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1. Introduction.
The minimization-of-open-stacks problem (MOSP) (Yuen and Richardson 1995) can be described as fol-
lows. A factory manufactures a number of different products in batches, i.e., all copies of a given product
need to be finished before a different product is manufactured, so there are never two batches of the same
product. Each customer of the factory places an order requiring one or more different products. Once one
product in a customer’s order starts being manufactured, a stack is opened for that customer to store all
products in the order. Once all the products for a particular customer have been manufactured, the order
can be sent and the stack is freed for use by another order. The aim is to determine the sequence in which
products should be manufactured to minimize the maximum number of open stacks, i.e., the maximum
number of customers whose orders are simultaneously active. The importance of this problem comes from
the variety of real situations in which the problem (or an equivalent version of it) arises, such as cutting,
packing, and manufacturing environments, or VLSI design. The problem is known to be NP-hard (Linhares
and Yanasse 2002).

We can formalize the problem as follows. LetP be a set of products,C a set of customers, andc(p) a
function that returns the set of customers who have ordered productp ∈ P . Since the products ordered by
each customerc ∈ C are placed in a stack different from that of any other customer, we usec to denote
both a client and its associated stack. We say that customerc is active (or that stackc is open) at timek in
the manufacturing sequence if there is a product required byc that is manufactured before or at timek, and
also there is a product manufactured at timek or afterwards. In other words,c is active from the time the
first product ordered byc is manufactured until the last product ordered byc is manufactured. The MOSP
aims at finding a schedule for manufacturing the products inP (i.e., a permutation of the products) that
minimizes the maximum number of customers active (or of open stacks) at any time.

EXAMPLE 1. Consider an MSOP defined by the set of customersC = {c1, c2, c3, c4, c5}, the set of prod-
uctsP = {p1, p2, p3, p4, p5, p6, p7}, and ac(p) function determined by the matrixM shown in Figure 1(a),
where an X at positionMij indicates that clientci has ordered productpj.

Consider the manufacturing schedule given by sequencep7 p6 p5 p4 p3 p2 p1 and illustrated by the matrix
M shown in Figure 1(b), where clientci is active at positionMij if the position contains either an X (pj is
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p1 p2 p3 p4 p5 p6 p7

c1 X . . . X . X
c2 X . . X . . .
c3 . X . X . X .
c4 . . X X . X X
c5 . . X . X . .

p7 p6 p5 p4 p3 p2 p1

c1 X – X – – – X
c2 . . . X – – X
c3 . X – X – X .
c4 X X – X X . .
c5 . . X – X . .

(a) (b)
Figure 1 (a) An Example c(p) Function: ci ∈ c(pj) if the Row for ci in Column pj has an X. (b) An Example

Schedule: ci is Active when Product pj is Scheduled if the Row for ci in Column pj has an X or a –.

in the stack) or an – (ci has an open stack waiting for some product scheduled afterpj). Then, the active
customers at time 1 are{c1, c4}, at time 2{c1, c3, c4}, at time 3{c1, c3, c4, c5}, at time 4{c1, c2, c3, c4, c5},
at time 5{c1, c2, c3, c4, c5}, at time 6{c1, c2, c3}, and at time 7{c1, c2}. The maximum number of open
stacks for this particular schedule is thus 5.2

The MOSP was chosen as the subject of the first Constraint Modelling Challenge posed in May 2005. This
paper presents the methodology and results developed by the winning entry. The two main contributions of
this paper are as follows. First, it shows how the characteristics of the problem make it naturally expressible
in a dynamic-programming formulation. This is crucial since it allows us to reduce the raw search space
from |P |! (i.e., every possible permutation of the products) to2|P |. And second, the paper shows how further
search reductions can be obtained by breaking the optimization problem into a sequence of satisfaction
problems, each of which asks whether there is a sequence with exactlyN open stacks. (This may be related
to the fact that the problem isfixed parameter tractable, Linhares and Yanasse 2002.)

In the next section we discuss previous work on the MOSP. In Section 3 we give our call-basedA?

dynamic programming formulation for the MOSP. Section 4 presents two different preprocessing steps that
can significantly reduce the complexity of the problem. Section 5 examines how to compute several upper
and lower bounds for an MOSP. Section 6 investigates different search methods and Section 7 presents an
experimental evaluation of the different approaches. In Section 8 we conclude.

2. Previous Work
The open-stacks problem is usually thought of as arising from a cutting-stock environment, in which it is
described as follows: consider a saw machine used to cut large pieces into smaller pieces of different sizes.
As each large piece is cut, the smaller pieces are arranged in stacks around the machine. Only when all
the pieces of the same size have been cut can we ship out the stack, and make use of the space to store a
stack of different pieces. The aim is to order the cutting of the smaller piece types in order to minimize the
maximum number of open stacks during the cutting.

Yuen (1991, 1995) provides six heuristics for computing an upper bound to the number of open stacks
needed. These heuristics favor in one way or another products whose customers are already open stacks and
penalize those whose manufacturing results in newly open stacks. Yuen (1995) also noticed that a product
for which all its customers are already open should be scheduled immediately in any heuristic, although
he does not prove that this must lead to an optimal solution since he considers only heuristics. Finally,
Yuen (1995) also proposed a heuristic that rearranges the products before applying any other heuristic, in
increasing order of the sum of the height of all stacks in which a product was involved (as a measure of the
involvement of a product with other products).

Yuen and Richardson (1995) provide two methods to evaluate the optimality of the heuristics presented
by Yuen (1991, 1995). The first method simply compares the trivial lower bound (maximum number of
customers that have ordered a particular product) with the upper bound obtained by each heuristic (if they
coincide, the heuristic is known to have provided the optimal solution). The second method is based on
an exhaustive backtracking search of the tree formed by all possible schedules. The search is reduced by
disregarding products that cannot improve the current maximum, selecting first products that have at least
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one customer in common with the current stacks, sorting the products (and thus their selection) according
to the rearrangement defined in Yuen (1995), and comparing the current result against that obtained using
the reverse of the current schedule to avoid the search if the current is already greater than or equal to the
reversed one.

Yannasse (1997) discusses the relationship between the MOSP and other problems such as the mini-
mization of the lifetime (or spread) of open stacks (also called pattern allocation or cutting sequencing), or
minimization of stack interruptions (a similar problem but not equivalent to the minimization of spread).
The paper also proposes a depth-first, greedy branch-and-bound approach for solving the MOSP. The search
uses three different lower bounds (including the trivial one previously mentioned) and a trivial upper bound
(the number of customers whose orders have not been sent yet) to disregard nodes. The branch and bound
sequences the order in which the customers are completed, rather than the order of the products themselves.
From this order one can construct an optimal order of the products straightforwardly.

Faggioli and Bentivoglio (1998) present a three-phase approach to solving the MOSP. Starting from a
greedy heuristic solution somewhat similar to that of Yuen (1995), they improve the solution using a tabu
search that considers moving one product to another place in the sequence, and they finish by performing
an exhaustive backtracking search similar to that of Yuen and Richardson (1995).

Becceneri et al. (2004) provide a new heuristic (minimal-cost node) to compute an upper bound on the
number of open stacks. The heuristic uses the customer graph obtained from the problem to identify stacks
that can be served without involving the opening of many new stacks. While the accuracy of the heuristic is
shown to be good, its computational cost is considerable. The paper also improves on the branch-and-bound
search algorithm provided in Yannasse (1997) by detecting equivalent customer nodes and deleting them
from the graph until a given product sequence is found.

Our approach differs from those above mainly in two points. First, rather than using either backtrack-
ing or branch-and-bound search techniques to find the optimal solution, we are able to reduce the search
significantly by using dynamic programming thanks to a key insight: the order in which previous products
have been manufactured is not important, and thus they can be considered as a set. And second, rather than
considering the optimization problem as a whole, we decompose it in a sequence of steps, each attempting
to check the satisfiability of the problem for a given number of open stacks. As shown in the evaluation
section, such an approach significantly improves efficiency.

The results of the Constraint Modelling Challenge (2005) provide 13 different approaches to solving the
MOSP. We defer comparison to this contemporaneous work until after the experimental results section.

3. Dynamic-Programming Formulation
The MOSP is naturally expressible in a dynamic-programming formulation. To do so we extend the function
c(p) which returns the set of customers ordering productp∈ P , to handle a set of productsS ⊆ P . That is,
we definec(S) =∪p∈Sc(p) as a function that returns the set of customers ordering products from setS ⊆ P .
Let a(p,A), whereA⊂ P −{p}, denote the set of active customers at the time productp is manufactured
assuming that the setA of products is manufactured afterP andP −A− {p} is manufactured beforep.
Thena(p,A) = c(p) ∪ (c(A) ∩ c(P −A− {p})), i.e., the active customers are those who orderedp, plus
those whose orders include some products scheduled afterp and some scheduled before. Thata(p,A) does
not depend on any particular order of the products inA or P −A− {p} makes the problem amenable to
dynamic programming. LetS ⊆ P denote the set of products that still need to be manufactured, i.e., those
not yet scheduled, and letstacks(S) be the minimum number of stacks required to schedule the products
in S. Dynamic programming can be used to definestacks(S) as:

stacks(S) = min
p∈S

max{a(p,S−{p}), stacks(S−{p})},

which computes, for each productp, the maximum number of open stacks needed ifp was scheduled first
(as the maximum between the number of open stacksa(p,S−{p}) whenp is being manufactured, and the
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stacks(S,L,U)
if (S = ∅) return 0

if (stack[S]) return stack[S]
min := U +1
T := S
while (min > L and T 6= ∅)

p := indexmin
p∈T

a(p,S−{p})
T := T −{p}
if (a(p,S−{p})≥min) break
sp := max(a(p,S−{p}),stacks(S−{p},L,U))
if (sp < min) min := sp

stack[S] := min

if (min > U ) FAIL := FAIL∪{S}

elseSUCCESS := SUCCESS ∪{S}
return min

Figure 2 Pseudo-Code for A? Call-based Dynamic Programming Algorithm. stacks (S,L,U) Returns the Min-
imum Number of Open Stacks Required for Scheduling the Set of Products S Given a Lower Bound
on the Number of Stacks of L and an Upper Bound of U . If There is no Schedule Less Than Bound
U it Returns U + 1

numberstacks(S−{p}) oncep is finished), and then obtains the minimum of those. Dynamic programming
is so effective for this problem because it reduces the raw search space from|P |! to 2|P |, since we only need
to investigate minimum stacks for each subset ofP .

3.1. BasicA? Algorithm
The code in Figure 2 illustrates ourA? call-based dynamic-programming algorithm, which improves over
a näıve formulation by taking into account lower and upper bounds.

The algorithm starts by checking whetherS is empty, in which case 0 stacks are needed. Otherwise, it
checks whether the minimum number of stacks forS has already been computed (and stored instack[S]),
in which case it returns the previously stored result (code shown in light gray). If not, the algorithm tries to
find the product that will lead to the minimum number of open stacks if scheduled first by computing insp
the valuemax(a(p,S−{p}),stacks(S−{p},L,U)) for eachp∈ S, and updating the current minimum in
min if required.

Note, however, that it avoids (thanks to thebreak) considering products whose active set of customers is
greater than or equal to the current minimummin, since they cannot improve on the current solution. As
a result, the order in which theS products are tried can significantly affect the amount of work performed
by the algorithm. In our algorithm, this order follows a simple heuristic that selects the productp with the
fewest active customers if scheduled immediately. The index construct indexminp∈S e(p) returns thep in
S that causes the expressione(p) to take its minimum value (it is similarly defined formax). The loop also
stops as soon as the current solution is less than or equal to the lower bound, since we are only interested in
finding a single solution less than or equal to the lower bound.

The dark gray code stores inSUCCESS the sets that resulted in finding a solution within the bounds, and
in FAIL those that did not (those sets for which, at the end of the computation,min is still set toU + 1).
We will make use of these sets later.

A call to functionstacks(P,L,U) returns the minimum number of stacks required to schedule the prod-
ucts in setP assuming lower boundL and upper boundU . Extracting the optimal schedule found from the
array of stored answersstack[] is straightforward, and standard for dynamic programming.
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p7 p5 p3 p1 p4 p6 p2

c1 X X – X . . .
c2 . . . X X . .
c3 . . . . X X X
c4 X – X – X X .
c5 . X X . . . .

Figure 3 An Optimal Schedule for the Products S = {p1, p2, p3, p4, p6} Assuming {p5, p7} Have Already been
Scheduled

3.2. Scheduling Non-Opening Products First
Let o(S) = c(P − S) ∩ c(S) be the set of active customers just before an element ofS is scheduled, i.e.,
those for which some of its products have already been manufactured (those inP − S), and some have
not (those inS). We can reduce the amount of search performed by the code shown in Figure 2 (and thus
improve its efficiency) by noticing that any product ordered by customers whose stacks are already open can
always be scheduled first without affecting the optimality of the solution. In other words, for everyp ∈ S
for which c(p)⊆ o(S), there must be a solution tostacks(S) that starts withp.

LEMMA 1. If there existsp ∈ S wherec(p)⊆ o(S), then there is an optimal order forstacks(S) begin-
ning withp.

Proof. Let Π denote a possibly empty sequence of products. In an abuse of notation, and when clear
from context, we will sometimes use sequences as if they were sets. Take any optimal orderΠ1p

′Π2pΠ3 of
S in which a productp′ is placed beforep, and consider altering the order by movingp to the front, thus
obtainingpΠ1p

′Π2Π3. We show that the active stacks for each product can only decrease.
First, it is clear that the products inΠ3 have the same active set of customers since the set of products

manufactured before and afterΠ3 remains unchanged. Second, let us consider the changes in the active set
of customers forp′, which can be seen as a general representative of products scheduled beforep in the
original order. While in the original order the set of active customers at the timep′ is built isa(p′,Π2pΠ3) =
c(p′)∪ (c(P −Π2pΠ3 −{p′})∩ c(Π2pΠ3)), in the new order the set of active customers isa(p′,Π2Π3) =
c(p′) ∪ (c(P −Π2Π3 − {p′}) ∩ c(Π2Π3)). Now, for every set of productsQ ⊆ Q′ we know thatc(Q) ⊆
c(Q′), i.e., increasing the number of products can only increase the number of customers who ordered
them. Thus, we have that (a)c(Π2pΠ3)⊆ c({p′} ∪Π2pΠ3). By this and the lemma assumptions we have
that c(p) ⊆ o(S) ⊆ c(P − S) ⊆ c(P − Π2pΠ3 − {p′}) and, therefore, that (b)c(P − Π2pΠ3 − {p′}) =
c(P −Π2Π3−{p′}). Hence, by (a) and (b) we have thata(p′,Π2Π3)⊆ a(p′,Π2pΠ3). Finally, we also have
to examine the stacks forp. In the new ordera(p,S−{p})⊆ o(S) ando(S) is a lower bound on the number
of stacks in any order. Hence, orderpΠ1p

′Π2Π3 has a minimum number of stacks.2

EXAMPLE 2. Consider the open-stacks problem of Example 1. Let us assume that the set of products
S = {p1, p2, p3, p4, p6} is scheduled afterP −S = {p5, p7} have been scheduled. Then, the active customers
afterp5 andp7 have been manufactured iso(S) = {c1, c4, c5} and an optimal schedule can begin withp3

sincec(p3)⊆ o(S). An optimal schedule is shown in Figure 3.2

We can modify the pseudo code of Figure 2 to take advantage of Lemma 1 by adding the line

if (∃p∈ S.c(p)⊆ o(S)) return stacks(S−{p},L,U)

before thewhile loop.

3.3. Looking Ahead
We can further reduce the search performed bystacks(S,L,U ) by computing a lower bound to the number
of stacks required to schedule the products inS based on looking ahead to see how many stacks will be
needed to close the already-opened stacks. Let us define thecustomer graphG = (V,E) for an open-stacks
problem as:V = c(P ) andE = {(c1, c2) | ∃p∈ P,{c1, c2} ⊆ c(p)}, that is, a graph in which nodes represent
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Figure 4 Customer Graph for the Problem of Example 1

customers, and two nodes are adjacent if they order the same product. Note that, by definition, each node is
self-adjacent. LetN(c) be the set of nodes adjacent toc in G.

LEMMA 2. The minimum number of stacks required for a set of productsS is at leastb(S) = |o(S)|+
min{|N(c)− c(P −S)| | c∈ c(S)}.

Proof. Before the products inS are scheduled, the open stacks areo(S). Consider first an active customer
c∈ o(S). In order to closec we need to have open stacks for all customersc′ ∈N(c) adjacent toc (including
c), sincec and c′ share some productp that needs to be completed before we can closec. This at least
requires us to open the customers inN(c)−c(P −S) that have not already been openedc(P −S). Similarly,
consider a non-active customerc∈ c(S)− o(S). We could also closec simply by opening all the customers
in N(c)− c(P − S), but that would not allow us to close any customer currently open. Hence, the bound
holds.2

EXAMPLE 3. Consider the customer graph for Example 1, which is shown in Figure 4, and consider
scheduling the setS = {p2, p3, p4, p5, p6, p7} after {p1}. The open stacks forS areo(S) = {c1, c2}. The
adjacent non-opened customers to each customerc1, c2, c3, c4, andc5 are respectively{c4, c5}, {c3, c4},
{c3, c4}, {c3, c4, c5}, and{c4, c5}. Henceb(S) = |{c1, c2}|+2 = 4. This is a lower bound on a schedule for
S, since closing any customer requires at least this many open stacks.

If we consider schedulingS = {p1, p2, p3, p4, p5, p6} after {p7} we have thato(S) = {c1, c4} and the
adjacent non-opened customers to each customerc1, c2, c3, c4, andc5 are respectively{c2, c5}, {c1, c2, c3},
{c2, c3}, {c2, c3, c5}, and{c5}. Henceb(S) = 3.2

We can use this lower bound to improve theA? programming algorithm given in Figure 2 above. We
replace the calculationa(p,A) with a′(p,A) = max{a(p,A), b(A)}, which gives an improved lower bound
on the future number of stacks required. Note that usinga′(p,A) rather thana(p,A) can significantly reduce
the search space.

EXAMPLE 4. Consider the problem of Example 1. In the initial whereS = {p1, p2, p3, p4, p5, p6, p7},
while the calculation ofa(p,S−{p}) gives2,1,2,3,2,2,2 respectively forp = p1, p2, p3, p4, p5, p6, p7, the
calculation ofa′(p,S−{p}) gives4,3,3,3,3,3,3. Hence, the code will try one ofp2, p3, p4, p5, p6, p7 as the
first scheduled product before it triesp1. Since this will determine an overall schedule requiring 3 stacks,
it will never examine any schedules that commence withp1 or indeed any of the other products since they
cannot improve the schedule found already.2

4. Preprocessing
Our methodology attempts to simplify the problem by applying two preprocessing steps to the initialP . The
first step removes fromP any productp such thatc(p)⊆ c(p′) for somep′ appearing in the reduced problem.
Solving the reduced problem gives an optimal value forP . Optimal solutions to the reduced problem can
be extended to give optimal solutions toP by simply placing eachp immediately after any of thep′s that
subsumed it.

This preprocessing step, which was also noted in Becceneri et al. (2004), can be proved by using
Lemma 1. Simply note that ifc(p) ⊆ c(p′), then any order forS that includesp′ but not p must have
c(p)⊆ o(S). Because the problem is the same when considering the reverse order, the same holds for orders
in whichp appears immediately beforep′.
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p5 p7 p3 p1 p4 p2 p6

c1 X X – X . . .
c2 . . . X X . .
c3 . . . . X X X
c4 . X X – X – X
c5 X – X . . . .

Figure 5 An Optimal Order for {p1, p3, p4, p5, p7} of the Problem of Example 1 with p2 and p6 Added Immedi-
ately After p4 to Give an Optimal Order for the Original Problem

EXAMPLE 5. Consider the open-stacks problem from Example 1. Sincec(p2)⊆ c(p4) andc(p6)⊆ c(p4),
bothp2 andp6 can be removed. Inserting them afterp4 in any optimal order for the reduced set of products,
gives an optimal order for the original problem. This is illustrated in Figure 5.2

Our second preprocessing step is more obvious: ifP can be partitioned into two setsP = P1 ∪ P2

such thatc(P1) ∩ c(P2) = ∅, then we can independently orderP1 followed byP2. This is noted by Yuen
and Richardson (1995). Although we thought this was too unrealistic to occur, it does occur in several
benchmarks, including some of the mildly difficult ones.

5. Bounds
OurA? programming algorithm uses both upper and lower bounds on the number of open stacks needed to
solveP to reduce the number of subsets visited. As mentioned before, trivial lower and upper bounds are
L = max{|c(p)| | p∈ P} (the maximum number of customers who ordered the same product) andU = |C|
(the total number of customers).

Several authors have considered how to improve the lower bound. In particular, the following Lemmas
define lower bounds previously used by Becceneri et al. (2004) (although only informal arguments on
correctness are given).

LEMMA 3. If Q⊆C is clique in the customer graphG, the minimum number of open stacks is at least
|Q|

LEMMA 4. If d = min{|N(c)| | c∈C} thend is a lower bound on the open stacks for the problem.

Given an open-stacks problem whereP is the set of products,C the set of customers, andc(p) the set
of customers who ordered productp ∈ P , a minor of c, denotedc′ can be obtained in two ways. One way
is to remove an entire customerc ∈C. In this case we definec′(p) = c(p)−{c} for eachp ∈ P . The other
way is by merging two adjacent customers, i.e. two customers for which there exists ap ∈ P such that
{c1, c2} ⊆ c(p). In this case we define

c′(p) =
{

(c(p)−{c2})∪{c1} if c2 ∈ c(p),
c(p) otherwise

Given the customer graphG = (V,E) of the open-stacks problem, these two operations correspond to an
edge contraction and a node elimination fromG, respectively.

LEMMA 5. Let m be the minimum open stacks for a problem defined byc(p), andm′ be the minimum
open stacks for the problem defined byc′(p) wherec′ is a minor ofc. Thenm′ ≤m.

Becceneri et al. (2004) define a heuristic arc-contraction approach (HAC) based on Lemmas 4 and 5.
In particular, they apply any number of minor steps and use the size of the minimum-degree node as a
lower bound for the original problem. Note that this process can be stopped as soon as the remaining
customer graph is a cliqueQ, since by Lemma 3 its minimum number of open stacks is|Q|. We built an
implementation of Becceneri et al’s algorithm and a greedy clique finder that doesn’t do contractions but
tries to find maximal cliques starting from the set of customers that order each individual product.
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heuristic(S)
min := 0
while (S 6= ∅)

heuristically selectp
S := S−{p}
if (a(p,S−{p}) > min) min := a(p,S−{p})

return min
Figure 6 (Meta) Pseudo-Code for Greedy Heuristics.

Now consider how to improve the upper bound. For this we experimented with 11 greedy heuristics
(whose general form is shown in Figure 6) that, at each stage of computationS, select a productp according
to different criteria. The five most successful heuristics over all benchmark instances we found were:

(A) This heuristic (defined by Yuen 1995 as heuristic 3) favors products who supply many already active
stacks and do not open new stacks. In other words, it selects the productp that, if scheduled immediately,
maximizes the number of previously active stacks requiringp minus the number of stacks made active by
p:

indexmax
p∈S

(|c(p)∩ c(P −S)| − |c(p)− c(P −S)|).

(B) This heuristic selects the productp that, if scheduled immediately, minimizes the number of active
stacksa(p,S −{p}) and breaks ties in favor of products that close a greater number of stacks (are the last
product in those stacks)|c(p)− c(S−{p})|:

indexmin
p∈S

(a(p,S−{p}),−|c(p)− c(S−{p})|).

(C) This heuristic is similar to the one above except for the fact that all active stack numbers less than
the currentmin are considered equivalent:

indexmin
p∈S

(max(min,a(p,S−{p})),−|c(p)− c(S−{p})|).

(D) This heuristic is similar to (B) but breaks ties by maximizing a cost given byΣc∈c(p)2−|n(S,c)| where
n(S, c) is the number of productsp′ ∈ S for which customerc appears inc(p′). This effectively assigns to
each customer withm ordered products a cost of (almost) 1 split among its products as follows:2−m for the
first scheduled product,2−m+1 for the second, . . . ,2−2 for the second to last, and2−1 for the last product.
As a result, products that initiate or are close to the activation of the stack are not favored, while those that
are near the end or actually close the stack, are favored:

indexmin
p∈S

(a(p,S−{p}),−Σc∈c(p)2−|n(S,c)|).

(E) This heuristic selects the productp that, if scheduled immediately, minimizes the maximum of the
number of active stacks required using the improved formulaa′(p,A) = max({a(p,A), b(A)}):

indexmin
p∈S

a′(p,S−{p}).

We also implemented the minimal-cost node heuristic (which we’ll denote (F)) of Becceneri et al. (2004)
that does not follow the general greedy format of Figure 6 since it selects arcs (not products) in the customer
graph to determine a product order.
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stepwise(L,U)
for try := L to U

FAIL := ∅
min := stacks(P, try, try)
if (min = try) return min
for (S ∈FAIL) stack[S] := 0

Figure 7 Pseudo-Code for Stepwise Search for Optimal Solution

binarychop(L,U)
gmin := U +1
while (L≤U )

FAIL := SUCCESS := ∅
try := (L+U) div 2
min := stacks(P, try, try)
if (min≤ try)

gmin := min
U := min− 1
for (S ∈FAIL∪SUCCESS ) stack[S] := 0

else
L := try +1
for (S ∈FAIL) stack[S] := 0

return gmin
Figure 8 Pseudo-Code for Binary Chop Search for Optimal Solution

6. Search Strategies
As mentioned in Section 1, ourA? dynamic-programming algorithm is particularly effective when called
with L = U = n, where it explores only schedules that use exactlyn active stacks. This is almost certainly
related to the fact that the problem isfixed parameter tractable(Linhares and Yanasse 2002), i.e., if we fix
n there is a polynomial-time algorithm for the decision problem. This immediately suggests an extended
search procedure (which we will callstepwise (L,U )) that successively tries each possible value from
the lowerL to the upperU bound. The code in Figure 7 implements this approach. The loop stops as soon
as a solutionmin for stacks(P, try, try) that is equal totry is found, since that is known to be the optimal
value. Note thatmin cannot be less thantry since we are going upwards from the lower bound. Ifmin is
greater thantry, before the next value is tried, we must reset thestack[S] value of anyS ∈ FAIL, i.e., the
value of thoseS for which no solution was found equal totry and, therefore, were set bystacks(S, try, try)
to stack[S] = try +1.

The code in Figure 8 modifies the stepwise search by using binary search. The code repeatedly tries to
find a solution using the midpoint of the current range astry. If no solution lower than or equal totry is
found, it iterates using as a new range the values abovetry after (as for the stepwise search) resetting the
value of the setsS ∈ FAIL. If, on the other hand, a solution is found, it attempts to find a better solution
using the range below. To do this it must first reset allstack[S] computations (S ∈ FAIL ∪ SUCCESS )
performed for the current iterationstacks(P, try, try) (but not those previously calculated and used by this
computation), since they could be too high or too low.

Finally, we noted that often the most expensive stack number to try was the stack number below the
optimal, and those above the optimal were usually easier than those below. This motivated a backwards
stepwise approach where the possible stack numbers are tried in decreasing order. The code is illustrated in
Figure 9. The procedure corresponds to the backstep in thebinarychop procedure. Thebackwards search
procedure has another advantage: we can stop at any time with a (non-optimal) solution. Note that since
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backwards(L,U)
try := U
while (try≥L)

FAIL := SUCCESS := ∅
min := stacks(P, try, try)
if (min > try) return gmin
gmin := min
try := min− 1
for (S ∈FAIL∪SUCCESS ) stack[S] := 0

Figure 9 Pseudo-Code for Backwards Stepwise Search for Optimal Solution

stacks can actually return a value smaller thantry we do not just decreasetry by one each time, but instead
we reduce it to one less than the minimum we last found.

7. Experimental Results
We tested our approach on all the problem instances provided for the Modelling Challenge. All experi-
ments were run on a Pentium IV 3.4Ghz with 2GB RAM running Linux Fedora Core 3. The dynamic-
programming code is written in C, with no great tuning or clever data structures, and many runtime flags to
allow us to compare the different versions easily. The dynamic-programming software was compiled with
gcc 3.4.2 using -O3. Timings are calculated as the sum of user and system time given bygetrusage ,
since it accords well with wall-clock times for these CPU-intensive programs. For the problems that take
significant time we observed around 10% variation in timings across different runs of the same benchmark.

7.1. The Challenge Instances to the MOSP
The instances provided for the Modelling Challenge were divided into two categories depending on whether
their results were requested individually for an instance, or in aggregate form for a collection of MOSP
instances. Table 1 provides results on aggregate instances, i.e., each of its files consists of a collection of
MOSPs. The nomenclature of the files is that used in the Constraint Modelling Challenge (2005), where the
suffix of the filenamen m indicates instances in the suite haven = |C| customers andm = |P | products.
The runs for aggregate files are performed using allA? improvements, all preprocessing steps, all lower
and upper bound heuristics (using the best value found), and thebackwards stepwise search approach. The
timing results for each file are aggregates over 10 runs of each individual benchmark in the suite.

For each file we give the mean best solution, the total time (in milliseconds) per instance as mean, median,
and maximum, the search (calls tostacks that reach thewhile loop) required to find the optimal, and the
search required to find and prove optimality (the optimal value was found for every instance in this table).
Since the program is deterministic the search results are the same on each run of a benchmark.

The measure of search effort is the number of calls tostacks that do not immediately return, because
of cache hit,S = ∅, or the definite choice optimization of Lemma 1. Note that since we use the backwards
stepwise approach, between each successive stack number tried we empty the cache, so the total number
of calls is just the sum of the calls made for each stack number. Note that we always run the dynamic-
programming search even if the calculated lower and upper bounds agree (in which case we know we have
the optimal solution already).

One can see that most aggregate instances are quite easy. The median search effort required to find the
optimal is never greater than30, which basically means that, often, one of the first schedules tried is optimal.
Note that sometimes we can require fewer calls tostacks than there are products to prove optimality,
because of preprocessing to remove redundant products. Clearly, some individual examples are much more
difficult, and these dominate the results for that file. Only wbo30 30 and wbop30 30 have a significant
number of difficult instances.
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Table 1 Results for Aggregate Instances from the Constraint Modelling Challenge

File mean Total time per instance (ms) Search to find optimal Total search effort
best mean med. max mean med. max mean med. max

problem10 10 8.03 0.09 0 2 7.01 7 23 8.21 7 86
problem10 20 8.92 0.13 0 4 10.45 10 46 15.66 11 419
problem15 15 12.87 0.37 0 7 13.75 13 89 39.19 14 584
problem15 30 14.02 2.49 1 43 25.17 22 487 260.09 23 6031
problem20 10 15.88 0.52 0 4 12.99 10 92 36.96 28 179
problem20 20 17.97 5.83 1 86 29.31 19 561 428.12 20 6634
problem30 10 23.95 1.63 1 9 17.59 10 178 57.62 52 280
problem30 15 25.97 7.48 3 46 35.45 15 384 282.63 113 1634
problem30 30 28.32 718.36 3 10074 999.80 30 64954 31473.85 30 379396
problem40 20 36.38 96.89 8 607 90.69 20 1329 2454.55 147 14757
Shaw20 20 13.68 12.43 11 42 45.80 19 474 812.76 667 3020
wbo 10 10 5.92 0.14 0 1 9.82 10 11 14.00 10 60
wbo 10 20 7.35 0.33 0 6 20.27 19 57 47.98 19 629
wbo 10 30 8.20 1.27 0 21 26.32 27 30 147.53 28 1621
wbo 15 15 9.35 1.11 1 7 15.57 15 31 103.60 71 579
wbo 15 30 11.58 28.34 2 213 85.82 30 1936 2496.88 30 17724
wbo 20 10 12.90 0.51 0 3 11.74 10 25 40.26 40 96
wbo 20 20 13.69 8.72 7 42 38.48 20 338 540.33 363 2894
wbo 30 10 20.05 1.78 2 5 14.52 10 70 60.79 58 117
wbo 30 15 20.96 8.08 7 30 28.54 15 155 280.28 253 859
wbo 30 30 22.56 1108.10 306 8686 608.63 30 14230 41707.21 16392 319162
wbop 10 10 6.75 0.10 0 1 9.82 10 10 14.22 10 42
wbop 10 20 8.07 0.56 0 8 21.02 19 105 69.78 20 715
wbop 10 30 8.55 1.07 1 25 28.98 28 70 113.22 29 2464
wbop 15 15 10.37 0.77 0 6 15.25 15 32 71.92 15 313
wbop 15 30 12.15 18.63 2 197 162.52 30 2890 1593.28 30 18177
wbop 20 10 14.28 0.49 0 3 11.82 10 28 32.30 25 85
wbop 20 20 14.87 7.99 2 58 40.24 20 659 473.01 20 3428
wbop 30 10 22.48 1.21 1 5 10.78 10 22 39.48 39 83
wbop 30 15 22.38 7.50 5 38 25.13 15 166 249.48 156 1070
wbop 30 30 23.84 986.12 87 8770 1113.31 30 35735 31250.81 2973 300677
wbp 10 10 7.28 0.08 0 1 7.60 7 18 11.68 8 70
wbp 10 20 8.71 0.17 0 2 11.93 12 36 25.07 13 330
wbp 10 30 9.31 0.20 0 2 14.03 14 21 25.43 15 268
wbp 15 15 11.05 0.56 0 6 13.82 13 54 59.75 15 509
wbp 15 30 13.09 5.02 1 60 28.75 23 308 539.16 26 6580
wbp 20 10 15.12 0.52 0 3 11.97 10 45 41.12 40 96
wbp 20 20 15.41 7.26 2 83 50.58 19 1000 468.31 31 5136
wbp 30 10 23.18 2.03 2 8 23.68 10 100 73.33 66 185
wbp 30 15 22.98 10.56 7 45 57.48 15 651 377.62 270 1348
wbp 30 30 24.46 1203.78 5 17097 2071.78 30 132556 45069.34 61 765944

The second set of results are shown in Table 2, where the remaining instances are run individually under
the same conditions as those in Table 1. Here we show the name of the instance, its number of clients and
products, the best value found, whether the best value found is proved optimal or not, its total time (in
milliseconds) as the average over ten runs, the search effort to find the best solution found, and the total
search effort to prove optimality (or — if optimality was not proved).

Our program found the optimal solutions for all instances except SP2, SP3, and SP4, which hit the search
limit (set at225 = 33554432 calls tostacks). Again, only a few of the instances are difficult, in particular
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Table 2 Results for the Individual Instances from the Constraint Modelling Challenge

Instance |C| |P | Best value Proved optimal? Runtime (ms) Search for best Total search
Miller 20 40 20 40 13 ✔ 610 40 39656
GP1 50 50 45 ✔ 8.4 42 42
GP2 50 50 40 ✔ 11.2 48 48
GP3 50 50 40 ✔ 12.6 50 50
GP4 50 50 30 ✔ 10.5 37 37
GP5 100 100 95 ✔ 84.8 208 208
GP6 100 100 75 ✔ 138.0 100 100
GP7 100 100 75 ✔ 118.8 99 99
GP8 100 100 60 ✔ 174.3 96 96
NWRS1 10 20 3 ✔ 0.2 8 8
NWRS2 10 20 4 ✔ 0.1 11 11
NWRS3 15 25 7 ✔ 0.0 13 13
NWRS4 15 25 7 ✔ 0.1 15 15
NWRS5 20 30 12 ✔ 1.4 20 20
NWRS6 20 30 12 ✔ 1.0 23 23
NWRS7 25 60 10 ✔ 3.0 32 32
NWRS8 25 60 16 ✔ 2118.6 40 86869
SP1 25 25 9 ✔ 26.4 17 1269
SP2 50 50 19 ✘ 1650.0 25785 —
SP3 75 75 36 ✘ 1 hour 949523 —
SP4 100 100 56 ✘ 4 hours 3447816 —

the SP benchmarks that were specifically designed to have large path width. Our code finds a solution of
size 19 for SP2 using 25785 calls tostacks before hitting the limit trying 18 stacks. The runtime shown for
SP2, SP3, and SP4 is the time to find the best solution. The best lower bounds we have discovered for SP2,
SP3, and SP4 calculated using lower-bound heuristics and usingstepwise are 18, 15, and 22, respectively.

7.2. The Effect of the Optimizations
In this section we briefly describe the effect of the preprocessing approaches, lower and upper bounds
approaches, and searching approaches. We use as baseline thebackwards search methodology with all
improvements, i.e., the definite choices of Lemma 1, the improved lower bounds calculation (a′(p,A)), and
the preprocessing and global bounds improvements.

Table 3 compares all benchmarks except the most difficult: SP2, SP3, SP4, which none of our versions
can finish in time. In order to compare the different search approaches we show the total number of calls to
stacks to solve each instance optimally (except SP2, SP3, SP4) for each search strategy with all optimiza-
tions enabled, and then forbackwards with some optimizations disabled individually.

Regarding the different search strategies, thebackwards strategy is a clear winner (regardless of whether
we consider search effort or runtime), followed by thebinarychop andstepwise search strategies, in that
order. As mentioned before, this is due to the fact that the most expensive stack number to try is often the
stack number below the optimal, and those above the optimal were usually easier than those below.

Regarding the effect of individual optimizations on thebackwards strategy, it is clear that the definite
choice optimization of Lemma 1 is highly beneficial. The total number of calls tostacks is reduced by 1/3
but the time halves since we avoid search for the best possible candidate.

The improved search offered by the use ofa′(p,A) instead ofa(p,A) is massive. The search is reduced
by an order of magnitude. But because we have not attempted a very clever implementation ofa′(p,A),
execution is slower, since usinga(p,A) we can have a very tight inner loop.

Removing redundant productsp′ wherec(p′)⊆ c(p) for another productp is an important first step. Over
the benchmark suite we remove 16305 redundant products out of 101385 total products, a 16% reduction in
size on average. Given that each extra product could in the worst case double the search space, this is vital.
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Table 3 Comparative Results Over the
Entire Benchmark Suite

Total calls Total time
Search method tostacks (secs)
A? 56,231,534 1386
stepwise 29,887,854 880
binarychop 25,351,370 715

backwards 21,271,366 572

backwards −definite 33,992,526 1,260
backwards −a′(p,A) 169,638,021 441
backwards −redundant 30,166,640 850
backwards −red−def 70,759,348 2231
backwards −partition 21,275,426 573
backwards −upper 21,298,294 570
backwards −lower 21,452,365 575

Table 4 Comparison of the Heuristics Over the
5803 Benchmarks of the Suite

heur (A) (B) (C) (D) (E) (F)
best 3046 3596 3615 3840 5073 5446
unique 29 1 7 43 159 514
optimal 2733 3231 3248 3458 4608 4986
sum 98167 96798 96769 96462 94592 94093

This is masked by using the definite choice optimization, if both are removed the program fails to solve
NWRS8, which has 20 redundant products out of 60.

There are 113 instances where the products are separable (which surprised us somewhat), with 2.42
separate parts on average. In most cases the result of separating is not much better than not, since the
separable partitions are usually tiny singletons. But there are examples such as Warwick1711 where the
search space is reduced from 1853 calls tostacks to 183, even though the separable parts are size 1, 1, and
5 out of 29 non-redundant products.

The effect of the upper-bound heuristics is not too great once we usebackwards. They improve the
number of sets in 884 cases, but the percentage improvement is negligible overall (0.0012%) since they do
not improve any of the really hard benchmarks by more than a tiny fraction. Comparatively, the heuristics
rank in the order (A) to (F) (worst to best). Of 5964 partitions of products for 5803 instances, Table 4 shows
the number of times each heuristic returned the (equal)bestanswer of all heuristics, theuniquebest answer
(bettered all others), the number of times the answer was theoptimal answer to the instance (of 5803),
and the totalsumof the heuristic results is shown. Clearly the minimal-cost node heuristic of Becceneri
et al. (2004) is the best, but using multiple heuristics can still substantially improve the result, since they all
provide the unique best answer in at least one case.

Although the lower-bounds approaches are very successful at finding good lower bounds, the only time
they can improve thebackwards search approach is when the lower bound is the optimal. While this occurs
frequently it does not occur on the hard benchmarks so there is little benefit. The HAC heuristic is never
bettered by the clique approach. The clique lower bound gives the optimal answer in 2718 benchmarks of
5803, while the HAC approach gives the optimal on 3380.

While the lower and upper bounds are not that useful forbackwards search, this is certainly not the case
for A?, stepwise, or binarychop. Similarly, without usinga′(p,A) the lower and upper bounds are much
more important.

7.3. Comparing with Other Results in the Competition
A full report of the competition is available from the competition website, Constraint Modelling Challenge
(2005). Here we briefly compare our results to the other 12 entries. Our approach solved more instances
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than any other entry except that of Shaw and Laborie who solved exactly the same set (everything except
SP2, SP3, and SP4). Their approach is a constraint-programming approach with tabling, which is quite
similar to a dynamic-programming approach. They used the definite choice optimization of Lemma 1, clique
lower bounds, and developed a more complex search strategy based on splitting products into different
possible early and late sets and solving these sub-problems independently. Finally, they also use a local-
search technique to explore around every new better solution in order to find good solutions early. Overall,
our run times were around two orders of magnitude faster than theirs, and the search space explored 2 to 10
times less.

The competition had another dynamic-programming entry, which more or less implemented the direct
definition of stacks(S) given at the beginning of section 3, using a bottom-up dynamic-programming
approach that requires all2|P | subproblems to be solved. As we can see from the median calls tostacks
required, this is very wasteful for the MOSP. This entry solved all instances with fewer than 30 products
optimally, about 2 to 10 times slower than our solution. It did not attempt the larger instances (because of
the space required).

No entry in the competition provided an optimal solution for SP2, SP3, and SP4, while our best solutions
for them were bettered three times: The local-search method of Truchet, Bourdon, and Codognet found a
solution of 55 for SP4, while the heuristic-solution-construction method of Miller, based on reasoning over
the customer graph, found solutions of 35 for SP3 and 54 for SP4

The competition entries included a mixed integer-programming model that was unable to solve most
instances; a number of local-search methods that often gave quite good results; and many constraint-
programming models, which were usually unable to solve the difficult instances in wbo30 30, wbop30 30,
and Miller 20 40 (and of course SP2, SP3, and SP4). Overall, our results are usually two orders of magni-
tude faster than any other entrant except the other dynamic-programming solution, and require an order of
magnitude less search (although the comparison of different measures of “search” makes this less meaning-
ful).

There are many fascinating results, theorems, and models contained in the challenge report, and no doubt
many of the techniques could be tried out with our dynamic-programming formulation.

8. Conclusion
The call-basedA? dynamic-programming formulation of minimizing open stacks gives a very effective
algorithm for solving these problems. It can be improved by searching backwards for a minimum solution,
probably because of the fact that the problem is fixed-parameter tractable. While we have experimented
with many different optimizations, the key improvements we discovered were always scheduling subsumed
products immediately (Lemma 1) and usinga′(p,A) to get a better lower bound on the rest of the schedule.
There is certainly scope for improving the dynamic-programming approach, particularly by better dynamic
lower bounding using the customer graph.

Acknowledgments
We would like to thank the organizers of the Constraint Modelling Challenge 2005, Barbara Smith and Ian
Gent, for their hard work in providing a really interesting challenge. We would also like to thank Thierry
Benoist for pointing out an inaccurate description ofb(S) in our original version of this paper.

References
Becceneri, J.C., H.H. Yannasse, N.Y. Soma. 2004. A method for solving the minimization of the maximum number

of open stacks problem within a cutting process.Computers & Operations Research312315–2332.

Constraint Modelling Challenge. 2005. Constraint modelling challenge 2005.
http://www.dcs.st-and.ac.uk/˜ipg/challenge/ .

Faggioli, E., C.A. Bentivoglio. 1998. Heuristic and exact methods for a cutting sequencing problem.European Journal
of Operational Research110564–575.



Garcia de la Banda and Stuckey:Solving Open Stacks with Dynamic Programming
INFORMS Journal on Computing 00(0), pp. 000–000,c©0000 INFORMS 15

Linhares, A., H.H. Yanasse. 2002. Connections between cutting-pattern sequencing, VLSI design, and flexible
machines.Computers & Operations Research291759–1772.

Yannasse, H.H. 1997. On a pattern sequencing problem to minimize the maximum number of open stacks.European
Journal of Operational Research100454–463.

Yuen, B.J. 1991. Heuristics for sequencing cutting patterns.European Journal of Operational Research55183–190.

Yuen, B.J. 1995. Improved heuristics for sequencing cutting patterns.European Journal of Operational Research87
57–64.

Yuen, B.J., K.V. Richardson. 1995. Establishing the optimality of sequencing heuristics for cutting stock problems.
European Journal of Operational Research84590–598.


