
INFORMS JOURNAL ON COMPUTING
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0899-1499 |eissn 1526-5528 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Decomposition-Based Heuristic for Collaborative
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We consider the short-term production scheduling problem for a network of multiple open-pit mines and

ports. Ore produced at each mine is transported by rail to a set of ports and blended into signature products

for shipping. Consistency in the grade and quality of production over time is critical for customer satisfaction,

while the maximal production of blended products is required to maximise profit. In practice, short-term

schedules are formed independently at each mine, tasked with achieving the grade and quality targets outlined

in a medium-term plan. However, due to uncertainty in the data available to a medium-term planner, and

the dynamics of the mining environment, such targets may not be feasible in the short-term. We present a

decomposition-based heuristic for this short-term scheduling problem in which the grade and quality goals

assigned to each mine are collaboratively adapted – ensuring the satisfaction of blending constraints at each

port, and exploiting opportunities to maximise production in the network that would otherwise be missed.

Key words : short-term open-pit mine production scheduling, hybrid optimisation, non-linear programming

1. Introduction

We consider the Multiple Mine Planning Problem (MMPP) of scheduling the production1

of multiple open-pit mines to supply multiple ports with ore that can be blended to form2

products of a desired composition. The operational objectives of the network, in the short-3

term, are to maximise the production of such products at each port, while maximising the4

utilisation of equipment at each mine (Everett 2007). A blend is characterised by its grade,5

denoting how much of the metal of interest it contains, and its quality, the percentage of a6

number of impurities in its composition. We consider the open-pit mining of mineral ores7

that are sold in two granularities – lump and fines – distinguished by their particle size.8

1
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A solution to the short-term MMPP schedules the movement of material, from available9

sources of ore and waste to appropriate destinations, at each mine, and the transport of10

ore between each mine and port, during each week of a 13 week horizon. We restrict our11

attention, in this paper, to the single time period (1 week) instantiation of the MMPP,12

with the full 13 week instantiation forming the basis of future work. At each mine, ore from13

a variety of sources is processed and blended in a stockyard, producing a consistent grade14

and quality of ore over the time period. Produced ore is reclaimed from this stockyard onto15

trains, railed to a port, and blended with ore from other mines to form desired products.16

An optimal solution to the MMPP requires coordination across the network of mines. The17

grade and quality of production at each mine must be configured to: ensure the formation18

of correctly blended products at each port; maximise the productivity of the mine; and19

maximise the tons of blended products formed across the port system.20

Even in the single time period case, the MMPP is a difficult problem. Ore produced at21

each mine passes through two blending processes: an intermediate stage of blending in the22

stockyard of the mine; and the downstream blending of this material into final products.23

The presence of pooling behaviour in the mining supply chain introduces non-linearities24

into its mathematical modelling (Floudas and Aggarwal 1990, Greenberg 1995, Audet25

et al. 2004, Misener and Floudas 2009). The single time period, short-term MMPP can26

thus be modelled as a non-linear mixed integer program (MINLP), containing non-linear27

constraints that characterise the chemistry of production across the network of mines.28

We present a non-linear mixed integer program (MINLP) modelling of the single time29

period, short-term MMPP. This model is a bilinear program – involving the product of two30

continuous variables in its constraints – similar in structure to a pooling problem (Haverly31

1978, Audet et al. 2004, Meyer and Floudas 2006, Misener and Floudas 2009, Alfaki 2012).32

We apply various techniques to solve this MINLP, including those previously applied to33

pooling problems, on an 8-mine, 2-port network, constructed using data provided by an34

industry partner. Expressing and solving the MMPP in terms of a single MINLP proves35

to be inadequate: prohibitive in the time required to find high quality solutions; and ill36

equipped to manage increased complexity in the network and extension of the planning37

horizon to 13 weeks. To overcome this, we develop a decomposition-based heuristic for38

solving the MMPP, and compare its solutions to those obtained via the MINLP model.39
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Inspired by the agent-based decomposition of supply chains across a variety of domains40

(Shen et al. 2006, Frayet et al. 2007, Leitao 2009), we decompose the problem of scheduling41

the movement of material at each mine, and the transport of ore between each mine and42

port, into a set of smaller problems – each associated with a decision-making entity in43

the network: a mine, or the set of ports. This decomposition splits the problem, along its44

non-linear constraints, into a linear problem for each mine, and the port system.45

Let m ∈M denote a mine m in a set of mines M, and π ∈Π a port π in a set of ports46

Π. We formulate an optimisation problem for each mine, Om, in which a mixed integer47

program (MIP) is solved to determine the set of ore sources (which we call blocks) to be48

extracted at mine m, over the relevant time period, while maximising its productivity.49

We define a measure of productivity that captures production (involving the utilisation50

of processing equipment, plants and mills) and transportation (involving the utilisation of51

trucking resources). The discretisation of the material available for extraction at a mine52

into ‘blocks’ is described in detail in Section 2. Each Om is solved to produce N solutions53

(or schedules), across which the chemistry of produced ore is clustered about a point,54

provided as input, in the space of producible grade-quality combinations. An optimisation55

problem for the port system, OΠ, is designed to receive, as input, N solutions to each Om.56

Formulated as a MIP, a solution to OΠ characterises the flow of ore between each mine57

and port, and defines which of the N solutions to each Om is to be enacted at mine m.58

The objective in this blending problem is to form lump and fines products at each port59

whose composition does not deviate from desired bounds on grade and quality, and whose60

sale maximises revenue – a product of the tons of each blend produced and its sale value.61

We propose a heuristic in which the solving of each Om, followed by OΠ, is iterated –62

yielding a sequence of improving solutions to the single period, short-term MMPP. Each63

solution defines a block extraction schedule to be followed at each mine, and a routing of64

trains from each mine to port. OΠ provides, as an output, grade and quality profiles to65

form the input to each Om in the next iteration. These profiles denote the composition of66

the ore produced by each mine in the best solution found by OΠ across all prior iterations.67

Each mine is, in this way, guided toward finding solutions to its optimisation problem that68

allow each port to form correctly blended products, while maximising revenue.69

The key contribution of this paper is a novel methodology for production scheduling in70

supply chains with multiple producers and a downstream blending component. This type of71
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problem appears in many domains, including: the mining of natural resources (such as iron72

ore and coal); the scheduling of operations in offshore oil fields (Iyer and Grossmann 1998,73

van den Heever and Grossmann 2000, Neiro and Pinto 2004); and production planning74

in natural gas supply chains (Li et al. 2011). While we concentrate on the application75

of scheduling in open-pit mines, our methodology is well suited to solving large-scale,76

combinatorially challenging scheduling problems that arise in each of these domains.77

The remainder of this paper is structured as follows. In Section 2, we highlight existing78

work related to the MMPP. We describe the MMPP, and a set of benchmark instances, in79

Sections 3 and 4. In Section 5, we present a MINLP modelling of the problem, and describe80

a range of existing solving techniques. We follow with a description of our decomposition-81

based heuristic for the generation of week-long extraction plans in Section 6, outlining the82

conditions upon which it terminates, and presenting the MIP models underlying the mine83

and port optimisation problems. An evaluation of our heuristic is provided in Appendix84

C.85

2. Background and Related Work86

An open-pit mine consists of a set of pits, in which horizontal layers of material (benches)87

have been extracted (from the top down) to form a stepped-wall cavity (Hustrulid and88

Kuchta 2006). A block model divides each of these benches into a grid of equally-sized89

blocks, each of which is assigned an estimate of its grade and quality. Long-term (such as90

life-of-mine) planning at an open-pit mine determines the set of blocks in this model to be91

extracted, and processed, during each year of the mine’s life. Precedences exist between92

the blocks in this model, defining which blocks must be extracted before others can be93

accessed. Typically, the 5 (or 9) blocks directly above each block in an orebody block model94

(see Figure 1a–1b) are its precedences (or predecessors), and must be extracted before it.95

Such precedences ensure that constraints on the slope of pit walls are respected during96

mining. Pit walls that are too steep are unstable, and present a risk of slope failure.97

In the short-term, portions of the orebody block model(s) at each mine are aggregated98

into larger units, denoted blast blocks or blast regions. These regions are blasted (via99

explosives inserted into drill holes) to form the broken stock of the mine – ore and waste100

that is available and primed for extraction. Blast regions are partitioned into grade blocks101

– areas of waste, low grade, and high grade ore – on the basis of samples extracted from102
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(a) (b) (c)

Figure 1 (a) The 5, and (b) 9, blocks above a block in a block model, and (c) a grade block model.

drill holes. Figure 1c depicts a grade block characterisation of a portion of an orebody.103

Each grade block can be viewed as an aggregation of blocks in the orebody or ‘regularised’104

block model of a mine. The chemistry of each grade block, however, is determined through105

the averaging of samples obtained via the drilling of blast blocks, rather than the averaging106

of less certain estimates associated with blocks in the regularised model. Typically, there107

is a sufficient quantity of broken stock at a mine to supply its production for 2-3 weeks.108

A short-term (13 week) planner selects a number of regions (grade and block model109

blocks) in a mine to be extracted, and the destination of this material (stockpiles or110

processing plants), during each week of a 13 week period. Grade blocks are scheduled to be111

mined in the first few weeks of this period, while smaller block model blocks (characterising112

the portion of the mine’s orebody reachable in the planning horizon) are scheduled in the113

remainder. These block model blocks will be sampled, blasted, and aggregated into grade114

blocks before extraction. The grade, quality, and characteristics of each processed block115

(how a block splits into lump and fines upon processing) determines the composition of the116

lump and fines ore produced at the mine. This ore is railed to a set of ports, and blended117

with that of other mines, to form products with defined bounds on grade and impurities.118

In practice, such extraction sequences are formed independently at each mine, on the119

basis of a two year, or medium-term, plan. This plan sets monthly grade and quality targets120

on mine production – assumed to be both achievable given the estimated composition of121

material in pit benches, and supportive of port blending constraints. These monthly targets122

define the chemistry of ore to be produced by a mine during each week of the 13 week123

horizon. The chemistry of ore available for extraction at a mine is revised through the124

shorter-term sampling and partitioning of blast blocks. Medium-term targets are formed125
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on the basis more uncertain geological models, and estimated parameters characterising126

the availability of resources, and the production capability of a mine (Yarmuch and Ortiz127

2011). In the short-term, such targets may not be achievable at one or more mine sites,128

during one or more weeks, jeopardising the production of blended products at each port.129

In the literature, the short-term production scheduling problem at open-pit mines has130

not been widely considered in lieu of the medium- and long-term horizons (Newman et al.131

2010). In long-term settings, geometric block models (containing on the order of a million132

blocks) describe the nature of each ore-body to be mined, while extraction sequences are133

devised to maximise the net present value (NPV) of a venture (Fricke 2006, Osanloo et al.134

2008, Gleixner 2008, Newman et al. 2010, Epstein et al. 2012). The grade blocks scheduled135

for extraction in the short-term do not conform to a regular gridded structure. Mining136

precedences among blocks in the same bench become more relevant in this setting, as137

any extraction schedule must consider how a block can be accessed from the mining face.138

Espinoza et al. (2012) identify the importance of general representations of precedence139

in open-pit mining models, allowing the specification of any collection of blocks as the140

predecessors of another (in contrast to the schemes shown in Figures 1a and 1b) in the141

MineLib library of open-pit production scheduling problems. The predecessors of a block142

may vary, however, on the basis of the direction from which it is being approached. Eivazy143

and Askari-Nasab (2012) generate precedences a priori given a fixed mining direction. A144

MIP modelling of a short-term open-pit mine production scheduling problem is solved,145

in a range of scenarios, each scenario imposing a different mining direction. In contrast,146

we support the use of disjunctive precedences among blocks in the same bench in our147

MINLP modelling of the MMPP (Section 5). In this scheme, blocks that are not directly148

accessible from the mining face can be accessed by the removal of at least one adjacent149

block. Gholamnejad (2008) follow a similar approach in the specification of precedences150

among blocks in a regularised model (of the type shown in Figure 1a–1b), but require three151

contiguous neighbours of a block, on the same bench, to be removed to allow access.152

NPV maximisation is replaced, in the short-term, with the objective of maximising153

production tons and equipment utilisation. Decisions that determine the costs of mining,154

such as the number of trucks (fleet size) available in each mine, are made in the medium- to155

long-term planning horizons. Consequently, the minimisation of operating costs is typically156

not relevant in the short-term. While some works consider the use of cost minimisation in157
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the short-term scheduling of open-pit mines (see, for example, Eivazy and Askari-Nasab158

(2012)), the objectives of concern to our industry partner are the maximal production of159

correctly blended products at each port, and the maximal use of equipment at each mine.160

Much existing work on the short- (and, indeed, the long-) term problem considers161

scheduling in single mine systems (Elbrond and Soumis 1987, Fytas et al. 1993, Chanda162

and Dagdelen 1995, Smith 1998, Everett 2007, Newman et al. 2007, Martinez and New-163

man 2012). Consideration of the influence of scheduling decisions at a single mine on its164

parent system, and the optimisation of such decisions in conjunction with those at other165

mines, are seen as unaddressed challenges in the production scheduling of open-pit mines166

(Espinoza et al. 2012). The presence of pooling behaviour in an open-pit supply chain167

of multiple mines – arising from the blending and stockpiling of ore in a stockyard at168

each mine (each stockyard representing a ‘pool’ of ore) – introduces non-linearities into169

a mathematical modelling of the problem. In Section 5.3, we highlight the relationship170

between the MMPP and the classic pooling problem (Haverly 1978, Misener and Floudas171

2009). In a single mine system, no downstream blending of a mine’s production with that172

of other mines takes place. Such a mine will have defined upper and lower bounds on the173

range of attributes that constitute the chemistry of produced ore, which can be formulated174

into linear constraints (Ramazan and Dimitrakopoulos 2004, Osanloo et al. 2008). The175

determination of what composition of ore each mine should produce to meet the blending176

requirements of each port occurs only in multiple mine optimisation.177

The collaborative adjustment of grade and quality targets assigned to a set of mines,178

by a longer-term plan, in the generation of short-term plans, can ensure that each mine is179

assigned weekly goals that can be achieved while maximising both productivity (a measure180

of ore production and the utilisation of equipment) and the production of correctly blended181

products at the ports. We propose, in this paper, a decomposition-based heuristic, in which182

this collaborative adjustment is achieved, to form a week-long extraction plan at each mine183

in a multiple mine network. To the best of our knowledge, this is the first work to tackle184

the scheduling of production in multiple open-pit mines, where the grade and quality of185

ore to be produced by each mine is not known a priori, but determined as part of the186

optimisation. While there exists work in which the mine-to-port transportation problem,187

in a network of multiple mines and ports, is optimised (Singh et al. 2013), the production188

of each mine is known a priori, in contrast to the problem we tackle in this paper.189
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Figure 2 Flow of material through an open-pit network of mines M and ports Π, where: Pm and b0 . . . bj denote

the set of pits at mine m and blocks within a pit; xms,d is a variable denoting the tons of material being

transported between source s and destination d; δ, θ, and λ denote a waste dump, high, and low grade

stockpile; l refers to a granularity of ore (lump/fines); and rπm,l,n is a variable denoting the number of

trainloads of granularity l being transported from mine m to port π to form part of product n∈Nπ
l .

3. The Multiple Mine Network190

We consider a network of mines, M, connected by rail to a port system, Π. At each191

mine m∈M, ore and waste is extracted from geological regions (known as grade blocks),192

processed into lump (particle size of approximately 6 to 31 mm) and fines (< 6 mm)193

granularities, and loaded onto trains to be railed to a port π ∈Π. Ore arriving at each port194

is blended onto stockpiles, from which it is loaded onto ships for delivery to customers. We195

present a model of this network, detail the constraints that exist on the operation of each196

mine and port, and define the scheduling problem that we seek to solve for a single time197

period. Appendix A outlines the meaning of the notation used throughout this section.198

Each mine m ∈M contains a set of pits, Pm, and each pit p ∈ Pm contains a set of199

blocks, Bm,p ⊆ Bm, where Bm denotes the set of blocks available for scheduling at mine200

m1. Each block b ∈ Bm has a high (b ∈ Bm,hg), low grade (b ∈ Bm,lg), or waste (b ∈ Bm,w)201

classification, controlling the destinations at m to which material extracted from b can202

be transported. Waste is hauled, by truck, to a waste dump (δ ∈∆m). High grade ore is203

hauled to a dry processing plant (κ), or one of a number of high grade stockpiles (θ ∈Θm).204

Low grade ore is hauled to a low grade stockpile (λ ∈ Λm), or a wet processing plant (ω,205

if one exists at m). Both forms of processing split ore into lump (l = 0) and fines (l = 1)206

granularities to be blended in a stockyard. The split of a block b ∈ Bm (Sm,b,l) defines the207

1 As our focus is restricted to the single time period (single week) setting, the set Bm contains only grade blocks.
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percentage of b that will split (upon processing) into granularity l ∈L. The set of ore and208

waste sources at mine m is denoted Sm =Bm ∪Θm ∪Λm. The set of destinations to which209

a source of ore or waste can be transported is denoted Dm = {κ,ω}∪∆m∪Θm∪Λm. Each210

source s ∈ Sm has a tonnage (Tms ) available for extraction, and a composition defined in211

terms of the percentage of a set Q of relevant elements (e.g. metal grade) in its lump and212

fines components (Gm
s,l,q for q ∈Q and l ∈L). The crushing and screening of a source s∈ Sm213

results in a stream of lump and fines ore with a composition Gm
s,l,q for q ∈Q and l= 0 or 1.214

A wet processing plant upgrades (increases the percentage of metal in) low grade ore.215

Feeds of lump and fines (resulting from a process of crushing and screening ore from216

a source s) are processed to separate the metal in the mineral of interest from gangue217

material (worthless material surrounding the metal in ore). The result is a stream of tailings218

(rejected material) and a concentrate. The tons of valuable metal (and other attributes) in219

this concentrate is a fraction of that in the input feed of fines or lump (as per a recovery220

factor Rm,ω
s,l,q for q ∈Q). The tons of concentrate produced is a fraction of the mass of the221

input feed (as per a yield factor Y m,ω
s,l ). This concentrate is blended with the lump and222

fines produced from the dry processing of high grade ore (see Equation (4), Section 3.1).223

Ore can be reclaimed (extracted) from the low and high grade stockpiles at each mine.224

Reclaimed low grade ore is hauled to the wet processing plant, while reclaimed high grade225

ore is dry processed. Processed ore from both plants is blended onto lump and fines stock-226

piles, from which it is transported in TR ton trainloads to a port π ∈Π. Trainloads of ore227

arriving at each port, π ∈Π, are blended to form a set Nπ
l of products of each granularity228

l ∈L. Each product n ∈Nπ
l is associated with bounds on its grade and quality, expressed229

in terms of a lower (Lπ,ln,q) and upper (Uπ,l
n,q) bound on the percentage of each q ∈Q.230

Figure 2 depicts the flow of mined material from pit to stockyard, and from mine to port.231

Variables xms,d for s∈ Sm and d∈Dm at mine m denote the tons of each source s extracted232

and hauled to each of its possible destinations d. Variable rπm,l,n denotes the integer number233

of trainloads of granularity l ∈L transported by rail from mine m to port π, to be blended234

into product n∈Nπ
l . Capacity limits exist on the: extraction of material in each pit p∈Pm235

(Cm
p tons) on the basis of equipment location; tons of material hauled by truck (Cm

τ ); tons236

of ore processed by the dry (Cm
κ ) and wet (Cm

ω ) plants; and the tons of each source s∈ Sm237

available for extraction (Tms ). Mining precedences constrain the order in which blocks can238

be extracted at a mine m. A∧m,b denotes the set of blocks that lie directly above b, all of239
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which must be mined before b can be accessed. A∨m,b denotes the set of blocks adjacent to240

b, in the same bench, only one of which must be mined before b can be accessed. Minimum241

production demands (Dm
l ) exist on the quantity of each type of ore produced by each mine.242

The capacity of each port π constrains the quantity of ore handled (Cπ), while a lower243

bound exists on the tons of each product formed (Dπ
l,n for each n∈Nπ

l ).244

3.1. Calculating Production Tons, Quality Profiles, Productivity, and Revenue245

Let ~xm denote the set of variables xms,d, for each s∈ Sm and d∈Dm at mine m∈M; ~x the246

set of variables xms,d, for each mine m, s ∈ Sm and d ∈ Dm; ~r πl,n the set of variables rπm,l,n,247

for each mine m, given granularity l ∈L, and product n∈Nπ
l at port π ∈Π; ~rπ the set of248

variables rπm,l,n, for each mine m, granularity l ∈L, and product n∈Nπ
l at port π ∈Π; and249

~r the set of all rπm,l,n, for each port π, mine m, granularity l ∈L, and product n∈Nπ
l .250

Equation (1) defines the tons of granularity l ∈ L formed by the processing of ore from251

source s at mine m, τms,l(~xm). The tons of each granularity produced at m, denoted τml (~xm),252

is defined in Equation (2). Equation (3) defines the tons of product n∈Nπ
l , l ∈L, formed253

at port π, given TR tons in a train.254

τms,l(~xm) = Sm,s,l
[
xms,κ +xms,ωY

m,ω
s,l

]
(1)

τml (~xm) =
∑
s∈Sm

Sm,s,l
[
xms,κ +xms,ωY

m,ω
s,l

]
=
∑
s∈Sm

τms,l(~xm) (2)

τπl,n(~rπ) =
∑
m∈M

rπm,l,nTR (3)

Equations (4)–(5) define the percentage of each q ∈Q: in the ore of granularity l produced255

by mine m, vml,q(~xm); and in product n∈Nπ
l formed by port π, vπl,n,q(~x,~r

π
l,n).256

vml,q(~xm) =

∑
s∈Sm

Sm,s,lG
m
s,l,q

[
xms,κ +xms,ωR

m,ω
s,l,q

]
∑
s∈Sm

Sm,s,l
[
xms,κ +xms,ωY

m,ω
s,l

] (4)

vπl,n,q(~x,~r
π
l,n) =

∑
m∈M

rπm,l,nv
m
l,q(~xm)TR∑

m∈M
rπm,l,nTR

(5)

Equation (6) calculates the revenue generated by the sale of ore formed across ports,257

ν(~r). V π
l,n denotes the sale price per ton for ore of product n∈Nπ

l .258



Blom, M. et. al.: A Decomposition-Based Heuristic for Scheduling in Open-Pit Mines
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 11

ν(~r) =
∑
π∈Π

∑
m∈M

∑
l∈L

∑
n∈Nπ

l

rπm,l,nTRV
π
l,n (6)

The total deviation in the blend of products formed across ports from their specification,259

denoted by bounds [Lπ,ln,q,U
π,l
n,q] for all π ∈Π, l ∈L, n∈Nπ

l , and q ∈Q, is defined as:260

η(~x,~r) =
∑
π∈Π

∑
l∈L

∑
n∈Nπ

l

∑
q∈Q

1

∆+
q

[
max{0, vπl,n,q(~x,~r πl,n)−Uπ,l

n,q,L
π,l
n,q− vπl,n,q(~x,~r πl,n)}

]
(7)

where ∆+
q denotes a ‘significant’ change in the percentage of q ∈Q in a body of ore2. The261

value of η(~x,~r) is not a percentage, but a weighted sum of percentage deviations.262

We define the productivity of a mine m, ρm(~xm), in terms of: a weighted sum of the263

tons of ore, of each granularity, produced by the mine; the tons of waste extracted and264

transported to a dump; and the tons of ore transported to low and high grade stockpiles.265

Trucking resources are expected to be utilised for desirable purposes: the transportation266

of ore to processing plants; and the transportation of waste to a dump. The haulage of267

high grade ore to stockpiles is an undesirable use of resources, while the haulage of low268

grade ore to stockpiles is undesirable in mines that have facilities for its upgrade (i.e. it is269

preferable to send this material directly to the wet processing plant). Let: α1 and α2 denote270

constants such that α1� α2; and Ψm
ω a binary parameter such that Ψm

ω = 1 if mine m has271

the facilities to upgrade low grade ore, and Ψm
ω = 0 otherwise. In the instance that Ψm

ω = 0,272

low grade stockpiles are effectively additional dump sites. In this setting, the transport of273

low grade ore to these stockpiles is not viewed as an undesirable use of trucking resources.274

275

ρm(~xm) = α1

∑
l∈L

τml (~xm) +α2

∑
s∈Sm

[∑
δ∈∆m

xms,δ + (1− 2Ψm
w )
∑
λ∈Λm

xms,λ−
∑
θ∈Θm

xms,θ

]
(8)

276

The measure ρm(~xm), in Equation (8), is a high level representation of productivity at277

mine m, in which the behaviour of individual pieces of equipment is not taken into account.278

2 A significant change in the percentage of a metal (such as Iron) in a body of ore may be on the order of 1%, for
example, while that of a trace element may be on the order of 0.1% or less.
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3.2. The Multiple Mine Planning Problem (MMPP)279

Given a network of mines M, ports Π, and parameters (of Appendix A), the MMPP280

is defined as finding an instantiation of variables ~x = {xms,d |m ∈M, s ∈ Sm, d ∈ Dm} and281

~r = {rπm,l,n |m ∈M, π ∈Π, l ∈ L, n ∈Nπ
l } that satisfies all relevant constraints (formalised282

in the MINLP of Section 5). An optimal solution to the MMPP is an instantiation of ~x283

and ~r for which the objective ZMMPP , shown in Equation (9), is minimised. Let β1, β2,284

and β3, denote constants such that β1� β2� β3. Recall that: η(~x,~r) denotes a measure of285

the extent to which the composition of each port product deviates from desired bounds,286

summed over all ports π ∈ Π, and products n ∈ Nπ
l of each granularity l ∈ L (Equation287

(7)); ν(~r) the revenue generated from the sale of products formed across the system of288

ports (Equation (6)); and ρm(~xm) the productivity of mine m (Equation (8)).289

ZMMPP = min β1η(~x,~r)−β2ν(~r)−β3

∑
m∈M

ρm(~xm) (9)

An η(~x,~r) of 0 indicates that the blending constraint set, below, is satisfied at each port290

π ∈Π over the relevant time period, where vπl,n,q(~x,~r
π
l,n) is defined as in Equation (5).291

∀π ∈Π, l ∈L, n∈Nπ
l , q ∈Q Lπ,ln,q ≤ vπl,n,q(~x,~r πl,n)≤Uπ,l

n,q (10)

Products formed at port whose composition deviates from desired bounds typically can-292

not be sold, except in small quantities, or incur large penalties and loss of reputation.293

3.3. Assumptions294

We make a number of simplifying assumptions in our modelling of the MMPP. We assume295

that: waste dumps at each mine have an infinite capacity; the capacity of the rail network296

is infinite; and material can be both deposited on, and extracted from, a stockpile at a mine297

over the course of the scheduling horizon, but that only material already on the stockpile at298

the beginning of the horizon can be reclaimed (we do not consider blending on low and high299

grade stockpiles at each mine). In practice, each mine is tasked with producing a consistent300

blend of ore, to be loaded onto arriving and departing trains, over the course of a week-long301

horizon. We consider a simplified setting in which the average composition of lump and302

fines produced at a mine m forms the composition of each train departing m to a port.303

As a topic of future work, we intend to incorporate this blend consistency requirement,304
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and additional practical mining constraints, such as: the feasibility (and desirability) of305

equipment movement within a pit; minimum bounds on the tons of material left un-mined306

in a grade block; a bound on available trucking hours (in place of a haulage capacity in307

tons); and constraints involving the rail network. We assume that an incorrectly blended308

product produced at a port cannot be sold (no revenue is gained). Hence, we do not model309

financial penalties for blend deviations or reputation loss, but rather force this deviation310

to 0 by pushing the blending constraints of Equation (10) into the objective of Equation311

(9) via the use of a penalty term β1η(~x,~r), β1� 1. In our experience, models generated to312

represent the MMPP can be solved more efficiently in this setting.313

4. An 8-mine, 2-port network314

We have constructed a test suite with which to evaluate our decomposition-based heuristic,315

and contrast its performance with alternative solution methods. These tests define an316

8-mine, 2-port network, characterised using data provided by an industry partner. This317

network represents a currently operating system of open-pit mines that produce over 200318

million tons of ore annually. In each test case, we provide each mine with: a set of grade319

blocks available for extraction, listing their grade, quality profile, and tonnage; the mining320

precedences that exist between blocks; compositions and sizes for each high and low grade321

stockpile; and a limit on the tons of material extracted in each pit, and hauled mine-wide.322

Test cases have been generated using historical block extraction data obtained for each323

mine. This data lists the set of grade blocks that have been defined by geologists at each324

mine, over the period of a year, and the dates by which they have been extracted. Each test325

case has been generated by selecting a date in the year long period covered by the historical326

block extraction data, and determining the state of each mine (the grade blocks available327

for extraction) at this time point. The number of grade blocks available for scheduling at328

each mine, across the test suite, ranges from 34 to 297. Haulage capacities at each mine,329

minimum production requirements, port throughput capacities, and blend requirements at330

each port are fixed across all test cases. In each test, each port produces one product of331

each granularity (|Nπ
l |= 1 for all π ∈Π and l ∈L).332

All evaluations presented in this paper have been conducted on a 2.40 GHz Intel Xeon333

CPU with 8 GB RAM.334
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5. A MINLP Formulation335

We introduce variables vml,q and τml to denote the percentage of attribute q ∈Q in granularity336

l at the stockyard of mine m ∈ M, and the tons of granularity l ∈ L produced at m,337

respectively. This allows us to express the total deviation between the achieved composition338

of each port product and its desired bounds, η(~x,~r) in Equation (7), in a form that can be339

linearised, and in addition, reduce the number of bilinear terms in the model.340

5.1. The Objective341

We derive a linearised approximation of ZMMPP in Equation (9) to form the objective of the342

MINLP. ZMMPP seeks to minimise the total deviation between port product composition343

and desired bounds, η(~x,~r), as defined in Equation (7). The presence of vπl,n,q(~x,~r
π
l,n), the344

percentage of q ∈Q in product n∈Nπ
l formed by port π, defined in Equation (5), introduces345

a non-linear term into the computation of η(~x,~r). We express the bounds [Lπ,ln,q,U
π,l
n,q] on the346

percentage of each q ∈Q in product n∈Nπ
l , in terms of tons. The tons of attribute q ∈Q347

in product n ∈Nπ
l is computed as shown in Equation (11). The variable vml,q, introduced348

above, is used to denote the percentage of q ∈ Q in ore of granularity l ∈ L produced at349

mine m. Each rπm,l,nv
m
l,q is the product of an integer and continuous variable, which can be350

expanded into a sum over products of binary and continuous variables. Each brπ,jm,l,n is a351

binary variable whose value is 1 if and only if j trains of granularity l from mine m are352

scheduled to form part of product n∈Nπ
l at port π. Um,l denotes the maximum number of353

trainloads of granularity l producible at mine m during the scheduling horizon, and ranges354

from 2 to 28 across the network of mines in our network (Section 4). Each brπ,jm,l,n v
m
l,q is the355

product of a binary and continuous variable, linearisable via standard techniques.356

τπl,n,q(~r
π
l,n) =

∑
m∈M

rπm,l,n v
m
l,q TR =

∑
m∈M

Um,l∑
j=0

j brπ,jm,l,n v
m
l,q TR (11)

Equation (12) defines our linearised η(~x,~r), denoted η′(~x,~r). We compare the tons of357

attribute q ∈Q in each product n∈Nπ
l to a lower and upper bound defined by the multi-358

plication of Lπ,ln,q and Uπ,l
n,q with the tons of product n formed by port π, τπl,n(~rπ). The two359

alternative measures are not equivalent, but both provide an indication of the extent of360

deviation between the achieved composition of each port product and its desired bounds.361
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η′(~x,~r) =
∑
π∈Π

∑
l∈L

∑
n∈Nπ

l

∑
q∈Q

1

∆+
q

max{0, τπl,n,q(~r πl,n)−Uπ,l
n,qτ

π
l,n(~rπ)} +

∑
π∈Π

∑
l∈L

∑
n∈Nπ

l

∑
q∈Q

1

∆+
q

max{0,Lπ,ln,qτπl,n(~rπ)− τπl,n,q(~r πl,n)} (12)

Expressing ZMMPP in terms of the deviation measure η′(~x,~r) yields the following linear362

objective function, denoted Z ′MMPP . The constants β1, β2, and β3, and the expressions363

ν(~r), and ρm(~xm), are defined as in Section 3.2.364

Z ′MMPP = min β1η
′(~x,~r)−β2ν(~r)−β3

∑
m∈M

ρm(~xm) (13)

5.2. Constraints365

Constraints (14)–(15) enforce minimum production demands at: each mine m ∈ M,366

denoted Dm
l for each granularity l ∈ L; and port π ∈ Π, denoted Dπ

l,n for each product367

n∈Nπ
l , l ∈L. Constraint (16) ensures that the tons of each granularity railed from a mine368

m, to the set of ports, is no more than what has been produced.369

τml ≥Dm
l ∀ m∈M, l ∈L, (14)∑

m∈M

TR r
π
m,l,n ≥Dπ

l,n ∀ π ∈Π, l ∈L, n∈Nπ
l , (15)∑

π∈Π

∑
n∈Nπ

l

TR r
π
m,l,n ≤ τml ∀ m∈M, l ∈L, (16)

The reclamation and placement of material from, and onto, high and low grade stockpiles370

at a mine is restricted by stockpile capacity Cm
s (Constraint (17)), and the quantity of371

material on the stockpile, Tms , at the start of the scheduling horizon (Constraint (18)).372

Tms −xms,κ−xms,ω +
∑
b∈Bm

xmb,s ≤Cm
s ∀ m∈M, s∈Θm ∪Λm, (17)

xms,κ +xms,ω ≤ Tms ∀ m∈M, s∈Θm ∪Λm, (18)

Constraints (19)–(22) ensure that: material moved from each mine pit, p∈Pm, is limited373

by an extraction capacity, Cm
p ; material hauled at the mine is limited by a trucking capacity,374
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Cm
τ ; the processing of ore in the dry and wet plants is within capacity, Cm

d for d ∈ {κ,ω};375

and the tons of ore railed to each port π is limited by its capacity, Cπ.376

∑
b∈Bp

∑
d∈Dm

xmb,d ≤Cm
p ∀ m∈M, p∈Pm, (19)

∑
s∈Sm

∑
d∈Dm

xms,d ≤Cm
τ ∀ m∈M, (20)

∑
s∈Sm

xms,d ≤Cm
d ∀ m∈M, d∈ {κ,ω}, (21)

∑
m∈M

∑
l∈L

∑
n∈Nπ

l

TR r
π
m,l,n ≤Cπ ∀ π ∈Π, (22)

Constraints (23)–(24) place bounds on the total material extracted from each grade377

block, linking variables xmb,d for b∈Bm and d∈Dm to the binary yσm,b (1 if the mining of b is378

scheduled) and yτm,b (1 if b is scheduled to be entirely extracted). Note that Tmb denotes the379

tons of material remaining in block b∈Bm at the start of the scheduling horizon. Vertical380

and disjunctive block precedences are respectively expressed in Constraints (25)–(26).381

∑
d∈Dm

xmb,d ≤ Tmb yσm,b ∀ m∈M, b∈Bm, (23)

∑
d∈Dm

xmb,d ≥ Tmb yτm,b ∀ m∈M, b∈Bm, (24)

yτm,b′ ≥ yσm,b ∀ m∈M, b∈Bm, b′ ∈A∧m,b, (25)∑
b′∈A∨m,b

yτm,b′ ≥ yσm,b ∀ m∈M, b∈Bm, (26)

Constraint (26) supports the scheduling of drop cuts at each mine m. A drop cut occurs382

when a set of contiguous (connected) blocks B′m ⊂Bm, each of which lies on a single bench383

(horizontal slice of earth), is extracted, despite no block in B′m being immediately accessible384

on the mining face. A block b′ ∈B′m lies on a mining face if |A∨m,b′ |= 0 (no blocks adjacent385

to b′ need to be removed before b′ is accessed). We can ensure that such sets of contiguous386

blocks, B′m, are extracted only if there exists a b′ ∈ B′m for which |A∨m,b′ |= 0, avoiding the387

scheduling of drop cuts, via Constraint (27). We define P ′(Bm) as the set of all continguous388

sets of blocks B′m ⊂Bm for which 6 ∃b′ ∈B′m. |A∨m,b′ |= 0; and N (Bm,B′m) as the set of blocks389

b′′ ∈Bm\B′m for which ∃b′ ∈B′m . (b′, b′′)∈A∨m,b′ (ie. the ‘neighbours’ of set B′m).390
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∑
b′′∈N (Bm,B′m)

yτm,b′′ ≥
1

|B′m|
∑
b′∈B′m

yσm,b′ ∀m∈M,B′m ∈P ′(Bm) (27)

The set of constraints defined in Equation (27) is too large to be added to the MINLP391

formulation of the MMPP in its entirety. We use a separation algorithm to detect the392

presence of drop cuts, in the form of a contiguous set of blocks B′m, in any solution to393

the MINLP. Selected instances of Constraint (27) are consequently added to the model as394

cuts. For brevity, a detailed description of this procedure is omitted from the paper.395

Variables vml,q and τml are defined in Constraints (28)–(29). The number of bilinear terms396

in the model, arising in Constraint (28), is |M||L||Q|.397

vml,qτ
m
l −

∑
s∈Sm

Sm,s,lG
m
s,l,q

[
xms,κ +xms,ωR

m,ω
s,l,q

]
= 0 ∀ m∈M, l ∈L, q ∈Q, (28)

τml −
∑
s∈Sm

Sm,s,l
[
xms,κ +xms,ωY

m,ω
s,l

]
= 0 ∀ m∈M, l ∈L, q ∈Q, (29)

Constraints (30)–(34) prevent the movement of ore at each mine m∈M between invalid398

source s∈ Sm and destination d∈Dm pairs.399

xms,κ = 0 ∀ m∈M, s∈ Sm\{Bm,hg ∪Θm}, (30)

xms,ω = 0 ∀ m∈M, s∈ Sm\{Bm,lg ∪Λm}, (31)

xms,δ = 0 ∀ m∈M, s∈ Sm\Bm,w, δ ∈∆m, (32)

xms,λ = 0 ∀ m∈M, s∈ Sm\Bm,lg, λ∈Λm, (33)

xms,θ = 0 ∀ m∈M, s∈ Sm\Bm,hg, θ ∈Θm, (34)

Constraints (35)–(37) restrict the values of: variables xms,d, τ
m
l , and vml,q, to non-negative400

reals; indicators yτm,b and yσm,b to binary values; and variables rπm,l,n to non-negative integers.401

xms,d, τ
m
l , v

m
l,q ∈R+ ∪{0} ∀ m∈M, s∈ Sm, d∈Dm, (35)

yτm,b, y
σ
m,b ∈ {0,1} ∀ m∈M, b∈Bm, (36)

rπm,l,n ∈Z+ ∪{0} ∀ m∈M, π ∈Π, l ∈L, n∈N τ
l . (37)
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Figure 3 (a) An example of a pooling problem, and (b) the MMPP formulated as a pooling problem.

5.3. Bilinearity and the Pooling Problem402

The structure of the MMPP is similar to that of a pooling problem. The pooling problem403

(Haverly 1978) models the blending of materials in a feed forward network of source nodes,404

intermediate blending pools, and terminal or product nodes (Figure 3a). Material streams,405

with defined quality attributes, flow along arcs in the network: from source nodes into406

blending pools; from blending pools into one of a number of terminal nodes; and from407

source nodes into terminals. The flow from, and to, sources, pools, and terminals, is limited408

by network capacities, while conservation constraints ensure that the quality of each stream409

leaving a blending pool is that of the combined quality of streams entering it. Optimisation410

of the pooling network determines the rate of flow along each arc, such that profit is411

maximised in the formation of blended products at terminals, and market demands on their412

quality are satisfied (Misener and Floudas 2009). The pooling problem arises in various413

domains, including: the refinement of oil and fuel (Amos et al. 1997); the transportation of414

natural gas (Romo et al. 2009); and waste water treatment (Misener and Floudas 2010).415

The optimisation of our multiple mine network can be viewed, on a conceptual level, as416

a kind of pooling problem, with: each source of ore at each mine m, s ∈ Sm, denoting a417

source node; stockpiles of lump and fines ore at each mine denoting blending pools; and418

the blended products formed at each port denoting terminals (Figure 3b). Ore flowing419

from a stockpile pool to port product nodes need not balance with that flowing into the420

pool as in a traditional pooling network – some material may remain stockpiled at each421

mine. Instances of the pooling problem in the blending of oil, water, and gas, are problems422
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different to the MMPP. However, these problems can all be modelled as a MINLP with423

bilinear terms characterising the composition of a blend of material from various sources.424

5.4. Solving MINLPs with Bilinear Terms425

We consider several approaches for the solution of MINLPs with bilinear terms. Much work426

in this space has concentrated on the generation of tight lower bounds (for MINLPs with a427

minimisation objective) for use in a branch and bound algorithm. Most popular are linear428

(McCormick 1976, Al-Khayyal and Falk 1983) and piecewise-linear (Meyer and Floudas429

2006, Bergamini et al. 2008, Wicaksono and Karimi 2008, Gounaris et al. 2009, Hasan430

and Karimi 2010) relaxations. A linear relaxation of a MINLP with bilinear terms can be431

obtained by replacing each of these terms with its convex envelope (McCormick 1976).432

Piecewise-linear relaxations partition the domain of one or both variables in each bilinear433

term into segments of uniform or varying length, generating a linear relaxation of the term434

in each of these segments. Gounaris et al. (2009) presents and computationally compares a435

range of such relaxations. Adhya et al. (1999) alternatively solves the Lagrangian dual of a436

bilinear program (BLP) for the determination of lower bounds during branch and bound.437

A range of decomposition-based approaches split a MINLP (or NLP) into two subprob-438

lems, a primal and a dual (or master) problem, and apply Generalised Benders’ Decompo-439

sition (Geoffrion 1972) to search for a global optimal solution (Floudas et al. 1989, Floudas440

and Aggarwal 1990, Floudas and Visweswaran 1990, Visweswaran and Floudas 1993). The441

primal problem is the original MINLP with fixed values for a set of complicating vari-442

ables – variables that reduce the MINLP to a MIP when fixed. The master problem is443

the Lagrangian dual of the primal – its solution providing a lower bound on the global444

optimum; and values for the complicating variables of the non-linear problem. A solution445

to the primal problem provides an upper bound on this optimum, constraints (or cuts)446

to add to the master problem, and values for its Lagrangian multipliers. Algorithms that447

employ this decomposition, iterate between the solving of the primal and master problems,448

and terminate at a global optimum when the discovered upper and lower bounds converge.449

Kolodziej and Grossmann (2012), Kolodziej et al. (2013) and Pham et al. (2009) present450

algorithms for the solution of multi-period blending problems, expressed as MINLPs with451

bilinear terms, that perform a similar iteration over upper and lower bounding subprob-452

lems. The original MINLP is transformed into a MIP via the discretisation of the domain453

of the complicating variables (a set containing one variable from each bilinear term). These454
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variables can be assigned only one of a finite set of values, yielding a problem whose feasible455

region is smaller than that of the MINLP. The solution of the resulting MIP provides an456

upper bound on the global optimum of the MINLP (under the assumption that its objec-457

tive is to be minimised). A piecewise-linear relaxation of the the MINLP yields a lower458

bounding problem. Kolodziej and Grossmann (2012) and Kolodziej et al. (2013) define459

several global optimisation methods in which the solving of these two problems is iterated460

in the search for a global optimum. Pham et al. (2009) present a heuristic, for bilinear461

programs (BLPs) with maximisation objectives, that combines iterative partitioning of the462

domain of bilinear variables, and the solving of lower (via discretisation) and upper (via463

linear relaxation) bounding problems to prune partitions from consideration.464

Audet et al. (2004) present an iterative heuristic (ALT) for solving general BLPs, in465

which a series of LPs are generated by alternately fixing two sets of variables. These two466

sets denote the set of x and y variables that appear in each bilinear term, xy. Given an467

initial feasible value for each x variable, the solution of the LP obtained by fixing each x468

to its initial value yields a set of feasible values for each y variable. The fixing of each y to469

its value in this LP solution, yields another LP, whose solution provides new instantiations470

for each x. Repeating this process of variable-fix-and-solve until the values of our x or y471

variables converge to a fixed point in successive solves, produces a local optimum.472

Successive linear programming (SLP), in which the non-linear terms in a MINLP are473

replaced by their linear Taylor expansion (about a base point), has achieved some success474

when applied to pooling problems (Palacios-Gomez et al. 1982, Baker and Lasdon 1985,475

Sarker and Gunn 1997). An initial feasible solution to a MINLP with bilinear terms forms a476

base point about which the linear Taylor expansion of each term is obtained. The solution477

of the resulting MIP is consequently used as the base point about which a new MIP is478

generated, again replacing each bilinear term with its linear Taylor expansion. This iterative479

process continues until we converge to a fixed point, forming our MINLP solution.480

In Section C.1 we solve a series of linear relaxations of the MINLP generated in each481

of our benchmark tests. We first replace each bilinear term with its convex envelope482

(McCormick 1976) to obtain a lower bound on the objective in each test. We additionally483

generate and solve several piecewise-linear relaxations (Gounaris et al. 2009), of increasing484

fidelity, of the model. Due to discrepancies between the evaluation of port product com-485

position in these relaxed models, and their actual composition, port products were not486
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correctly blended in the obtained solutions. We use the magnitude of these discrepancies487

to narrow the bounds describing desired product composition, and resolve the piecewise-488

linear relaxed models. The composition of port products in the resulting solutions lie within489

the original bounds. Lower bounds obtained on the MINLP objective, and the quality490

of solutions found via the use of piecewise-linear relaxation and the ALT heuristic (Sec-491

tion C.3), are used to evaluate our decomposition-based heuristic in Appendix C. Solving492

our MINLP using the branch-and-bound-based Couenne (Belotti et al. 2009) and Bonmin493

(Bonami et al. 2008) solvers3 did not provide solutions within a 12 hour time frame. The494

SLP heuristic, implemented as in Baker and Lasdon (1985), could not form solutions in495

which port products were correctly blended, in any of our tests, with deviations in metal496

percentage of up to 2% from desired bounds present in the solution set. These results have497

been omitted from the paper.498

6. A Decomposition-Based Heuristic499

We decompose the MMPP into a set of sub-problems, consisting of: an optimisation prob-500

lem, Om, to be solved on behalf of each mine m ∈M; and an optimisation problem, OΠ,501

to be solved on behalf of the system of ports, Π. We describe how the input and output502

of this set of problems is used, in an iterative heuristic, to find a monotonically improv-503

ing sequence of solutions to the MMPP. Each of these solutions defines a value for each504

variable in the set ~x∪~r, where: ~x= {xms,d |m∈M, s∈ Sm, d∈Dm} characterises the flow of505

ore and waste between sources and destinations at each mine; and ~r= {rπm,l,n |m∈M, π ∈506

Π, l ∈ L, n ∈Nπ
l } characterises the railing of ore between each mine and port. Each such507

solution satisfies the constraints, and represents a feasible solution, of our MINLP model of508

the MMPP in Section 5. Our decomposition-based heuristic finds solutions to the MMPP509

whose quality (evaluation of the MINLP objective Z ′MMPP in Equation (13) with respect510

to the values of variables ~x∪~r in each solution) is competitive with that of the best per-511

forming alternatives in Section 5. Moreover, our heuristic discovers a solution in a fraction512

of the time used by these alternatives to find a solution of comparable quality.513

Sections 6.1 and 6.2 describe the mine- and port-side optimisation problems that form514

the basis of an iterative heuristic, outlined in Section 6.3 and summarised in Listing 1.515

3 The simple branch-and-bound algorithm, with increased values for the num resolve at root and num resolve at node
options, was used when solving with Bonmin – as recommended for non-convex MINLPs.
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Figure 4 (a) Each mine-side optimisation problem, Om, takes as input a grade and quality target, ~φim, and a set

of standard deviations, ~σim, producing N productivity-maximising schedules for mine m as an output.

(b) A plot of the percentage of attribute q in ore produced by mine m in each schedule ~sm,j (vml,q(~sm,j))

formed by a solve of problem Om, given the target ~φim and standard deviation ~σim as input.

6.1. The Om Problem516

Each Om is formulated to find, in each iteration i of the heuristic, a set of N schedules,517

denoted Ωi
m, available for implementation at mine m over the scheduling horizon. Each518

schedule ~sm ∈Ωi
m instantiates the variables in the set ~xm = {xms,d |s∈ Sm, d∈Dm}, charac-519

terising the flow of ore and waste between each source and destination at m. The result520

of a schedule ~sm is the production of a quantity of ore of each granularity l ∈ L, denoted521

τml (~sm), whose composition is defined in terms of the percentage of each attribute q ∈Q,522

denoted vml,q(~sm). The value of each variable xms,d ∈ ~xm in ~sm is denoted xms,d(~sm).523

The input to Om, in each iteration i, is a grade and quality target ~φim = {φm,il,q |∀l ∈524

L, q ∈Q}, defining the expected composition of the ore to be produced by m, and a set of525

standard deviations ~σim = {σm,il,q |∀l ∈ L, q ∈Q}. The objective of Om is to form a schedule526

set Ωi
m for which: the productivity of m is maximised; and the composition of ore produced527

in each schedule lies in a normal distribution with mean ~φim and standard deviation ~σim528

(see Figure 4). The productivity of a mine m, given an instantiation of ~xm, is calculated529

as per Equation (8). The productivity of m in schedule ~sm is denoted ρ(~sm).530

Example 6.1 Consider a mine m that produces a single granularity of ore l. The compo-531

sition of this ore is characterised by a single quality attribute q, denoting metal grade. Om532

is given a target of 63% metal, with a standard deviation of 1%, as input in iteration i. Let533

N = 10. Figure 4b plots the percentage of metal in the ore produced by m in each of the 10534
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(a) (b)

Figure 5 (a) OΠ: is given a schedule set Ωim by each Om; selects a schedule in each Ωim∪{~sbest,m} to be enacted;

and routes trains of ore from each mine to port, forming a solution ~si to the MMPP. OΠ produces a

grade and quality target ~φi+1
m and standard deviation ~σi+1

m to be given to each Om in iteration i+ 1.

schedules in a possible solution of Om. The schedules formed by Om are distinguished on535

the horizontal axis of the plot (with index j). The vertical axis denotes metal percentage.536

A formulation of Om as a MIP is presented in Section 6.4.537

6.2. The OΠ Problem538

The port-side optimisation problem OΠ is formulated to: accept a schedule set, Ωi
m, from539

each Om in each iteration i; select one schedule from each Ωi
m, denoted Π(Ωi

m), to be540

implemented at mine m; and determine the number of trainloads of ore, of each granularity541

l ∈ L, from each mine, that will be railed to a port π to form part of a product n ∈Nπ
l .542

A solution to OΠ, denoted ~si, instantiates each variable in the set ~x∪ ~r. Recall that ~x=543

{xms,d |s∈ Sm, d∈Dm} defines the flow of material from source to destination at each mine,544

while ~r = {rπm,l,n |m ∈M, π ∈Π, l ∈ L, n ∈Nπ
l } defines the flow of ore between each mine,545

port, and port product. The selection of a schedule to be enacted at each mine instantiates546

the variable set ~x, while the routing of trains between each mine and port, and the selection547

of a product to which they will contribute, instantiates the variable set ~r. The value of548

each variable xms,d ∈ ~x in solution ~si is denoted xms,d(~si). The value of each variable rπm,l,n ∈ ~r549

in solution ~si is denoted rπm,l,n(~si).550

The objective of OΠ is to select a schedule to be followed at each mine, and organise the551

transport of ore produced in those schedules from mine to port, and port product, such552

that: the deviation between the composition of each port product and its desired bounds553

is minimised (as a first priority); the revenue generated from the sale of such products is554

maximised (as a second priority); and the productivity of each mine is maximised (as a555
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third priority). OΠ evaluates a solution ~si by computing the value of the MINLP objective556

Z ′MMPP in Equation (13) with respect to the instantiation of variables ~x and ~r in ~si.557

OΠ maintains a record of the best solution it has found over the course of the heuristic,558

denoted ~sbest. This solution is replaced with ~si if and only if ~si has a lower objective value.559

OΠ produces, as output, a grade and quality target ~φi+1
m and standard deviation ~σi+1

m to560

be given to each Om, as input, in iteration i+ 1 (see Figure 5). The manner in which each561

~φi+1
m and ~σi+1

m is formed, and the purpose of this feedback, is described in Section 6.3.562

To ensure the generation of a monotonically improving (in objective value) sequence563

of solutions to the MMPP, we alter our earlier description of OΠ’s behaviour as follows.564

Given a set of schedules, Ωi
m, from each Om in iteration i, OΠ selects one schedule from565

each Ωi
m∪{~sbest,m}, denoted Π(Ωi

m∪{~sbest,m}), to be implemented at mine m, where ~sbest,m566

denotes the schedule assigned to m in the best found solution ~sbest. The objective value of567

the solution formed by OΠ in iteration i will therefore be at least as good as that of ~sbest.568

Example 6.2 Consider a system of two mines, m1 and m2. Om1 and Om2 have each569

formed two schedules to be presented to OΠ in iteration i. These schedules are denoted570

Ωi
m1

= {~sm1,1,~sm1,2} and Ωi
m2

= {~sm2,1,~sm2,2}. Each mine produces ore of a single granularity571

l, characterised by a single quality attribute q, denoting metal grade. Schedules ~sm1,1 and572

~sm1,2 produce 10kt and 15kt at a grade of 62% and 60%, respectively. Schedules ~sm2,1 and573

~sm2,2 produce 15kt and 20kt at a grade of 61% and 64%, respectively. Each train transports574

5kt of ore between a mine and one of two ports, π1 and π2, each of which produces a575

single product of granularity l. In Figure 5b, OΠ has selected: schedule ~sm1,1 and ~sm2,2 to be576

implemented at mines m1 and m2; 1 train of ore to be routed from mine m1 to each port;577

and 2 trains of ore to be routed from mine m2 to each port. In the MMPP solution formed578

by OΠ, ~si, 15kt of blended ore, with a metal grade of 63.3%, is formed at both ports.579

A formulation of OΠ as a MIP is presented in Section 6.5.580

6.3. The Heuristic581

Our decomposition-based heuristic (Listing 1) repeats a two-stage process – the solving of582

each Om followed by OΠ – in a sequence of iterations. Each iteration i results in a solution583

~si to the MMPP. Let: ~φ1
m = Ξm and ~σ1

m = ~σ+ = {σ+
l,q = ∆+

q |∀l ∈ L, q ∈ Q}, for each mine584

m, where Ξm denotes the grade and quality target assigned to m, by a longer-term (two585

year) plan, and ∆+
q a significant change in the percentage of q ∈ Q in a volume of ore.586
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Figure 6 A mine-side optimiser Om forms a set of N = 10 schedules for a mine m, producing ore of a single

granularity l, characterised by a single quality attribute q, given varying ~φim and ~σim in iteration i: (a)

~φim = {63} and ~σim = {1}; (b) ~φim = {63} and ~σim = {1.5}; and (c) ~φim = {63} and ~σim = {0.5}.

The set of standard deviations given to each mine in this first iteration, ~σ1
m, is designed to587

promote a substantial degree of diversity in the composition of produced ore, across the set588

of schedules formed by Om. A set of larger standard deviations will result in schedules for589

which the composition of produced ore exhibits a greater range of values, in each attribute,590

across the schedule set. A smaller ~σ1
m will result in the formation of schedules for which591

the composition of produced ore is more tightly clustered about ~φim (see Figure 6).592

A solution to each Om, in iteration i, is a set of N schedules for mine m, Ωi
m, to be593

implemented over the relevant scheduling horizon (Step 7). OΠ receives as input the set Ωi
m594

from each m. OΠ maintains a record of the best solution, ~sbest, it has found to the MMPP595

over all prior iterations. In the first iteration, this record is empty. OΠ selects: one schedule596

in the set Ωi
m ∪ {~sbest,m} to be enacted at mine m (Step 8), where ~sbest,m is the schedule597

assigned to m in the solution ~sbest; and the number of trains of ore, of each granularity598

l ∈ L, produced by m in that schedule to form part of each product n ∈Nπ
l , at each port599

π ∈ Π. Let Z ′MMPP (~si) denote the value of objective Z ′MMPP (Equation (13)) in solution600

~si. OΠ replaces ~sbest with ~si if and only if Z ′MMPP (~si)<Z
′
MMPP (~sbest) (Step 9).601

OΠ provides each Om with feedback in the form of a grade and quality target ~φi+1
m , and602

a set of standard deviations ~σi+1
m , as its input in iteration i+ 1 (Step 10). The role of this603

feedback is to guide each Om toward the presentation of schedules that allow OΠ to form a604

solution that improves upon the current best, ~sbest. Table 1 defines the three heuristic rules605

by which ~φi+1
m and ~σi+1

m are generated for each mine m. Each rule is defined in terms of a606

set of conditions on the solution ~si formed by OΠ, and a set of equations that define ~φi+1
m607

and ~σi+1
m at each mine if those conditions are satisfied. More sophisticated techniques for608
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Listing 1 A decomposition-based heuristic for the MMPP, where: ∆+
q denotes a significant change in

q ∈Q percentage; and Ξm a longer-term (two year) grade and quality target assigned to mine m∈M.

1: ~sbest←∅

2: ~σ+←{σ+
l,q = ∆+

q |∀l ∈L, q ∈Q}

3: ~σ−←{σ−l,q = ∆−q |∀l ∈L, q ∈Q}

4: i← 1

5: Initialise expected mine targets and standard deviation sets: ~φim←Ξm and ~σim← ~σ+.

6: repeat

7: Solve each Om to find N schedules for mine m, Ωi
m, producing ore whose composition is normally

distributed about ~φim with standard deviation ~σim.

8: Solve OΠ given sets Ωi
m ∪{~sbest,m} from each m ∈M, where ~sbest,m ∈ ~sbest is the schedule to be

enacted by m in the best solution found thus far. Select a schedule to be enacted at each mine,
and a routing of trainloads of ore from each mine to port, forming a solution ~si to the MMPP.

9: Update best solution ~sbest if and only if Z ′MMPP (~si)<Z
′
MMPP (~sbest).

10: Generate feedback to each Om by adapting ~φim and ~σim to form ~φi+1
m and ~σi+1

m .

11: i← i+ 1

12: until [Z ′MMPP (~si)≥Z ′MMPP (~sbest)∧ 6 ∃m∈M. ~σim 6= ~σ−] ∨ i >MAXiterations

13: return ~sbest

adapting the targets and standard deviations assigned to each mine are certainly possible,609

however these simple rules were found to perform well in computational experiments.610

The first rule in Table 1 states that if OΠ does not find a solution better than ~sbest in611

iteration i, the grade and quality targets assigned to each mine remain the same, ~φi+1
m =612

~φim, but its assigned set of standard deviations is reduced by a pre-determined factor γ,613

~σi+1
m = γ ~σim, where 0<γ < 1. The assumption is that as target ~φim is produced by mine m614

in the current best solution, ~sbest, there may be a target in the neighbourhood of ~φim that,615

if produced, will yield an improved solution. As such a schedule was not formed by Om in616

iteration i, it may be the case that it was concentrating on achieving too large a spread in617

the composition of produced ore about ~φim. Reducing each ~σim forces each mine to propose618

schedules for which the composition of produced ore is more tightly clustered about ~φim.619

The second and third rules in Table 1 are implemented when a new ~sbest is discovered620

by the port-side optimiser in an iteration i. In both rules, the grade and quality target621

assigned to each mine m, in iteration i+ 1, is equal to the composition of ore produced622

by m in solution ~si, ~φ
i+1
m = {vml,q(~si) | ∀ l ∈L, q ∈Q}. The assumption is that as each target623

~φi+1
m is produced by mine m in what is now the current best solution, ~si, there may be a624

target in a neighbourhood of each ~φi+1
m that, if produced by m, will improve upon ~si.625
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# Condition Feedback

1 Z ′MMPP (~si)≥Z ′MMPP (~sbest) ~φi+1
m = ~φim, ∀ m∈M
~σi+1
m =max(~σ−, γ ~σim), ∀ m∈M

2 Z ′MMPP (~si)<Z
′
MMPP (~sbest) ~φi+1

m = {vml,q(~si) | ∀ l ∈L, q ∈Q}, m∈M

∃l ∈L, q ∈Q.|vml,q(~si)−φ
m,i
l,q |>σ

m,i
l,q ~σi+1

m =min(~σ+,
~σim
γ

), m∈M

3 Z ′MMPP (~si)<Z
′
MMPP (~sbest) ~φi+1

m = {vml,q(~si) | ∀ l ∈L, q ∈Q}, m∈M
6 ∃l ∈L, q ∈Q.|vml,q(~si)−φ

m,i
l,q |>σ

m,i
l,q ~σi+1

m = ~σim, m∈M

Table 1 Rules defining the targets and standard deviations provided to each Om as input in iteration i+ 1,

where: ~σ− and ~σ+ denote lower and upper bounds on the size of each ~σim; ~sbest denotes the best solution found

by the heuristic; ~si denotes the solution found by the heuristic in iteration i; vml,q(~si) denotes the percentage of

attribute q ∈Q in the ore of granularity l ∈L produced by mine m in solution ~si; φ
m,i
l,q ∈ ~φim; and σm,il,q ∈ ~σim.

If the schedule selected for mine m produces ore of a composition that is sufficiently626

distant from its target ~φim, the set of standard deviations assigned to m is increased by627

a pre-determined factor γ, ~σi+1
m = ~σim

γ
, where 0 < γ < 1 (rule 2). The assumption is that628

any reduction in the size of the standard deviations assigned to mine m in prior itera-629

tions, restricting the diversity of the schedules proposed by Om, may have been premature.630

Increasing ~σim forces mine m to propose schedules for which the composition of produced631

ore is more widely spread about its new target ~φi+1
m . If the schedule selected for mine m632

in ~si produces ore of a composition that is sufficiently close to its target ~φim, the set of633

standard deviations assigned to m does not change, ~σi+1
m = ~σim (rule 3).634

Standard deviation vectors are bounded above and below by ~σ+ and ~σ−. Recall that635

~σ+ = {σ+
l,q = ∆+

q |∀ l ∈ L, q ∈ Q}, where ∆+
q defines a unit of significant change in the636

percentage content of q ∈Q in a volume of ore. We define the minimum bound on standard637

deviations as ~σ− = {σ−l,q = ∆−q |∀ l ∈ L, q ∈ Q}, where ∆−q defines a unit of insignificant638

change in the percentage content of attribute q ∈Q in a volume of ore.639

The heuristic is terminated in iteration i if OΠ fails to find a solution ~si such that640

Z ′MMPP (~si) < Z ′MMPP (~sbest), and each ~σim equals ~σ−, or a limit on the number of execu-641

tions of the feedback loop, MAXiterations, has been reached (Step 12). Across each of the642

computational tests in Appendix C, the heuristic has terminated within 100 iterations.643

While there are no theoretical guarantees that the heuristic will discover a local or global644

optimum to the MMPP, it does, in practice, find near-optimal solutions.645
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6.4. Optimisation at the Mines: A MIP Model646

We model Om, for each m ∈M, in terms of a MIP. Maximisation of productivity at m,647

as per Equation (38), forms the objective. A set of ranges, [Lml,q,U
m
l,q] for each l ∈ L and648

q ∈Q, constrain the blend of ore produced at the mine over the course of the scheduling649

horizon, where Lml,q and Um
l,q denote a lower and upper bound on the percentage of q ∈Q650

in the ore of granularity l ∈ L produced at m. These ranges are varied, and the MIP,651

shown below, is solved to produce a set of N schedules for mine m. We explain, in the652

proceeding paragraphs, how this set is generated so that the composition of ore produced653

across schedules forms a normal distribution with a mean ~φm and standard deviation ~σm.654

All notation is explained in Appendices A and B, while τml (~xm), and vml,q(~xm), are defined655

in Equations (2), and (4). Recall that ~xm denotes the set {xms,d|∀s∈ Sm, d∈Dm}. We have656

found, via experimentation, that the decomposition-based heuristic performs best if, in657

the computation of a mines productivity, the production of each granularity is weighted658

according to the expected value of the port products it is likely to contribute to4. For659

example, lump products are typically sold at a higher price, per ton, than fines due to660

their (typically) higher metal content. Let Wl denote a priority weighting assigned to the661

production of granularity l ∈L at each mine. Our expression for the productivity of a mine662

m, denoted ρm(~xm), in Equation (8) is altered as shown in Equation (38), to form ρ∗m(~xm),663

where: α1 and α2 denote constants such that α1� α2; and Ψm
ω a binary parameter such664

that Ψm
ω = 1 if mine m has the facilities to upgrade low grade ore (Ψm

ω = 0, otherwise).665

ρ∗m(~xm) = α1

∑
l∈L

Wl τ
m
l (~xm) +α2

∑
s∈Sm

[∑
δ∈∆m

xms,d + (1− 2Ψm
w )
∑
λ∈Λm

xms,d−
∑
θ∈Θm

xms,d

]
(38)

A solution to the following MIP represents a single schedule available for implementation666

at mine m∈M.667

max ρ∗m(~xm)

subject to τml (~xm)≥Dm
l ∀ l ∈L, (39)

Lml,q ≤ vml,q(~xm)≤Um
l,q ∀ q ∈Q, (40)

4 This change was not found to yield an improvement in the solutions found by any of the approaches in Section 5.
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Listing 2 Generation of clustered bounds on the blend of produced ore at mine m∈M.

1: for each l ∈L and q ∈Q do

2: ∆N ← RandNormal(0, σl,q ∈ ~σm)

3: Lml,q← φl,q + ∆N −σl,q
4: Um

l,q← φl,q + ∆N +σl,q

5: end for

xms,d ∈R+ ∪{0} ∀ s∈ Sm, d∈Dm, (41)

Constraints (17)–(21), (23)–(27), (30)–(34), and

(36) from the MINLP of Section 5 for mine m.

Constraint (39) places a minimum bound on production at mine m. Constraint (40)668

restricts the composition of the lump and fines ore produced by m, such that vml,q(~xm) lies669

within [Lml,q,U
m
l,q]. The remaining constraints form a subset of the MINLP in Section 5.670

Constraint (27) of the MINLP is implemented in the form of a separation algorithm.671

To generate N schedules for mine m, across which the grade and quality of produced672

ore is normally distributed about a target ~φm, with a standard deviation ~σm, the solving673

of the above MIP is repeated with a varying sequence of bounds on the percentage of674

each q ∈Q in ore of each granularity l ∈ L. This MIP is solved until N distinct schedules675

are discovered, or a pre-defined limit on the number of solves has been reached. Each set676

of bounds in this sequence, [Lml,q,U
m
l,q] for each l ∈ L and q ∈ Q, is formed as described in677

Listing 2. A normally distributed random value ∆N , for each l ∈L and q ∈Q, is generated678

from a distribution with mean 0 and standard deviation σl,q ∈ ~σm (Step 2). The percentage679

of each q ∈Q in ore of granularity l ∈L produced by the mine is constrained to lie between680

φl,q + ∆N −σl,q and φl,q + ∆N +σl,q, where φl,q ∈ ~φm (Steps 3 and 4).681

6.5. Blending at the Ports: A MIP Model682

Recall that each mine m∈M has (up to) N possible outputs – resulting in N +1 blends of683

lump and fines ore available for transportation to a port – as defined in the set of solutions684

Ωm ∪ {~sbest,m} to each Om, where ~sbest,m ∈ ~sbest. The jth schedule available for selection at685

mine m is denoted ~sm,j ∈ Ωm ∪ {~sbest,m}. Only one schedule formed by each Om can be686

enacted. Consequently, ore railed from each mine m must originate from only one ~sm,j.687

Let integer variable rπm,l,n,j denote the number of trainloads of granularity l ∈L, formed688

by mine m in schedule ~sm,j ∈ Ωm ∪ {~sbest,m}, delivered to port π to form part of product689
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n∈Nπ
l . Binary variables om,j denote which schedule ~sm,j ∈Ωm∪{~sbest,m}, for each mine m,690

has been selected (om,j = 1) for implementation (om,j = 0 otherwise). As in the MINLP of691

Section 5, the objective of the port-side MIP is to minimise deviation in the composition of692

products formed at each port π from desired bounds, [Lπ,ln,q,U
π,l
n,q] for each n∈Nπ

l , l ∈L, and693

q ∈Q, as a first priority, while maximising revenue achieved via the sale of such products694

and the productivity of each mine, as second and third priorities, respectively.695

Let Nm = |Ωm ∪ {~sbest,m}|, and ~Ω = {Ωm ∪ {~sbest,m}|∀m ∈ M}. Moreover, let ~r ′, ~r πl,n
′,696

and ~o denote the variable sets: ~r ′ = {r πm,l,n,j|∀π ∈ Π,m ∈M, l ∈ L, n ∈ Nπ
l ,1 ≤ j ≤ Nm};697

~r πl,n
′ = {r πm,l,n,j|∀m ∈M,1 ≤ j ≤ Nm}; and ~o = {om,j|∀m ∈M,1 ≤ j ≤ Nm}. Recall that:698

the tons of granularity l ∈ L produced by mine m in a schedule ~sm,j is denoted τml (~sm,j);699

the percentage of q ∈Q in the ore of granularity l ∈ L produced by m in ~sm,j is denoted700

vml,q(~sm,j); and the productivity of mine m in ~sm,j is denoted ρm(~sm,j). Each of τml (~sm,j),701

vml,q(~sm,j), and ρm(~sm,j) are constants in the port-side MIP model. We define: the revenue702

generated by the sale of products formed across ports as ν ′(~r ′) in Equation (42); the tons703

of product n ∈ Nπ
l formed at port π as τπl,n

′(~r ′) in Equation (43); the tons of attribute704

q ∈Q in product n∈Nπ
l formed at port π as τπ,ln,q

′(~Ω,~r πl,n
′) in Equation (44); and the total705

deviation between the composition of products, across all ports, and desired bounds as706

η′(~Ω,~r ′) in Equation (45). V π
l,n denotes the sale price, per ton, of product n∈Nπ

l .707

ν ′(~r ′) =
∑
π∈Π

∑
m∈M

∑
l∈L

∑
n∈Nπ

l

Nm∑
j=1

r πm,l,n,jTRV
π
l,n (42)

τπl,n
′(~r ′) =

∑
m∈M

Nm∑
j=1

r πm,l,n,jTR (43)

τπ,ln,q
′(~Ω,~r πl,n

′) =
∑
m∈M

Nm∑
j=1

r πm,l,n,j vl,q(~sm,j)TR (44)

η′(~Ω,~r ′) =
∑
π∈Π

∑
l∈L

∑
n∈Nπ

l

∑
q∈Q

1

∆+
q

max{0, τπ,ln,q
′(~Ω,~r πl,n

′)−Uπ,l
n,qτ

π
l,n
′(~r ′)} (45)

+
∑
π∈Π

∑
l∈L

∑
n∈Nπ

l

∑
q∈Q

1

∆+
q

max{0,Lπ,ln,qτπl,n′(~r ′)− τπ,ln,q
′(~Ω,~r πl,n

′)}

The following MIP describes the mine-to-port transportation and blending problem, OΠ,708

where: β1,β2, and β3 are constants such that β1� β2� β3.709
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min β1η
′(~Ω,~r ′)−β2ν

′(~r ′)−β3

∑
m∈M

Nm∑
j=1

om,j ρm(~sm,j)

subject to
∑
m∈M

Nm∑
j=1

rπm,l,n,jTR ≥Dπ
l,n ∀ π ∈Π, l ∈L, n∈Nπ

l (46)

∑
m∈M

∑
l∈L

∑
n∈Nπ

l

Nm∑
j=1

rπm,l,n,jTR ≤Cπ ∀ π ∈Π, (47)

∑
π∈Π

∑
n∈Nπ

l

rπm,l,n,jTR ≤ om,j τml (~sm,j) ∀ m∈M,~sm,j ∈Ωm ∪{~sbest,m}, l ∈L, (48)

Nm∑
j=1

om,j = 1 ∀ m∈M, (49)

rπm,l,n,j ∈R+ ∪{0} ∀ π ∈Π, l ∈L, n∈Nπ
l ,m∈M, (50)

1≤ j ≤Nm,

om,j ∈ {0,1} ∀ m∈M,1≤ j ≤Nm. (51)

Constraint (46) places a lower bound on the tons of product n∈Nπ
l of granularity l ∈L710

produced at port π ∈ Π. The tons of ore transported to a port is limited by its capacity711

(Constraint (47)). Constraint (48) constrains the value of each binary indicator, om,j, to 1 if712

solution ~sm,j ∈Ωm∪{~sbest,m} is selected to be enacted at mine m∈M, and places an upper713

bound on the tons of ore transported from each mine to the set of ports (to that produced714

by m in the selected ~sm,j). Constraint (49) ensures that only one ~sm,j ∈Ωm ∪{~sbest,m}, for715

each m∈M, is selected to be implemented at mine m.716

7. Computational Results717

We have used our decomposition-based heuristic to solve each test case described in Section718

4, generated for our 8-mine, 2-port network. IBM CPLEX 12.5 was used to solve all719

MIPs. Appendix C records the results of the decomposition-based heuristic for varying720

combinations of parameters N and γ, averaged over 10 runs, each initialised with a different721

random seed. We describe the method by which we obtain lower bounds on the MINLP722

objective Z ′MMPP in each test (Section C.1). Sections C.2 and C.3 evaluate our heuristic723

with respect to alternative solution methods, namely: piecewise-linear relaxation (Gounaris724



Blom, M. et. al.: A Decomposition-Based Heuristic for Scheduling in Open-Pit Mines
32 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

et al. 2009); and the ALT heuristic (Audet et al. 2004). These results demonstrate that725

our heuristic finds solutions equally as good, or better, than the considered alternatives,726

in orders of magnitude less time, on a majority of tests.727

8. Concluding Remarks728

We have described a short-term, multiple mine and port, open-pit production schedul-729

ing problem (MMPP). We have presented a decomposition-based heuristic, in which this730

scheduling problem is solved, in the single time period case, through the interaction of a731

set of optimisation problems – one for each mine, and the system of ports. A solution to732

the optimisation problem at each mine defines the movement of ore and waste from grade733

blocks and stockpiles, to dumps, stockpiles and processing plants. In an iterative process,734

the schedules formed in each of these mine-side optimisations are provided as input to a735

port-side blending problem, the solution of which selects a schedule to be enacted at each736

mine, and defines the movement of ore between each mine and port. The composition of737

ore produced at each mine, across the schedules formed by the mine-side optimisation, is738

guided by the port-side schedule selections made in prior iterations, encouraging the for-739

mation of schedules that allow the ports to maximise their production of correctly blended740

products.741

We have evaluated this heuristic on a suite of test cases generated for an 8-mine, 2-port742

network, using data provided by an industry partner – contrasting its performance with743

a range of solvers for a MINLP modelling of the problem. The presented decomposition-744

based heuristic was found to find solutions of higher quality, on a subset of test cases,745

than the alternatives in Section 5. Each alternative was afforded 12 hours, for each test746

case, in which to find a solution. Where the heuristic did not find a solution higher in747

quality than that found by an alternative, it returned a good quality solution for which the748

alternative required orders of magnitude more time, relative to the heuristic run time, to749

match. Overall our decomposition-based heuristic approach provides a highly competitive750

solution to the short-term multiple port and mine open-pit production scheduling problem.751
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Appendix A: Modelling Notation874

Sets and Indices

m,M mines

π,Π ports

p,Pm pits

b,Bm,p,Bm blocks in pit p∈Pm, at m∈M, and grade blocks b∈Bm, at m

l,L granularities denoting lump and fines L= {0,1}
Bhg,Blg,Bw high, low grade, and waste blocks at mine m

δ,∆m waste dumps at m∈M
λ,Λm low grade stockpiles at m∈M
θ,Θm high grade stockpiles at m∈M
q,Q grade and quality attributes

κ,ω dry/wet processing plant

s,Sm material sources at m∈M, Sm = {Bm ∪Λm ∪Θm}
d,Dm material destinations at m∈M, Dm = {∆m ∪Λm ∪Θm ∪{κ,ω}}
n,Nπ

l products of granularity l ∈L to be formed by port π

Parameters

∆+
q significant change in q ∈Q percentage

∆−q insignificant change in q ∈Q percentage

Gm
s,l,q percentage of q ∈Q in granularity l ∈L within s∈ Sm at m∈M

Lml,q lower bound on q ∈Q in granularity l ∈L produced at m

Um
l,q upper bound on q ∈Q in granularity l ∈L produced at m
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Lπl,n,q lower bound on q ∈Q in product n∈Nπ
l produced at π

Uπ
l,n,q upper bound on q ∈Q in product n∈Nπ

l produced at π

Rm,ωs,l,q Percentage of q ∈Q in granularity l ∈L in s∈ Sm recovered after wet processing at m∈M
Y m,ω
s,l Percentage of granularity l ∈L in s∈ Sm recovered after wet processing at m∈M
Sm,s,l percentage of granularity l ∈L (split) in s∈ Sm at m∈M
Tms tonnage of s∈ Sm available for extraction at m∈M
A∧m,b mining precedences of b∈Bm, all of which must be mined before b

A∨m,b mining precedences of b∈Bm, one of which must be mined before b

Dd
l minimum demand on l ∈L production at d∈ {m,π}

Cm
p maximum tons extractable from pit p∈Pm at m∈M

Cm
d processing capacity (tons) at plant d∈ {κ,ω} at m∈M

Cπ capacity (throughput) at π ∈Π

TR assumed fixed tonnage of each train

Cm
τ maximum tons transportable by trucking resources at m∈M, over the scheduling horizon

Cm
s capacity (tons) of stockpile s∈Θm ∪Λm at m∈M

V π
l,n price per ton for ore of product n∈Nπ

l formed by π

Lπ,ln,q,U
π,l
n,q lower and upper bound on attribute q ∈Q in product n∈Nπ

l

Dm
l ,D

π
l,n production demand for granularity l at mine m, and product n∈Nπ

l at port π

Ψm
ω binary, value of 1 if mine m has a wet processing plant

Um,l Maximum trainloads of granularity l that can be railed from mine m to the set of ports

Decision variables

xms,d tons of source s∈ Sm sent to destination d∈Dm at m∈M
rπm,l,n trainloads of granularity l ∈L railed from m∈M to π ∈Π to form part of product n∈Nπ

l

yσm,b binary variable, 1 if b∈Bm is to be extracted

yτm,b binary variable, 1 if b∈Bm is to be completely extracted

brπ,jm,l,n binary variable, 1 if j trains of granularity l are railed to π to form part of product n∈Nπ
l

vml,q percentage of attribute q in granularity l produced by mine m

τml tons of granularity l produced by mine m

~xm, ~x the set {xms,d|∀s∈ Sm, d∈Dm} and {xms,d|∀s∈ Sm, d∈Dm,m∈M}
~r πl,n, ~rπ the set {rπm,l,n|∀m∈M} and {rπm,l,n|∀m∈M, l ∈L}
~r the set {rπm,l,n|∀m∈M, l ∈L, π ∈Π}

Functions

τms,l(~xm) tons of granularity l ∈L produced from s∈ Sm at m∈M
τml (~xm) tons of granularity l ∈L produced at m∈M
vml,q(~xm) percentage of each q ∈Q in ore of granularity l ∈L produced at m∈M
vπl,n,q(~x,~r

π
l,n) percentage of each q ∈Q in product n∈Nπ

l produced at π ∈Π

ν(~r) revenue generated by the sale of ore products across the port system

ρm(~xm) productivity of mine m∈M
η(~x,~r), η′(~x,~r) Non-linear (η(~x,~r)) and linear (η′(~x,~r)) expressions defining the extent of deviation between

port product compositions and desired bounds

Appendix B: Decomposition-Based Heuristic875

Sets and Indicies

i iteration
~φim grade and quality target assigned to mine m in iteration i

~σim standard deviations with which Om generates a set of schedules for mine m

~sbest best solution found by heuristic

~si solution found by heuristic in iteration i
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~sbest,m schedule for mine m in the best found solution ~sbest
~sm a schedule for mine m produced by Om
Ωi
m set of schedules produced by Om for mine m in iteration i

Parameters

γ factor by which to increase or reduce a set of standard deviations, 0<γ < 1

N number of schedules formed by each Om in each iteration i

Ξm grade and quality target assigned to mine m in a two year plan

~σ+
m ~σ+ = {σ+

l,q = ∆+
q |∀l ∈L, q ∈Q}

~σ−m ~σ− = {σ−l,q = ∆−q |∀l ∈L, q ∈Q}
Wl priority weighting given to the production of granularity l ∈L in each mine

MAXiterations maximum number of iterations of the heuristic performed before termination

MIP for Om
∆N a random value generated from a normal distribution

ρ∗(~xm) productivity of mine m computed with priority weightings assigned to the production of
each granularity l

MIP for OΠ

Π(Ωm) the schedule selected to be enacted at mine m by OΠ

~sm,j the jth schedule in the set Ωi
m available for selection at mine m

om,j binary variable, 1 if OΠ selects the jth schedule in set Ωi
m to be enacted at mine m

~o ~o= {om,j |∀m∈M,1≤ j ≤Nm}
Nm Nm = |Ωm ∪{~sbest,m}|, the number of schedules for mine m available to OΠ for selection

rπm,l,n,j trainloads of granularity l, produced in the jth schedule available at mine m, railed to
port π to form part of product n∈Nπ

l

~Ω ~Ω = {Ωm ∪{~sbest,m}|∀m∈M}
~r ′ ~r ′ = {rπm,l,n,j |∀π ∈Π,m∈M, l ∈L, n∈Nπ

l ,1≤ j ≤Nm}
~r πl,n
′ ~r πl,n

′ = {rπm,l,n,j |∀m∈M,1≤ j ≤Nm}
ν′(~Ω,~r ′) total revenue achieved via the sale of port products

τπl,n
′(~r ′) tons of product n∈Nπ

l formed at port π

τπ,ln,q
′(~Ω,~r πl,n

′) tons of attribute q in product n∈Nπ
l formed at port π

η′(~Ω,~r ′) total deviation between port product compositions and desired bounds

Appendix C: Computational Results876

We have used our decomposition-based heuristic to solve each test case described in Section 4, generated for877

our 8-mine, 2-port network. IBM CPLEX 12.5 was used to solve all MIPs.878

Table 4 records the results of the decomposition-based heuristic, averaged over 10 seeded runs on each of879

our benchmark tests, with: N = 10,15, and 20; γ = 0.75; and priority weightings Wl=0 = 0.6 and Wl=1 = 0.4880

assigned to lump and fines production at each mine. Table 5 records the results of our heuristic with N = 10,881

and varying γ. We record, for the best solution found by the heuristic, ~sbest: the elapsed time to termination882

(s); revenue achieved via the sale of products formed at each port ($); the total utilisation of trucking883

resources, and the dry and wet processing plants (stated as a percentage of total haulage capacity across the884

set of mines); the total percentage (%) of (network-wide) haulage capacity spent on undesirable stockpiling885

across all mines; the maximum deviation (%) from desired bounds present in port products formed across886

the 10 seeded runs (deviation in metal grade is listed separately from that in other attributes); and the887
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Table 4 Best solution ~sbest found by our heuristic for N = 10,15,20, and γ = 0.75, in each test #, recording:

elapsed time to completion of solve (s); revenue achieved ($); the total utilisation of trucks, and processing plants

(% of network-wide capacity); the total percentage (%) of (network-wide) haulage capacity spent on undesirable

stockpiling; the max deviation (%) from desired bounds (on metal grade, and other attributes) present in port

products across 10 seeded runs; and the gap (%) between Z′MMPP (~sbest) and the best known lower bound.

Quantities have been averaged over 10 seeded runs, with the average (µ) and standard deviation (σ) recorded.

N = 10, γ = 0.75 Utilisation (over all mines) (%) Deviation (%) Gap to (%)

# Time (s) Revenue ($) Trucking Dry Wet Stockpiling Metal Other MINLPlb
µT σT µR σR µK σK µD σD µW σW µS σS µG σG

1 201 18.56 318297600 226800 99.95 0.01 100 0.95 100 0 2.70 0.05 0 0 0.98 0.01
2 360 44.17 321132600 226800 97.93 0.03 99.23 0.92 100 0 3.22 0.08 0 0 0.09 0.01
3 271 30.93 317957400 226800 98.32 0.06 100 0.92 100 0 4.08 0.10 0 0 1.08 0.01
4 333 46.03 316426500 380355 98.77 0.11 95.90 0.85 100 0 3.55 0.06 0 0 1.56 0.01
5 358 35.70 317277000 0 97.59 0.09 97.95 0.86 100 0 4.95 0.08 0 0 1.29 0
6 310 66.78 319091400 941971 99.50 0.02 99.60 0.89 100 0 5.47 0.09 0 0 0.73 0.03
7 350 63.84 316710000 253570 99.22 0.09 97.44 0.85 100 0 5.50 0.12 0 0 1.47 0.01
8 363 19.68 321246000 0 99.73 0.02 99.24 0.87 100 0 6.05 0.11 0 0 0.06 0
9 159 21.16 316993500 380355 99.84 0.02 100 0.92 100 0 4.05 0.07 0 0 1.38 0.01
10 319 61.08 321132600 226799 99.13 0.02 99.01 0.91 100 0 3.78 0.05 0 0 0.09 0.01
11 363 57.86 318354300 534906 99.84 0.01 100 0.94 100 0 2.89 0.09 0 0 0.96 0.02
12 222 44.49 317617200 1322459 99.73 0.02 97.66 0.88 100 0 3.76 0.06 0 0 1.19 0.04
13 250 38.55 319148100 259832 99.23 0.03 99.99 0.95 100 0 2.76 0.07 0 0 0.71 0.01
14 177 32.18 318581100 442841 99.53 0.03 100 0.98 100 0 1.21 0.05 0 0 0.89 0.01
15 428 73.59 317163600 833316 99.82 0.04 99.73 0.92 100 0 3.90 0.05 0 0 1.33 0.03
16 230 20.84 320962500 457130 99.06 0.06 99.32 0.87 100 0 5.98 0.07 0 0 0.15 0.01
17 220 27.57 321246000 0 99.83 0.02 99.44 0.93 100 0 2.96 0.11 0 0 0.06 0
18 195 18.71 321246000 0 99.71 0.03 97.16 0.89 94.33 1.70 2.56 0.04 0 0 0.06 0
19 227 19.35 321246000 0 99.35 0.05 99.77 0.92 100 0 3.62 0.07 0 0 0.06 0
20 456 63.52 313351200 1315828 97.47 0.06 93.15 0.77 99.96 0.01 5.67 0.04 0 0 2.52 0.04

N = 15,γ = 0.75

1 282 39.88 318637800 277772 99.43 0.08 100 0.94 100 0 2.87 0.05 0 0 0.87 0.01
2 435 36.12 321246000 0 97.61 0.10 98.97 0.91 100 0 3.41 0.06 0 0 0.06 0
3 368 11.14 318297600 226800 98.22 0.03 100 0.91 100 0 4.52 0.07 0 0 0.98 0.01
4 393 49.36 316256400 941971 98.78 0.08 96.33 0.86 100 0 3.66 0.06 0 0 1.61 0.03
5 535 38.37 317220300 170100 97.91 0.04 98.67 0.87 100 0 5.14 0.06 0 0 1.31 0.01
6 383 65.74 320395500 1022173 99.22 0.04 97.68 0.85 100 0 5.60 0.06 0 0 0.32 0.03
7 462 77.65 317277000 760710 98.60 0.12 96.79 0.85 100 0 4.80 0.09 0 0 1.29 0.02
8 413 42.62 321246000 0 99.72 0.04 99.57 0.87 100 0 6.20 0.11 0 0 0.06 0
9 247 38.01 317390400 424303 99.67 0.04 100 0.92 100 0 3.92 0.05 0 0 1.26 0.01
10 348 43.16 321246000 0 99.01 0.04 98.12 0.89 100 0 3.98 0.10 0 0 0.06 0
11 488 52.84 318581100 363057 99.80 0.02 100 0.95 100 0 2.47 0.06 0 0 0.89 0.01
12 361 60.82 318581100 1015864 99.79 0.00 96.56 0.86 100 0 3.58 0.05 0 0 0.89 0.03
13 324 47.51 319091400 226799 99.25 0.05 100 0.95 100 0 2.75 0.08 0 0 0.73 0.01
14 280 37.78 319091400 424303 99.70 0.05 100 0.97 100 0 1.31 0.05 0 0 0.73 0.01
15 494 90.89 317787300 692111 99.86 0.02 99.72 0.93 100 0 3.32 0.09 0 0 1.14 0.02
16 308 28.44 321132600 340200 98.82 0.05 98.95 0.87 100 0 5.85 0.07 0 0 0.09 0.01
17 260 18.58 321246000 0 99.91 0.01 99.60 0.93 100 0 3.32 0.12 0 0 0.06 0
18 232 11.76 321246000 0 99.71 0.02 97.30 0.90 100 0 2.41 0.06 0 0 0.06 0
19 285 20.98 321246000 0 99.57 0.03 99.41 0.92 100 0 3.71 0.06 0 0 0.06 0
20 522 69.28 313804800 1437059 98.01 0.07 92.71 0.76 100 0 5.77 0.07 0 0 2.37 0.04

N = 20,γ = 0.75

1 363 66.95 318581100 259832 99.81 0.02 100 0.95 100 0 2.74 0.05 0 0 0.89 0.01
2 523 55.34 321246000 0 97.64 0.05 98.65 0.90 100 0 3.70 0.08 0 0 0.06 0
3 444 33.52 318297600 226800 98.07 0.06 100 0.90 100 0 4.95 0.11 0 0 0.98 0.01
4 458 73.17 316426500 923009 99.14 0.04 96.10 0.85 100 0 3.72 0.05 0 0 1.56 0.03
5 701 108.19 317277000 0 98.08 0.03 99.69 0.90 100 0 4.69 0.04 0 0 1.29 0
6 455 38.72 321189300 170099 99.40 0.03 96.32 0.83 100 0 5.30 0.08 0 0 0.08 0.01
7 581 143.39 317560500 957206 99.23 0.07 96.60 0.84 100 0 5.06 0.07 0 0 1.21 0.03
8 497 49.23 321246000 0 99.88 0.02 99.47 0.86 100 0 6.58 0.09 0 0 0.06 0
9 322 28.94 317560500 380355 99.69 0.04 100 0.93 100 0 3.75 0.06 0 0 1.21 0.01
10 396 63.20 321246000 0 99.07 0.04 97.58 0.88 100 0 3.71 0.05 0 0 0.06 0
11 584 94.76 318751200 453600 99.75 0.05 100 0.95 100 0 2.70 0.05 0 0 0.84 0.01
12 490 63.72 319374900 623700 99.75 0.00 95.19 0.83 100 0 4.02 0.05 0 0 0.64 0.02
13 401 50.52 319318200 277772 99.35 0.05 100 0.95 100 0 2.51 0.06 0 0 0.66 0.01
14 343 35.62 319148100 363057 99.60 0.04 100 0.97 100 0 1.58 0.08 0 0 0.71 0.01
15 596 68.63 317957400 424303 99.83 0.02 99.70 0.93 100 0 3.24 0.04 0 0 1.08 0.01
16 344 30.74 321246000 0 98.86 0.05 98.68 0.87 100 0 5.45 0.05 0 0 0.06 0
17 299 10.67 321246000 0 99.79 0.01 99.67 0.92 100 0 3.65 0.12 0 0 0.06 0
18 269 13.24 321246000 0 99.54 0.03 97.47 0.91 100 0 2.32 0.08 0 0 0.06 0
19 326 11.09 321246000 0 99.49 0.05 99.48 0.92 100 0 3.73 0.06 0 0 0.06 0
20 631 70.57 314158500 633925 98.13 0.07 92.52 0.75 100 0 5.65 0.06 0 0 2.26 0.02

gap (%) between Z ′MMPP (~sbest) and the best lower bound discovered in Section C.1. Quantities have been888

averaged over 10 seeded runs, with the average (µ) and standard deviation (σ) recorded.889
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Table 5 Best solution ~sbest found by heuristic for γ = 0.25,0.50, and N = 10. Columns are defined as in Table 4.

Quantities have been averaged over 10 seeded runs, with the average (µ) and standard deviation (σ) recorded.

N = 10, γ = 0.25 Utilisation (over all mines) (%) Deviation (%) Gap to (%)

# Time (s) Revenue ($) Trucking Dry Wet Stockpiling Metal Other MINLPlb
µT σT µR σR µK σK µD σD µW σW µS σS µG σG

1 98 17.12 318127500 283500 99.80 0.02 100 0.95 100 0 2.56 0.05 0 0 1.03 0.01
2 202 52.71 320225400 1262768 98.14 0.05 99.15 0.91 100 0 3.79 0.05 0 0 0.38 0.04
3 135 25.37 317673900 363057 98.26 0.05 99.79 0.92 100 0 4.08 0.08 0 0 1.17 0.01
4 162 38.17 315235800 1416365 98.93 0.06 95.43 0.84 99.64 0.11 3.70 0.05 0 0 1.93 0.04
5 235 41.38 316880100 510300 97.85 0.04 97.51 0.85 100 0 5.36 0.05 0 0 1.42 0.02
6 167 44.46 319318200 955525 98.77 0.12 98.95 0.88 100 0 5.26 0.07 0 0 0.66 0.03
7 208 34.04 316653300 305338 99.33 0.09 96.80 0.83 100 0 5.72 0.13 0 0 1.49 0.01
8 188 19.79 321019200 277772 99.66 0.03 99.11 0.87 100 0 5.97 0.11 0 0 0.13 0.01
9 79 21.98 316766700 396900 99.84 0.02 100 0.92 100 0 4.18 0.05 0 0 1.45 0.01
10 192 63.47 320679000 439196 99.01 0.10 99.60 0.92 100 0 3.73 0.09 0 0 0.24 0.01
11 160 39.51 317844000 439196 99.73 0.02 100 0.94 100 0 3.04 0.06 0 0 1.12 0.01
12 111 35.63 317220300 996695 99.78 0.01 97.30 0.88 100 0 3.65 0.05 0 0 1.31 0.03
13 122 31.35 318807900 259832 99.01 0.11 99.96 0.94 100 0 2.93 0.08 0 0 0.82 0.01
14 82 20.78 318411000 0 99.48 0.04 100 0.98 100 0 1.24 0.04 0 0 0.94 0
15 252 54.81 316539900 983708 99.94 0.01 99.33 0.91 100 0 4.03 0.06 0 0 1.52 0.03
16 123 12.06 320679000 760710 99.02 0.04 99.46 0.88 100 0 5.92 0.07 0 0 0.24 0.02
17 92 14.90 321246000 0 99.83 0.02 99.44 0.93 100 0 3.00 0.10 0 0 0.06 0
18 92 13.52 321246000 0 99.62 0.03 97.16 0.90 94.33 1.70 2.55 0.03 0 0 0.06 0
19 94 13.68 321246000 0 99.35 0.05 99.77 0.92 100 0 3.62 0.07 0 0 0.06 0
20 267 84.52 290417400 45159371 97.78 0.08 92.34 0.75 99.94 0.01 6.02 0.07 0.02 0 >100 –

N = 10, γ = 0.50

1 133 34.53 318240900 259832 99.56 0.04 100 0.95 100 0 2.62 0.06 0 0 0.99 0.01
2 256 29.16 320962500 283500 97.32 0.15 98.93 0.92 100 0 3.17 0.07 0 0 0.15 0.01
3 173 29.34 317900700 305338 98.04 0.06 100 0.91 100 0 4.45 0.10 0 0 1.10 0.01
4 230 55.80 315576000 1216079 98.83 0.11 96.47 0.86 100 0 3.78 0.07 0 0 1.82 0.04
5 231 41.04 316880100 259832 97.56 0.08 97.41 0.85 100 0 5.14 0.06 0 0 1.42 0.01
6 210 69.28 318978000 760710 99.35 0.03 99.85 0.89 100 0 5.31 0.09 0 0 0.76 0.02
7 251 41.48 316710000 253570 98.98 0.09 97.00 0.83 100 0 5.86 0.12 0 0 1.47 0.01
8 224 16.10 321189300 170099 99.68 0.03 98.95 0.86 100 0 6.24 0.10 0 0 0.08 0.01
9 98 16.95 316823400 340200 99.59 0.05 100 0.92 100 0 4.02 0.07 0 0 1.43 0.01
10 230 49.37 320849100 259832 99.22 0.02 99.61 0.91 100 0 4.25 0.06 0 0 0.18 0.01
11 197 27.79 317787300 396900 99.81 0.02 99.99 0.95 100 0 2.66 0.06 0 0 1.14 0.01
12 157 38.21 317560500 957206 99.78 0.00 97.34 0.88 100 0 3.79 0.05 0 0 1.21 0.03
13 151 25.77 318807900 259832 98.79 0.12 100 0.95 100 0 2.69 0.09 0 0 0.82 0.01
14 105 14.99 318467700 170100 99.53 0.03 100 0.98 100 0 1.15 0.04 0 0 0.92 0.01
15 283 37.08 316596600 941971 99.95 0.01 99.52 0.93 100 0 3.30 0.06 0 0 1.51 0.03
16 151 10.48 320735700 737100 98.91 0.05 99.82 0.88 100 0 5.96 0.07 0 0 0.22 0.02
17 124 17.42 321246000 0 99.83 0.02 99.44 0.93 100 0 2.96 0.11 0 0 0.06 0
18 117 14.42 321246000 0 99.71 0.03 97.16 0.89 94.33 1.70 2.60 0.05 0 0 0.06 0
19 124 16.55 321246000 0 99.35 0.05 99.77 0.92 100 0 3.62 0.07 0 0 0.06 0
20 248 76.29 276115500 58427971 97.51 0.09 91.02 0.73 100 0 5.86 0.11 0.04 0 >100 –

Increasing N , the number of schedules formed during the solve of each Om in each iteration of the heuristic,890

and γ, altering the degree to which the standard deviations given to each Om as input are increased or891

decreased (a larger γ results in smaller changes), improves, in general, the quality of solutions found by the892

heuristic. The heuristic is successful, across all tested combinations of the N and γ parameters, at discovering893

near optimal solutions to the MMPP – with gaps of less than 2% achieved (in all but one test case) between894

Z ′MMPP (~sbest) and its best known lower bound. For N = 10,15,20 and γ = 0.50,0.75, gaps of less than 1% are895

reported in a majority of test cases. Decreasing γ results in the heuristic performing less iterations, reducing896

the time it takes to solve, but limiting its opportunities to improve the quality of its current best found897

solution.898

We have evaluated the extent to which our choice of port-to-mine feedback (see Table 1) improves the899

performance of our heuristic by considering two alternative schemes. The first, denoted R2, replicates our900

existing rules but does not increase the standard deviations provided to each mine at any stage. The second,901

denoted R3, replicates R2, but reduces these standard deviations only after two consecutive iterations have902

failed to yield an improved ~sbest. For N = 10 and γ = 0.75, we have found that, relative to our existing rules,903

R2 results in similar heuristic solve times, but lower quality solutions, on a majority of tests. R3 results904

in solutions that are slightly higher in quality than those of Table 4, on a majority of tests, but increases905
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heuristic solve time by almost 200s on average. For brevity, the full results of this evaluation have been906

omitted from this appendix.907

C.1. Generation of lower bounds908

We find lower bounds on the value of Z ′MMPP , in each test, via the use of linear (McCormick 1976) and909

piecewise-linear (Gounaris et al. 2009) relaxations of our non-linear model. We first relax each bilinear term,910

vml,qτ
m
l , in the MINLP of Section 5 with its convex envelope (McCormick 1976). Default optimality tolerances911

could not be reached, in any test case, when the resulting MIP was solved. In each test, a gap of 0.06%912

was achieved, with respect to a lower bound obtained via an LP relaxation of the MIP (after 12 hours of913

solving). The average deviation between desired bounds on the percentage of metal in each lump and fines914

port product, and its actual composition, across the solutions of the relaxed model, was 0.56% and 0.16%915

(with standard deviations of 0.27 and 0.20). The maximum deviations in metal percentage, across all tests,916

were 1.14% and 0.81% in the lump and fines products formed across the port system. To generate relaxations917

of greater fidelity, we linearise each bilinear term, vml,qτ
m
l for m ∈M, l ∈ L, and q ∈ Q, by partitioning the918

domain of the τml variable into Nτ = 2,5,10, and 20, intervals. We reformulate each τml as shown in Equations919

(52)–(55).920

τml =Dm
l +

Nτ∑
j=0

j∆τml τ̂ml,j + ∆τml τ̃ml , ∆τml =
Um
l −Dm

l

Nτ

∀ m∈M, l ∈L (52)

0≤ τ̃ml ≤ 1 ∀ m∈M, l ∈L (53)

τ̂ml,j ∈ {0,1} ∀ j = 0 . . .Nτ ,m∈M, l ∈L (54)
Nτ∑
j=0

τ̂ml,j = 1 ∀ m∈M, l ∈L (55)

The binary variable τ̂ml,j forms part of an SOS1 constraint (Equation (55)), and is active (τ̂ml,j = 1) only921

when variable τml lies between the value Dm
l +j∆τml and Dm

l +(j+1) ∆τml , where Um
l denotes the maximum922

tons of granularity l ∈L producible by m. The variable τ̃ml forms part of a slack term, allowing the value of923

each τml to lie between the discrete points in its domain characterised by Dm
l + j∆τml for j = 0 . . .Nτ .924

We substitute the expression in Equation (52) for τml in each of the bilinear terms in our MINLP. The terms925

τ̂ml,j v
m
l,q and τ̃ml v

m
l,q appearing in Equation (56) are replaced with variables wml,j,q = τ̂ml,j v

m
l,q and ṽml,q = τ̃ml v

m
l,q,926

yielding Equation (57). Each wml,j,q is constrained as shown in Equations (58)–(61). Variable ṽml,q is constrained927

as shown in Equations (62)–(65), where Lml,q and Um
l,q denote lower and upper bounds on the domain of928

variable vml,q.929

vml,qτ
m
l =Dm

l v
m
l,q +

Nτ∑
j=0

j∆τml τ̂ml,j v
m
l,q + ∆τml τ̃ml v

m
l,q ∀ m∈M, l ∈L, q ∈Q (56)

vml,qτ
m
l =Dm

l v
m
l,q +

Nτ∑
j=0

j∆τml wml,j,q + ∆τml ṽml,q ∀ m∈M, l ∈L, q ∈Q (57)

wml,j,q ≤Um
l,q τ̂

m
l ∀ m∈M, l ∈L, q ∈Q (58)
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wml,j,q ≥Lml,q τ̂ml ∀ m∈M, l ∈L, q ∈Q (59)

wml,j,q ≤ vml,q +Lml,q(1− τ̂ml ) ∀ m∈M, l ∈L, q ∈Q (60)

wml,j,q ≥ vml,q −Um
l,q(1− τ̂ml ) ∀ m∈M, l ∈L, q ∈Q (61)

ṽml,q ≤Um
l,q τ̃

m
l ∀ m∈M, l ∈L, q ∈Q (62)

ṽml,q ≥Lml,q τ̃ml ∀ m∈M, l ∈L, q ∈Q (63)

ṽml,q ≥Um
l,q τ̃

m
l + vml,q −Um

l,q ∀ m∈M, l ∈L, q ∈Q (64)

ṽml,q ≤Lml,q τ̃ml + vml,q ∀ m∈M, l ∈L, q ∈Q (65)

The maximum deviation in metal percentage, from desired bounds, across all port products, was found930

to be 1.02%, 0.69%, 0.36%, and 0.16%, respectively, in solutions to the models generated with Nτ = 2,5,10,931

and 20. All MIP models generated to approximate the MINLP could not be solved to default optimality932

tolerances in any of the 20 tests, in a 12 hour period. Lower bounds obtained from the LP relaxation of933

each of these MIPs (after 12 hours of solving) have been used to assess the quality of solutions found by our934

heuristic in Tables 4–5.935

C.2. Piecewise-linear relaxations (PLR)936

To determine whether piecewise-linear relaxation is capable of finding high quality solutions to the MMPP,937

in which port products are correctly blended, we re-solve the Nτ = 10, and 20 relaxed models (generated938

in Section C.1) with narrowed bounds on each attribute q ∈ Q. Each set of bounds is narrowed to offset939

the maximum deviations incurred on the relevant attribute in the solutions to each model. Each model was940

able to produce solutions in which no deviation existed between port product composition and the original941

bounds.942

Table 6 records for the best solution (best) found, in each test: the elapsed time (s) to the completion943

of solve (‘–’ denotes that default optimality tolerances were not reached in a 12 hour period); the elapsed944

time (s) to the discovery of best; the total revenue achieved ($) via the sale of ore products formed across945

the port system; the value of Nτ which generated the best solution for the test case; the total utilisation of946

trucking resources, and the dry and wet processing plants (% of network-wide capacity); the total percentage947

of network-wide haulage capacity spent on undesirable stockpiling; and the gap (%) between the objective948

value of best and the best known lower bound on Z ′MMPP for the test case.949

We compare the results of the piecewise-linear relaxed (PLR) solver with those obtained by our heuristic,950

using both the worst and best performing combination of N , and γ, parameters: N = 10, γ = 0.25; and951

N = 20, γ = 0.75, respectively. As we perform 10 seeded runs of our heuristic on each test, and average the952

results of those runs in Tables 4 and 5, we use the worst performing run (producing the highest value for953

Z ′MMPP ) obtained for each test and N − γ parameter combination in our comparison. The final six columns954

of Table 6 denote: the gap (%) between Z ′MMPP (~sbest), where ~sbest is the solution found by our heuristic for955

the given N − γ combination, and the best known lower bound; the elapsed time (s) at which the heuristic956

discovered this solution; and the time required by the PLR solver to find a solution of equivalent quality (a957

‘–’ in the PLR column indicates that the PLR solver did not find such a solution in a 12 hour timeframe).958
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Table 6 Comparison of piecewise-linear relaxation (PLR) and our heuristic. For the best solution best found by

PLR, we record for each test #: elapsed time (s) to completion of solve (‘–’ denotes that default optimality

tolerances were not reached in 12hrs); elapsed time (s) to discovery of best; revenue from correctly blended port

products ($); the Nτ value used to generate each solution; utilisation of trucks, and dry/wet processing plants (%

of network-wide capacity); percentage of network-wide haulage capacity spent on undesirable stockpiling; and the

gap (%) between Z′MMPP (best) and the best known lower bound. Columns 11-16 compare PLR and our heuristic.

Given N = 10, γ = 0.25, and N = 20, γ = 0.75, we record for ~sbest in each test #: the gap between Z′MMPP (~sbest)

and the best known lower bound (Gap, %); heuristic (elapsed) solve time (Time, s); and the elapsed time (s)

taken by PLR (PLR, s) to find an equally good solution (‘–’ indicates that no such solution was found).

Differences in mine productivity across solutions are not evident in gaps rounded to two decimal places. In #1

and 7, the heuristic finds a better solution than PLR, despite both achieving gaps of 1.12 and 1.47, respectively.

Gap to N = 10,γ = 0.25 N = 20,γ = 0.75
Solve Best Revenue Nτ Utilisation (%) MINLPlb Gap Time PLR Gap Time PLR

# (s) (s) ($) Trucking Dry Wet Stockpiling (%) (%) (s) (s) (%) (s) (s)

1 – 42793 317844000 10 98.74 99.28 100 1.49 1.12 1.12 89 – 0.94 340 –
2 – 41042 319545000 20 98.32 100 100 2.24 0.59 1.29 139 38977 0.06 554 –
3 – 30584 317844000 20 98.90 100 100 2.22 1.12 1.47 110 1390 1.12 357 30584
4 – 42696 316143000 20 98.73 96.98 100 3.09 1.65 2.70 166 39621 2.35 352 39621
5 – 40379 316710000 20 98.40 99.24 100 3.44 1.47 1.82 235 39053 1.29 565 –
6 – 42793 319545000 20 99.40 100 100 3.46 0.59 0.94 119 39177 0.24 501 –
7 – 41502 316710000 20 99.52 97.02 100 3.87 1.47 1.65 234 40245 1.47 390 –
8 – 39323 321246000 20 99.45 100 100 2.64 0.06 0.24 198 38879 0.06 448 39323
9 – 41753 316710000 10 100 100 100 2.31 1.47 1.65 50 41528 1.47 265 41753
10 – 41798 321246000 20 99.43 100 100 3.61 0.06 0.59 110 39432 0.06 312 41371
11 – 42680 318411000 20 99.65 100 100 2.64 0.94 1.47 130 39590 1.12 407 41583
12 – 41529 317844000 20 99.34 97.58 100 2.49 1.12 1.65 130 38832 0.94 336 –
13 – 40835 318411000 20 99.28 100 100 2.60 0.94 0.94 90 40835 0.76 383 –
14 – 40679 318978000 20 99.89 100 100 0.77 0.76 0.94 88 1123 0.94 250 1123
15 – 42052 317844000 20 99.90 99.75 100 1.85 1.12 1.82 236 39176 1.29 678 41004
16 – 43075 321246000 20 98.35 99.96 100 5.19 0.06 0.76 100 39046 0.06 343 41359
17 – 3346 321246000 20 100 100 100 0.35 0.06 0.06 88 3346 0.06 295 3346
18 – 2405 319545000 10 100 98 100 1.59 0.59 0.06 101 – 0.06 256 –
19 – 1027 321246000 20 100 100 100 1.03 0.06 0.06 79 679 0.06 328 679
20 – 43089 301428000 20 98.12 87.15 100 6.26 6.22 >100 148 39074 2.71 692 –

In tests 1 and 7, for N = 10, γ = 0.25 and N = 20, γ = 0.75, respectively, the gap between the objective of959

solutions found by the heuristic and the PLR solver, to the best known lower bounds, appears to be the same,960

at 1.12 and 1.47. The total productivity of the mine network is higher, however, in the heuristic solutions961

– the scaling that exists between port product deviation, revenue, and productivity, in Z ′MMPP , results in962

productivity changes equating to small differences in gap values, not evident when rounded to two decimal963

places.964

Table 6 shows that, for N = 20 and γ = 0.75, our heuristic discovers solutions equally as good, or better,965

than the PLR solver, in orders of magnitude less time, on a majority of tests (16/20). For the worst performing966

parameter combination of N = 10 and γ = 0.25, the PLR solver finds higher quality solutions in a majority967

of tests (16/20), but requires, in 14 of the 20 tests, orders of magnitude more time to do so. The PLR solver968

is consequently not a viable alternative – it rarely displays good performance, and requires knowledge of the969

extent to which bounds on port product composition should be narrowed.970

C.3. The ALT Heuristic971

The ALT heuristic generates and solves a series of linear programs (LPs), by alternately fixing each set of972

variables that appear in the bilinear constraints of a general BLP (Audet et al. 2004). We first fix the vml,q973

variable in each bilinear term, vml,qτ
m
l , of our MINLP to its instantiation in the solution to the envelope-based974

relaxation of Section C.1. We solve the resulting MIP to obtain a set of values for each τml variable. These975
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Table 7 Comparison of ALT and our heuristic. For the best solution best found by ALT in each test #, we

record: the elapsed time (s) to the discovery of best, and convergence (‘–’ indicates that convergence did not

occur in 12hrs); revenue from correctly blended port products ($); time limit (s) on each MIP solve; utilisation of

trucks, and dry/wet processing plants (% of network-wide capacity); percentage of network-wide haulage capacity

spent on undesirable stockpiling; and the gap (%) between Z′MMPP (best) and the best known lower bound.

Columns 11-16 compare ALT and our heuristic. Given N = 10, γ = 0.25, and N = 20, γ = 0.75, we record for the

lowest quality ~sbest found across all seeded runs of each test #: the gap between Z′MMPP (~sbest) and the best

known lower bound (Gap, %); the elapsed time (Time, s) taken by our heuristic to solve; and the elapsed time

(ALT, s) taken by ALT to find an equally good solution (‘–’ indicates that no such solution was found).

Gap to N = 10,γ = 0.25 N = 20,γ = 0.75
Best Converges Revenue MIPL Utilisation (%) MINLPlb Gap Time ALT Gap Time ALT

# (s) (s) ($) (s) Trucking Dry Wet Stockpiling (%) (%) (s) (s) (%) (s) (s)

1 36000 – 318978000 500 99.47 99.19 100 0.67 0.76 1.12 193 1000 0.94 340 1000
2 24500 – 321246000 500 98.40 99.98 100 1.86 0.06 0.24 282 1000 0.06 554 24500
3 22000 – 318411000 1000 98.58 100 100 1.06 0.94 1.12 323 12000 1.12 357 12000
4 34000 – 315009000 500 97.29 98.83 100 3.92 2.00 1.65 246 – 2.35 352 6500
5 12000 26000 316710000 500 98.63 99.79 100 1.96 1.47 1.29 379 – 1.29 565 –
6 6000 16000 319545000 500 99.26 98.83 100 2 0.59 0.94 290 1000 0.24 501 –
7 41000 – 316710000 500 99.87 97.89 100 2.63 1.47 1.65 284 41000 1.47 390 41000
8 30000 – 320679000 1000 99.59 97.8 100 2.67 0.24 0.06 390 – 0.06 448 –
9 2000 30000 317844000 500 99.88 100 100 1.19 1.12 1.47 142 1000 1.47 265 1000
10 37000 – 320679000 1000 99.25 100 100 1.35 0.24 0.24 390 37000 0.06 312 –
11 17000 38000 319545000 1000 99.79 100 100 0.86 0.59 1.12 315 3000 1.12 407 3000
12 8000 – 320679000 1000 99.76 100 100 3.19 1.65 1.65 166 8000 0.94 336 –
13 14000 – 318978000 1000 100 100 100 1.72 0.76 0.76 170 14000 0.76 383 14000
14 22000 – 318411000 500 100 100 100 0 0.94 1.12 154 22000 0.94 250 22000
15 2000 12000 315576000 1000 100 99.75 100 2.42 1.82 1.82 311 2000 1.29 678 –
16 6000 – 321246000 1000 98.81 99.89 100 2.78 0.06 0.41 263 6000 0.06 343 6000
17 6000 – 321246000 1000 100 100 100 0.28 0.06 0.06 196 3000 0.06 295 3000
18 6100 11800 320679000 100 100 98.29 100 1.71 0.24 0.06 203 – 0.06 256 –
19 8000 – 320679000 1000 99.25 99.94 100 0.54 0.24 0.06 204 – 0.06 328 –
20 10642 11142 196020000 500 97.41 97.55 100 4.60 > 100 3.63 382 – 2.71 692 –

values are then used to fix each τml variable, and solve for a new instantiation of each vml,q. This process of976

alternate variable fixing repeats until two successive iterations of the heuristic yield equal (to a tolerance)977

values for either of the vml,q or τml variable sets. On our set of benchmark tests, the MIP generated from978

fixing each vml,q to its first value could not be solved to default optimality tolerances within a 12 hour period.979

We have run a variation of the ALT algorithm in which each MIP solve is given a time limit. The best980

solution found in that time limit is used to obtain new instantiations of the vml,q and τml variable sets. In981

this setting, convergence to a local optimum is no longer guaranteed, and the MINLP objective value in982

successive solutions may not monotonically improve. This modified ALT heuristic has been applied to each983

of our benchmark tests, and the best solution found over all iterations, until convergence or the 12 hour984

cut-off point is reached, recorded.985

We have applied modified ALT with a MIP time limit of 100, 500, and 1000 seconds. We record, in Table986

7, for the best solution best found in each test: the elapsed time (s) to discovery, and convergence; the MIP987

solve limit (s) used to generate the best solution for the test; the revenue ($) achieved via the sale of ore988

products; the utilisation of trucking resources, and the dry and wet processing plants (% of network-wide989

capacity); the percentage of network-wide haulage capacity spent on undesirable stockpiling; and the gap (%)990

between Z ′MMPP (best) and the best known lower bound on Z ′MMPP for the test case. The final six columns991

of Table 7 denote: the gap (%) between Z ′MMPP (~sbest), where ~sbest is the solution found by our heuristic for992

the given N − γ combination, and the best known lower bound; the elapsed time (s) at which the heuristic993
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discovered this solution; and the time required by the ALT solver to find a solution of equivalent quality (a994

‘–’ in the ALT column indicates that ALT did not find such a solution in a 12 hour timefame).995

Table 7 shows that, for both N − γ combinations, our heuristic discovers solutions equally as good, or996

better, than ALT, on a majority of tests (15/20 for N = 20, γ = 0.25, and 11/20 for N = 10, γ = 0.25). The997

performance of ALT, across the tests, is inconsistent, often requiring orders of magnitude more time, than998

our heuristic, to discover solutions of comparable quality. Moreover, Table 7 shows that ALT was unable to999

converge in a reasonable timeframe. This lack of convergence arises as a result of the time limit imposed on1000

each MIP solve, preventing it from being solved to optimality.1001


