong enough to imply all the
explanations used to derive the nogood in the first problem.

To determine whether a nogood can be reused in a different problem, we need
an efficient way to keep track of whether all the explanations used to derive a
nogood are implied in the new problem. We can alter the problem models in order
to achieve this. Instead of modeling each instance as an individual constraint
problem, we create a generic problem class model which is then parameterized
to produce the individual instances. That is, we create a problem class model
Pclass ≡ (V ∪Q,D,C, f), where Q are parameter variables. Individual instances
Pi are then created by fixing the variables in Q to instance specific values Ri.

Example 3. Consider the graph coloring problem with n nodes. Let Q ≡ {ai,j |
i, j = 1, . . . , n} be a set of Boolean parameter variables representing whether
there is an edge between node i and j. We can define V ≡ {v1, . . . , vn}, D ≡
{vi ∈ {1, . . . , n}, C ≡ {ai,j → vi 6= vj} and f = max(vi). Each instance would
then be created by setting the variables in Q to certain values to represent the
adjacency matrix for that instance.

In the traditional way of modeling, parameters are considered as constants
and we have separate problems for each problem instance. In our approach how-
ever, parameters are variables and there is only a single problem for the entire
problem class. Since the parameters are now variables instead of constants, when
LCG is used on an instance, the explanations generated by the propagators will
include literals on the parameter variables. These additional literals describe suf-
ficient conditions on the parameter values to make the inferences valid. When
such parameterized explanations are resolved together to form a nogood, the
nogood will also have literals describing sufficient conditions on the parameter
values to make the nogood valid. Thus each nogood becomes a parameterized
nogood that is valid across the whole problem class. On instances where all the
conditions on the parameters are satisfied, the nogood will be active and will be
able to prune things as per normal. On instances where any of the conditions on
the parameters are not satisfied, the nogood will be inactive (trivially satisfied)
and will not prune anything.

Example 4. Consider three graph coloring instances: P1, where a1,2 = false, a1,3 =
true, a2,3 = true, P2, where a1,2 = true, a1,3 = true, a2,3 = false, and P3, where
a1,2 = true, a1,3 = true, a2,3 = true, illustrated in Figure 1. Suppose in P1, we are
looking for solutions with f ≤ 2 and we made search decisions v1 = 1, v2 = 2.
In the unparameterized model, we would use explanations: f ≤ 2 → v3 ≤ 2,
v1 = 1 → v3 6= 1, v2 = 2 → v3 6= 2, v3 6= 1 ∧ v3 6= 2 ∧ v3 ≤ 2 → false



and would derive a nogood v1 = 1 ∧ v2 = 2 ∧ f ≤ 2 → false. Now, it is in-
correct to apply this nogood in P2, because it is simply not true. For example
v1 = 1, v2 = 2, v3 = 2 is a perfectly valid solution for P2. In the parameterized
model, we would use the explanations: f ≤ 2→ v3 ≤ 2, v1 = 1 ∧ a1,3 → v3 6= 1,
v2 = 2 ∧ a2,3 → v3 6= 2, v3 6= 1 ∧ v3 6= 2 ∧ v3 ≤ 2 → false and would derive a
nogood a1,3∧a2,3∧v1 = 1∧v2 = 2∧f ≤ 2→ false, which correctly encapsulates
the fact that the nogood is only valid if the graph has edges between node 1 and
3 and node 2 and 3. The parameterized nogood can be correctly applied to any
instance of the graph coloring problem. It is inactive in P2 because a2,3 = false
in P2, but it might prune something in P3 because a1,3 = a2,3 = true in P3.

4 Implementation

Naively, we could implement the parameter variables as actual variables with
constraints over them. Then simply running the normal LCG solver on this
model will generate parameterized nogoods. However, such an implementation
is less efficient than using an instance specific model where the parameters are
considered as constants. For example, a linear constraint:

∑
aixi where ai are

parameters would be a simple linear constraint in an instance model, but would
be a quadratic constraint if we consider parameter variables as actual variables.
We can improve the implementation by taking advantage of the fact that the
parameters will always be fixed when we are solving an instance. To do this
we use normal propagators which treat parameters as constants, but alter their
explanations so that they include literals representing sufficient conditions on
the parameters to make the inference true.

For example, given a linear constraint a1x1 + a2x2 + a3x3 ≤ 10, a1 = 1, a2 =
2, a3 = 3 and current bounds x1 ≥ 1, x2 ≥ 2, we can infer x3 ≤ 1, and we would
explain it using: a1 ≥ 1 ∧ a2 ≥ 2 ∧ a3 ≥ 3 ∧ x1 ≥ 1 ∧ x2 ≥ 2→ x3 ≤ 1. Given a
constraint c which may be added to or removed from an instance depending on
a Boolean parameter b, we would modify the explanations for c’s inferences by
adding the literal b to each explanation. Given a cumulative constraint where task
durations, resource usage and the capacity of the machine are parameters, we
would add lower bound literals on the duration and resource usage of each task
involved in the inference, and an upper bound literal on the machine capacity to
each explanation. The modifications to the explanations of other parameterized
constraints are similarly straightforward and we do not describe them all.

A LCG solver can generate an enormous number of parameterized nogoods
during search, most of which are not particularly useful. Clearly, it would be
inefficient to retain all of these nogoods. We take advantage of the inbuilt capa-
bilities of LCG solvers for deleting useless nogoods. The LCG solver Chuffed
maintains an activity score for each nogood based on how often it is used. When
the number of nogoods in the constraint store reaches 100000, the least active
half are deleted. We only reuse the, at most 100000, parameterized nogoods
which survive till the end of the solve. At the beginning of each new instance,
we check each parameterized nogood to see if the conditions on the parameters
are satisfied. If not, we ignore the parameterized nogood, as it cannot prune
anything in this particular instance. If the conditions are satisfied, we add it to
the constraint store and handle it in the same way as nogoods learned during



search, i.e., we periodically remove inactive ones. This ensures that if the param-
eterized nogoods learned from previous instances are useless, they will quickly
be removed and will no longer produce any overhead.

4.1 Strengthening Explanations for Inter-instance Reuse

An important optimization in LCG is to strengthen explanations so that the
nogoods derived from it are more reusable. For example, consider a constraint:
x1 + 2x2 + 3x3 ≤ 13, and current domains: x1 ≥ 4, x2 ≥ 3. Clearly, we can
infer that x3 ≤ 1. Naively, we might explain this using the current bounds as:
x1 ≥ 4 ∧ x2 ≥ 3→ x3 ≤ 1. This explanation is valid, but it is not the strongest
possible explanation. For example, x1 ≥ 2 ∧ x2 ≥ 3 → x3 ≤ 1 is also a valid
explanation and is strictly stronger logically. Using these stronger explanations
result in stronger nogoods which may prune more of the search space. It is often
the case that there are multiple ways to strengthen an explanation and it is not
clear which one is best. For example, x1 ≥ 4 ∧ x2 ≥ 2→ x3 ≤ 1 is another way
to strengthen the explanation for the above inference.

In the context of inter-instance learning, there is an obvious choice of which
strengthening to pick. We can preferentially strengthen the explanations so that
they are more reusable across different problems. We do this by weakening the
bounds on parameter variables in preference to those on normal variables. For
example, if x1 was a parameter variable and x2 was a normal variable, we would
prefer the first strengthening above rather than the second, as that explanation
places weaker conditions on the parameter variables and will allow the nogood
to prune things in more instances of the problem class.

4.2 Hiding Parameter Literals

The linear constraint is particularly difficult for our approach as its explanations
often involve very specific conditions on the parameters, and these conditions
might not be repeated in other instances of the problem we are interested in.

For example, suppose:
∑k

i=1 aixi ≤ m where ai are positive parameter variables
and xi are normal variables. Suppose each ai is fixed to a value of ri, and each
xi is fixed to a value of bi and we have a failure. A naive explanation of this
inference would be of the form: ∧ki=1(ai ≥ ri ∧ xi ≥ bi) → false. This places a
lower bound condition on all of the ai involved in the linear constraint, which
may be hard to meet in any other instance of the problem. We can improve the
situation by decomposing long linear constraints into ternary linear constraints
involving partial sum variables. This serves to “hide” some of the parameters
away and makes the explanation more reusable.

Example 5. Suppose we had constraints: x3 < x4 and a1x1+a2x2+a3x3+a4x4 ≤
29, and in this instance, the parameters are set to a1 = 1, a2 = 2, a3 = 3, a4 = 4.
Suppose we tried x1 = 1, x2 = 2, x3 = 3. We can infer that x4 ≥ 4 with
explanation x3 ≥ 3→ x4 ≥ 4. The second constraint then fails with explanation:
(a1 ≥ 1∧ a2 ≥ 2∧ a3 ≥ 3∧ a4 ≥ 4)∧ x1 ≥ 1∧ x2 ≥ 2∧ x3 ≥ 3∧ x4 ≥ 4→ false,
leading to nogood: (a1 ≥ 1 ∧ a2 ≥ 2 ∧ a3 ≥ 3 ∧ a4 ≥ 4) ∧ x1 ≥ 1 ∧ x2 ≥ 2 ∧ x3 ≥
3→ false. The condition on the parameters: (a1 ≥ 1∧a2 ≥ 2∧a3 ≥ 3∧a4 ≥ 4) is
difficult to satisfy. However, suppose we decomposed the linear constraint into:
a1x1 + a2x2 ≤ s2, s2 + a3x3 ≤ s3, s3 + a4x4 ≤ 29. Now, after inferring x4 ≥ 4



from the first constraint, we would have a chain of inferences and explanations:
(a1 ≥ 1 ∧ a2 ≥ 2) ∧ x1 ≥ 1 ∧ x2 ≥ 2 → s2 ≥ 5, (a3 ≥ 3) ∧ s2 ≥ 5 ∧ x3 ≥ 3 →
s3 ≥ 14, (a4 ≥ 4) ∧ s3 ≥ 14 ∧ x4 ≥ 4 → false. The nogood would be derived
by resolving the last two clause with x3 ≥ 3→ x4 ≥ 4, which gives the nogood:
(a3 ≥ 3 ∧ a4 ≥ 4) ∧ s2 ≥ 5 ∧ x3 ≥ 3 → false. This nogood only has conditions
on a3 and a4 and is strictly stronger logically. By introducing the partial sum
variables, the conditions on a1 and a2 have been “hidden” into the bound literal
on s2 instead, producing a more reusable nogood.

5 Experiments

We evaluate our method on four problems. We briefly describe each problem,
their parameters, and situations where we may wish to solve several similar
instances of the problem.

Radiation Therapy Problem. In the Radiation Therapy Problem [2], a doctor de-
velops a treatment plan for a patient consisting of an intensity matrix describing
the amount of radiation to be delivered to each part of the treatment area. The
aim is to find the configuration of collators and beam intensities which minimizes
the total amount of radiation delivered and the treatment time. The intensities
are parameters. The doctor may alter the treatment plan (change some of the
intensities) and we may wish to re-optimize. We use instances of with 15 rows,
12 columns and a max intensity of 10.

Minimization of Open Stacks Problem. In the Minimization of Open Stacks
Problem (MOSP) [4], we have a set of customers each of which requires a subset
of the products. The products are produced one after another. Each customer
has a stack which must be opened from the time when the first product they
require is produced till the last product they require is produced. The aim is
to find the production order which minimizes the number of stacks which are
open at any time. The parameters are whether a customer requires a certain
product. Customers may change their orders and we may wish to re-optimize
the schedule. We use instances with 35 customers and a shared product density
of 0.2.

Graph Coloring. The existence of an edge between each pair of nodes is a pa-
rameter. Edges may be added or removed and we may wish to re-optimize. We
use instances with 55 nodes and an edge density of 0.33.

Knapsack. In the 0-1 Knapsack Problem, the value, weight and availability of
items are parameters. New items might become available, or old ones might
become unavailable and we may wish to re-optimize. We use instances with 100
items.

For each of these problems, we generate 100 random instances. From each of
these base instances, we generate modified versions of the instance where 1%,
2%, 5%, 10% or 20% of the parameters have been randomly changed. The in-
stances are available online [3]. We solve these instances using the Lazy Clause



Table 1. Comparison of solving (a) Radiation Therapy instances, (b) MOSP instances,
(c) Graph Coloring instances, and (d) Knapsack instances: from scratch (scratch) and
solving them making use of parameterized nogoods (para) from a similar instance

(a) Radiation Therapy (b) MOSP
diff scratch para reuse speedup
1% 7.10 23000 0.08 32 97% 88.8
2% 7.25 23219 0.31 433 93% 23.8
5% 7.03 22556 1.17 2496 81% 6.02
10% 7.57 23628 2.52 6198 74% 3.00
20% 7.68 23326 4.35 11507 55% 1.77

diff scratch para reuse speedup
1% 38.67 111644 1.03 921 93% 37.5
2% 41.65 114358 4.57 6700 88% 9.11
5% 42.80 111745 31.02 75600 71% 1.38
10% 47.80 95521 40.77 88909 57% 1.17
20% 27.37 86231 33.26 88186 45% 0.82

(c) Graph Coloring (d) Knapsack
diff scratch para reuse speedup
1% 15.12 54854 7.72 17026 74% 1.96
2% 18.78 61630 16.17 35994 61% 1.16
5% 23.65 70710 24.96 52026 35% 0.94
10% 45.14 96668 45.54 79763 20% 0.99
20% 48.12 101668 45.96 87431 9% 1.04

diff scratch para reuse speedup
1% 18.21 48714 6.74 11339 100% 2.70
2% 18.47 48640 7.32 13042 100% 2.52
5% 18.80 49154 16.91 37786 100% 1.11
10% 19.38 49298 21.12 44952 100% 0.92
20% 20.83 50007 24.15 49387 100% 0.86

Generation solver Chuffed running on 2.8 GHz Xeon Quad Core E5462 proces-
sors. As a baseline, we solve every instance from scratch (scratch). To compare
with our method, we first solve each base instance and learn parameterized no-
goods from it. We then solve the corresponding modified versions while making
use of these parameterized nogoods (para). The geometric mean of the run times
in seconds and the nodes required to solve each set of 100 instances is shown in
Table 1. We also show the geometric mean of the percentage of parameterized
nogoods which are active in the second instance of each pair of instances (reuse),
and the speedup (speedup).

As can be seen from the results, parameterized nogoods can provide signif-
icant reductions in node count and run times on a variety of problems. The
speedups vary between problem classes and are dependent on how similar the
instance is to one that has been solved before. Dramatic speedups are possible
for Radiation and MOSP when the instances are similar enough, whereas the
speedups are smaller for Knapsack and Graph Coloring. The more similar an
instance is to one that has been solved before, the greater the number of param-
eterized nogoods which are active in this instance and the greater the speedup
tends to be. When the instance is too dissimilar, parameterized nogoods provide
little to no benefit.

The percentage of parameterized nogoods which are active in the second in-
stance is highly dependent on the problem class. This is because depending on
the structure of the problem, each parameterized nogood can involve a small or
large number of the instance parameters. The fewer the parameters involved, the
fewer the conditions on the parameters and the more likely it is that the nogood
will be reusable in another instance. The “hiding parameter literals” optimiza-
tion described in Section 4.2 is clearly beneficial for the Knapsack Problem,
raising the reusability to 100%. Without it, few of the parameterized nogoods
are active in the second instance and there is no speedup (not shown in table).



While parameterized nogoods must be active in order to provide any pruning,
there is no guarantee that an active nogood will actually provide “useful” prun-
ing. This can be seen in the results for Knapsack, where despite the fact that all
the parameterized nogoods can potentially prune something, they do not prune
anything useful when the second instance is too different from the first.

6 Conclusion

We have generalized the concept of nogoods, which are valid only for an in-
stance, to parameterized nogoods which are valid for an entire problem class. We
have described the modifications to a Lazy Clause Generation solver required to
generate such parameterized nogoods. We evaluated the technique experimen-
tally and found that parameterized nogoods can provide significant speedups on
a range of problems when several similar instances of the same problem need
to be solved. The more similar the instances are, the greater the speedup from
using parameterized nogoods.

Acknowledgments. NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council. This work was partially supported by Asian

Office of Aerospace Research and Development (AOARD) Grant FA2386-12-1-4056.

References

1. Ignasi Ab́ıo, Morgan Deters, Robert Nieuwenhuis, and Peter J. Stuckey. Reducing
chaos in SAT-like search: Finding solutions close to a given one. In SAT, pages
273–286, 2011.

2. Davaatseren Baatar, Natashia Boland, Sebastian Brand, and Peter J. Stuckey.
Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices: CP
and IP Approaches. In Pascal Van Hentenryck and Laurence A. Wolsey, edi-
tors, Proceedings of the 4th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
volume 4510 of Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

3. G. Chu. Interproblem nogood instances. www.cis.unimelb.edu.au/~pjs/interprob/.
4. Geoffrey Chu and Peter J. Stuckey. Minimizing the Maximum Number of Open

Stacks by Customer Search. In Ian P. Gent, editor, Proceedings of the 15th Interna-
tional Conference on Principles and Practice of Constraint Programming, volume
5732 of Lecture Notes in Computer Science, pages 242–257. Springer, 2009.

5. Thibaut Feydy and Peter J. Stuckey. Lazy Clause Generation Reengineered. In
Ian P. Gent, editor, Proceedings of the 15th International Conference on Princi-
ples and Practice of Constraint Programming, volume 5732 of Lecture Notes in
Computer Science, pages 352–366. Springer, 2009.

6. Pat Langley. Learning effective search heuristics. In IJCAI, pages 419–421, 1983.
7. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference, pages 530–535. ACM, 2001.

8. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = Lazy
Clause Generation. In Christian Bessiere, editor, Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint Programming, volume
4741 of Lecture Notes in Computer Science, pages 544–558. Springer, 2007.



9. Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark Wallace. Why Cumu-
lative Decomposition Is Not as Bad as It Sounds. In Ian P. Gent, editor, Proceed-
ings of the 15th International Conference on Principles and Practice of Constraint
Programming, volume 5732 of Lecture Notes in Computer Science, pages 746–761.
Springer, 2009.

10. Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining
the cumulative propagator. Constraints, 16(3):250–282, 2011.

11. Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for sat. J. Artif. Intell. Res. (JAIR), 32:565–
606, 2008.


