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MDD Propagators with Explanation

Graeme Gange · Peter J. Stuckey ·
Radoslaw Szymanek

Abstract Multi-valued decision diagrams (MDDs) are a convenient approach to
representing many kinds of constraints including table constraints, regular con-
straints, complex set and multiset constraints, as well as ad-hoc problem spe-
cific constraints. This paper introduces an incremental propagation algorithm for
MDDs, and explores several methods for incorporating explanations with MDD-
based propagators. We demonstrate that these techniques can provide significantly
improved performance when solving a variety of problems.

1 Introduction

In many problem domains, it is necessary to efficiently enforce either ad-hoc prob-
lem specific constraints or common constraints which are not supported by the
chosen solver software. In these cases, it is normally necessary to either build a new
propagator for the needed constraint, or to use a decomposition of the constraint.
Neither of these is ideal – building a new global propagator requires nontrivial
effort, and decompositions may have poor performance and propagation.

Decision diagrams are a convenient solution to this problem. Efficient algo-
rithms for manipulating Binary Decision Diagrams (BDDs) [5] and Multi-valued
Decision Diagrams (MDDs) allow us to easily construct representations of a variety
of constraints; and rather than construct propagators for each new constraint, we
merely need to use a generic MDD propagator working with MDD representation
of the required constraint. Common constraints that can be efficiently represented
using MDDs include table constraints [6], regular constraints [17] and complex
set and multiset constraints [9].
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The regular constraint [17] provides a convenient means for encoding a va-
riety of global constraints, including placement [14], sequence [12] and slide [3]
constraints. Accordingly, a number of methods have been proposed to enforce con-
sistency over these constraints. Pesant [17] introduced propagators for the regular

constraint, which maintain explicit sets of supports for nodes and edges. Decom-
positions into ternary constraints [18] and clauses [19] have also been proposed.
More recently, MDD-based propagators [6] have also been used.

A number of algorithms have been developed for enforcing consistency over
constraints using BDDs, either by constructing new BDDs during propagation [9,
10] or by traversing a static representation of the constraint BDD [8]. Similar
traversal-based algorithms have been developed for MDD constraints [6], as have
approaches which construct MDDs dynamically as a constraint store [1,11]. The
algorithm of [6] also incorporates some incremental properties, recording those
subgraphs which can no longer contain a solution; however, as it traverses from the
root, it must still explore large sections of the graph for which the corresponding
domains may be unchanged during a given step.

In this paper we present the first MDD propagator which explains its propaga-
tions. Recent work on lazy clause generation [16] has demonstrated that combining
general constraint propagation with SAT-based conflict analysis and activity-based
search can provide a significant advantage against both purely propagation-based
solvers and a direct SAT-encoding of finite-domain constraint problems. For learn-
ing to occur, a propagator must be able to construct an explanation for any domain
changes it causes.

Explanation for MDD propagators is particularly interesting since a propa-
gation in an MDD may have many possible explanations. Also the overhead of
explaining an MDD propagation is considerable, each domain change may require
as much work to explain as the whole propagation of the MDD. Hence there are
interesting challenges in building an MDD propagator with explanation.

The contributions of this paper are:

– The first description of how to build MDD propagators that explain themselves.
– A new incremental approach to MDD propagation using watched literals that

avoids traversing parts of the MDD for which the corresponding domains have
not changed.

– A novel incremental approach to explanation for MDD propagators, which
avoids traversing the entire MDD to create each explanation.

– Improvements to explanation in order to create shorter explanations and reduce
the overhead of explanation.

– Experimental results showing that the combination of MDD propagation with
explanation can solve some problems substantially faster than other methods.

The remainder of this paper is organized as follows: In Section 2 we introduce
MDDs and the standard propagation algorithm [6]. In Section 3 we show how
we can define an incremental propagator for MDDs using watched literals which
never visits parts of the MDD which are unchanged after changes in domains.
In Section 4 we show how we can explain MDD propagation, first using a non-
incremental approach which explores the entire MDD to make an explanation, and
then incrementally. In Section 5 we give experimental results for various combi-
natorial problems where we compare various versions of our MDD propagators,
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and also compare against state-of-the-art alternative methods for solving these
problems. Finally in Section 6 we conclude.

2 Propagating MDDs

We assume we are solving a constraint satisfaction problem over set of variables
x ∈ V, each of which takes values from a given finite set of values or domain. Let D
be a domain then, D(x) is the set of possible values for variable x. Define D v D′

iff D(x) ⊆ D′(x), ∀x ∈ V. The constraints of the problem are represented by prop-
agators f which are functions from domains to domains which are monotonically
decreasing f(D) v f(D′) whenever D v D′, and contracting f(D) v D.

In a lazy clause generation solver integer domains are also represented using
Boolean variables. Each variable x with initial domain D(x) = [l..u] is represented
by two sets of Boolean variables [[x = d]], l ≤ d ≤ u and [[x ≤ d]], l ≤ d < u which de-
fine which values are in D(x). For example if variable x has initial domain [0..5] and
at some later stageD(x) = {1, 3} then the literals [[x ≤ 3]], [[x ≤ 4]],¬[[x ≤ 0]],¬[[x = 0]],
¬[[x = 2]],¬[[x = 4]],¬[[x = 5]] will hold. Explanations are defined by clauses over this
Boolean representation of the variables.

2.1 MDDs

A multi-valued decision diagram [20], G, is a directed acyclic graph representing
a Boolean valued function over a set of variables. Each internal node in an MDD
G, n0 = node(x, [(v1, n1), (v2, n2), · · · , (vk, nk)]) is labeled with a variable x and
outgoing arcs consisting of a value vi and a destination node ni. Define node.var
as the variable label appearing in the node, i.e. no.var = x. Each value vi is in the
initial domain of x. There is a final node T which represents true. Let G.root be the
root node of an MDD G. We can understand an MDD node G where n0 = G.root

as representing the constraint � n0 � where

� n0 � ≡
k∨

i=1

((x = vi)∧ � ni �)

and � T � ≡ true. A binary decision diagram (BDD) is a special case of an
MDD where the variables x appearing in the MDD are Boolean. We denote by |G|
the number of edges in MDD G.

We assume that MDDs are ordered and without long edges, that is there is
mapping σ from variables in the MDD to distinct integers such that for each
internal node n0 of the form above σ(ni.var) = σ(n0.var) + 1,∀1 ≤ i ≤ k where
ni 6= T . The condition can be loosened to σ(ni.var) > σ(n0.var) (which allows
long edges) but this complicates the algorithms considerably, and in practice the
complication usually overcomes any benefits of treating long edges directly (unlike
the case for BDDs).

For convenience, we will refer to an edge e as a tuple (x, vi, s, d) of a variable
x, value vi, source node s = n0 and destination node d = ni. We will refer to
the components as (e.var, e.val, e.begin, e.end). An edge e = (x, vi, s, d) is said to
be alive if it occurs on some path from the root of the graph to the terminal T .
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(b) x2 6= 1, x3 6= 1

Fig. 1: An example MDD for a regular constraint 0?1100?110? over the variables
[x0, x1, x2, x3, x4, x5, x6], and the effect of propagating x2 6= 1 and x3 6= 1.

Otherwise, it is said to be killed. An edge e becomes killed if vi is removed from the
domain of x, all paths from the root r to s cross killed edges (killed from above), or
all paths from d to T cross killed edges (killed from below).

We use s.out edges to refer to all the edges of the form ( , , s, ), those leaving
node s, and d.in edges to refer to edges of the form ( , , , d) those entering node
d. Similar to above, a node is said to be killed if it does not occur on any reachable
path from the root node r to T . A node becomes killed if either all incoming or
all outgoing edges become killed. As a result, we can determine if a given node
n is killed by examining its incoming or outgoing edges. We use G.edges(x, vi) to
record the set of edges of the form (x, vi, , ) in MDD G.

Example 1 Consider the MDD (actually a BDD) shown in Figure 1(a). Suppose
we set x2 6= 1 and x3 6= 1. The edges shown dashed in Figure 1(b) are killed
by domain change. Then the edges {(x0, 0, 1, 12), (x1, 1, 12, 13), (x1, 0, 12, 15)} and
nodes {12, 13, 15} are killed from below while the edges {(x4, 1, 5, 9), (x5, 0, 6, 7),
(x3, 0, 14, 8), (x4, 0, 17, 10)} and nodes {5, 6, 14, 17} in Figure 1(b) are killed from
above. 2
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propagate(G) {
reacht = {T }; % Reset the set of nodes that can reach true.
unsupported = {}; % The set of (var,val) pairs which need support.
for var in vars(G) {

% Collect the set of values that need support.
unsupported ∪={(var, val) | val ∈ D(var)};

}
traverse(G.root); % Remove the supported values.
return unsupported

}

traverse(node) {
if node ∈ reacht { return true; } % Already visited.
if node ∈ failed { return false; }% Already visited.
for edge ∈ node.out edges {

if edge.val ∈ D(edge.var) {
if traverse(edge.end) { % edge is alive.

unsupported = unsupported \ {(edge.var, edge.val)};
reacht ∪={node};
% Shortcircuit, if all values below here are supported.
if 6 ∃(var, val) ∈ unsupported where var ≥ edge.var { break; }

}
}

}
if node 6∈ reacht { failed ∪={node}; }
return node ∈ reacht ;

}

Fig. 2: MDD propagation from the root, remembering false nodes and shortcir-
cuiting [6].

2.2 Propagation of an MDD from the Root

Propagation for an MDD [6] (or BDD [8]) from the root is reasonably straight
forward. The graph is traversed from the root node, marking each reached node
(so that it is not revisited) with whether or not the node still has a path to T
given the current domains of variables. Any edge (x, vi, s, d) on such a path gives
support for the value vi for x. Any values in the current domain of x that are not
supported after the traversal is finished are removed. Cheng and Yap [6] made this
process more incremental by recording nodes in the graph that were previously
determined not to reach T , and sped up the search by recording for which variables
all values in the current domain are still supported.

Pseudo-code for the algorithm is shown in Figure 2. The algorithm uses three
variables: reacht records the nodes that can reach T using the current variables
domains, it is reset on each invocation to empty; failed records the nodes that
cannot reach T , nodes are added to it during forward computation, it is reset only
on backtracking to a previous state; and unsupported records the (var, val) pairs
of variables and value which have yet to have been shown to be supported. The
shortcircuit enhancement of [6] is the break test. If all the values for variables
greater than the current variable are already supported, then there is no need to
examine the MDD below this point.
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Example 2 Propagation of the MDD shown in Figure 1(b), after x2 6= 1 and x3 6= 1,
traverses the MDD from the root visiting all nodes except {5, 6, 14, 16, 17}. The
solid arcs of Figure 1(b) are determined to be on paths from the root to T and
hence support values. There is no support found for x0 = 0, x1 = 0, or x5 = 0 so
their negations are new inferences made by the propagation algorithm. 2

The only state of the non-incremental propagator that survives between prop-
agations is failed . Cheng and Yap [6] show how this can be efficiently implemented
using a sparse set datastructure, that allows membership testing, addition of a
new element, and backtracking to previous states each in constant time.

3 Incremental Propagation

When a value vi is removed from the domain of a variable x, the edges correspond-
ing to that value are killed. An edge (x, vi, s, d) being killed in this way can only
cause changes if it is the last remaining outgoing edge of s, in which case it will
kill s and all incoming nodes to s, or the last incoming edge of d, in which case it
may kill all outgoing edges from d. Thus, if s (and d) have other incoming (and
outgoing) edges remaining, we need not explore more distant parts of the graph.
If this is not the case, however, we must repeat this process for the new edges that
have been killed.

Similarly, an edge (x, vi, s, d) can cause vi to be removed from the domain of
x if and only if all other edges supporting that value are killed. Thus, we want to
efficiently determine whether or not a given edge is the last remaining edge for the
given value. However, keeping edge counts for nodes and values is not desirable,
as we would then have to restore these counts upon backtracking. Accordingly,
we adopt a similar method to the two-literal watching scheme [15] used in SAT
solvers.

We associate with each edge flags indicating whether (a) the edge is alive, and
(b) whether it provides support for a value, the node above, or the node below.
We initially mark one edge for each value as watched, along with one incoming
and outgoing edge for each node. When an edge is removed, it is marked as killed,
then the watch flags are examined. If none of the watch flags are set, the edge
cannot cause any further changes to the graph or domains. If it is watched by a
node, we must then search the corresponding node for a new watched edge; if none
can be found, the node is killed, and further propagation occurs. Likewise, if it is
watched by a value, we must then search for a new supporting edge; if none exists,
the corresponding value is removed from the domain. Otherwise, the new edge is
marked as watched, and the mark is removed from the old edge.

Pseudo-code for the algorithm is given in Figures 3 and 4. Algorithm propagate

takes an MDD G and a set of pairs (var, val) where var 6= val is the change in
domains by new propagation. The MDD graph G maintains a status G.status[e] for
each edge e as either: alive, dom killed by domain change, below killed from below
(no path to T from e.end), or above killed from above (no path from the root to
e.start). It also maintains a watched edge for each node n’s input (n.watch in),
output (n.watch out), and each (var, val) pair (G.support[var, val]). For simplicity
of presentation, the information about how each edge e is being watched is also
recorded as G.watched[e] ⊆ {begin, end, val}. If begin ∈ G.watched[e], the edge e
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is watched by the node e.begin; likewise for end and val. The pseudo-code for
upward pass is omitted since it is completely analogous to downward pass. The graph
also maintains a trail of killed edges G.trail (which is initially empty) and, for each
(var, val) pair, a pointer to the trail when it was removed (G.limit[var, val]). The
list kfa holds the set of nodes that may have been killed due to removal of incoming
edges (killed from above); kfb is used similarly with regard to outgoing edges. Note
that restoring the state of the propagator, restore to shown in Figure 4, requires
only restoring the status of killed edges to alive. The maximum trail size is the
number of edges in G.

The incpropagate algorithm enforces domain consistency on the MDD. The
complexity of incpropagate is O(|G|) down a branch of the search tree (with a little
care in implementation). In each forward computation each edge is only killed
once. It is easy to see that each edge is only considered at most once in the inner
for loop of incpropagate. Each node n can appear in kfa at most |n.in edges| times,
hence the for loop in downward pass runs O(|G|) times. By traversing n.in edges

(in downward pass) from the previously watched edge, we can guarantee that we
only traverse each edge twice down the branch of the search tree. Similarly when
traversing G.edges[var, val] (in collect) looking for new support, if we look from
the previously watched edge we can guarantee we only traverse each edge at most
twice down the branch of the search tree.

Example 3 Consider the MDD shown in Fig 1(a). If the values x2 = 1 and x3 = 1
are removed from the domain, we must mark the corresponding edges as removed.
These edges are shown dashed in Fig 1(b).

Incremental propagation works as follow assuming the leftmost edge leaving
and entering a node is watched, and the leftmost edge for each x = d valuation is
watched. The removal of the edge (x2, 1, 13, 14) removes the support for node 13
which is added to kfb, as denoted by operation ∪=, and node 14 which is added
to kfa. Similarly 15 is added to kfb and 16 to kfa by the removal of (x2, 1, 15, 16).
The removal of the edges (x3, 1, 4, 5) and (x3, 1, 16, 17) leave kfa = {5, 14, 16, 17}
and kfb = {4, 13, 15, 16} before downward pass execution.

We then perform the downward pass. We find no new supports from above for
5 which means we mark (x4, 1, 5, 6) as killed from above (above) and add 6 to kfa

and add (x4, 1) to the queue of values to check pinf . Similarly we kill (x5, 0, 6, 7)
and add 7 to kfa and (x5, 0) to pinf . We do find a new support from above for
node 7. We similarly kill edges (x3, 0, 14, 8) but note since this is neither watched
by its destination nor its value, nothing is added to kfa or pinf . We similarly kill
the edge (x4, 0, 17, 10) but again this is not watched.

We then perform the upward pass. We find a new support for node 4 from
below. We find no new supports for nodes 13 hence we kill edge (x1, 1, 12, 13) and
add 12 to kfb, We similarly kill node 15 and edge (x1, 0, 12, 15) which adds (x1, 0)
to pinf . Examining node 12 we find no support from below and kill (x0, 0, 1, 12)
adding (x0, 0) to pinf (but not 1 to kfb). The killed from below nodes and edges
are shown dashed in Figure 1(b), while the killed from above nodes and edges are
shown dotted.

We finally consider pinf = {(x4, 1), (x5, 0), (x1, 0), (x0, 0)}. We find a new sup-
port (x4, 1, 8, 9) for x4 = 1, therefore we remove val from G.watches of edge
(x4, 1, 5, 6) as denoted by −= operation. We are not able to find new supports
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incpropagate(G, changes) {
kfa = {}; % The set of nodes that may have been killed from above.
kfb = {}; % Nodes which may have been killed from below.
pinf = {}; % (var,val) pairs that may be removed from the domain.
count = length(G.trail); % Record how far to unroll the trail to get back to this state.

for (var, val) in changes {
G.limit[var, val] = count; % Mark the restoration point.
% Kill all remaining edges for the value.
for edge in G.edges(var, val) {

if G.status[edge] 6= alive { continue; }
G.status[edge] = dom; % Mark the edge as killed due to external inference.
insert(G.trail , edge); % Add the edge to the trail
if begin ∈ G.watched[edge] {

% If this edge supports the above node e.begin,
% add the node to the queue for processing.
kfb ∪={edge.begin};

}
if end ∈ G.watched[edge] {

% Likewise, add the end node if it is supported by the edge.
kfa ∪={edge.end};

}
}

}
pinf = downward pass(G, kfa)
if G.status[T .watch in] 6= alive {

% If T is unreachable, the partial assignment is inconsistent.
% Otherwise, propagating upwards is safe.
return FAIL;

}
pinf ∪= upward pass(G, kfb)
return collect(G, pinf );

}

Fig. 3: Top level of the incremental propagation algorithm.

for the other variable value pairs. Propagation determines that x5 6= 0, x1 6= 0 and
x0 6= 0.

2

4 Explaining MDD Propagation

A nogood learning solver, upon reaching a conflict, analyses the inference graph
to determine some subset of assignments that results in a conflict. This subset is
then added to the solver as a nogood constraint, preventing the solver from making
the same set of assignments again, and reducing the search space.

The use of nogood learning has been shown to provide dramatic improvements
to the performance of BDD-based constraint solvers [10]. In order to use an MDD
propagator in a nogood learning solver it must be able to explain its inferences.
These explanations form the inference graph, which is used to construct the no-
good. The explanations can be constructed eagerly during propagation, or lazily
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downward pass(G, kfa) {
pinf = {};
for node in kfa {

% Search for a new support
for edge in node.in edges {

if G.status[edge] = alive {
% Support found. Update the watches.
G.watched[node.watch in] −= {end};
G.watched[edge] ∪={end};
node.watch in = edge;
break;

}
}
if is dead(node.watch in) {

% The node is still dead
% kill the outgoing edges.
for edge in node.out edges {

if G.status[edge] 6= alive { continue }
G.status[edge] = above;
insert(G.trail , edge);
if end ∈ G.watched[edge] {

% If the edge supports a node,
% queue it for processing.
kfa ∪={edge.end};

}
if val ∈ G.watched[edge] {

% If the edge supports a value,
% add it to the queue.
pinf ∪={(edge.var, edge.val)};

}
}

}
return pinf ;

}

collect(G, pinf ) {
inf = {};
for (var, val) in pinf {

% Search for a new support.
edge = G.support [var, val];
for e in G.edges(var, val) {

if G.status[e] = alive {
% Support found.
G.watched[edge] −= {val};
G.watched[e] ∪={val};
G.support[var, val] = e;
break;

}
}
edge = G.support [var, val];
if G.status[edge] 6= alive {

% Still dead.
inf ∪={(var, val)};
G.limit[var, val] = count;

}
}
return inf ;

}

restore to(G, var, val) {
% Determine how far to unroll
lim = G.limit[var, val];
while length(G.trail) > lim {

% Restore the propagator.
edge = pop last(G.trail);
G.status[edge] = alive;

}
}

Fig. 4: Pseudo-code for determining killed edges and possibly removed values in
the downward pass, collecting inferred removals, and backtracking.

as needed for nogood construction. For more details on conflict generation we refer
the reader to [16].

4.1 Non-incremental Explanation

The best current approach to explaining BDD propagation is due to Subbarayan [21].
Here we extend this approach to MDDs. It works in two passes, it first traverses
the MDD backwards from the true node T marking which nodes can reach T in the
current state assuming the negation of the inference to be explained holds. It then
performs a breadth-first traversal from the root progressively adding back domain
values as long as this does not create a path to T . The algorithm creates a mini-
mal explanation (removing any part of it does not create a correct explanation),
but it requires traversing the entire MDD once for each new inference. Note it
does not create a minimum size explanation, doing so is NP-hard [21]. Pseudo-code
explaining the inference var 6= val is given in Figure 5.
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explain(G, var, val) {
reacht = mark reacht(G, var, val); % Find the set of nodes that can reach true.
explanation = {};
queue = {G.root};
while queue 6= ∅ {

for node in queue {
for e ∈ node.out edges {

if e.var 6= var and e.end ∈ reacht {
explanation∪=(e.var, e.val)

}
}

}
nqueue = {}; % Record nodes of interest on the next level.
for node in queue {

for e ∈ node.out edges {
if (e.var == var and e.val == val)

or (e.var 6= var and (e.var, e.val) /∈ explanation) {
nqueue∪= e.end

}
}

}
queue = nqueue;

}
return explanation;

}

mark reacht(G, var, val) {
reacht = {T }; % Reset the set of nodes that can reach true.
queue = {T .in edges}; % Reset the queue of nodes to be processed.
for edge in queue {

if edge.begin ∈ reacht continue;
if edge.var == var {

if edge.val == val {
reacht∪={edge.begin};
queue∪= edge.begin.in edges;

}
} else if G.status[edge] == alive and edge.begin /∈ reacht {

reacht∪={edge.begin};
queue∪={edge.begin.in edges};

}
}
return reacht ;

}

Fig. 5: Non-incremental MDD explanation. Extended from [21].

Example 4 Consider explaining the inference x0 6= 0 discovered in Example 2. The
mark reacht call walks the MDD from T adding which nodes can reach T into reacht

in the state where the inference was performed (Figure 1(b)) with the additional
assumption that the reverse of the inference holds (x0 = 0). It discovers that all
nodes reach T except {1, 12, 13, 15, 16}. It then does a breadth-first traversal from
the root looking for currently killed edges that if not excluded would create a path
from the root to T . From the root we only reach node 12 (under the assumption
that x0 = 0), from 12 we reach 13 and 15. Restoring the killed edge (x2, 1, 13, 14)
would create a path to T , hence we require x2 6= 1 in the reason. Once we have
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this requirement, from 15 we cannot reach 16 and the algorithm stops with the
explanation ¬[[x2 = 1]]→ ¬[[x0 = 0]]. 2

4.2 Incremental Explanation

The non-incremental explanation approach above requires examining the entire
MDD for each new inference made. This is a significant overhead although one
should note that explanations are only required to be generated during the com-
putation of a nogood from failure, not during propagation, hence not every infer-
ence will need to be explained. Once we are using incremental propagation, the
overhead of constructing minimal explanations is relatively even higher.

It is difficult to see how to generate a minimal explanation incrementally, since
the minimality relies on examining the whole MDD. Thus we give up on minimality
and instead search for a sufficiently small reason without exploring the whole graph.

In order to achieve this, we make two observations. First, an edge being killed
is most likely to have effects in the nearby levels; an edge at level j can kill a
node at level j + 2 only if it is the final support to a node at level j + 1, which in
turn remains the only support for a node at level j + 2. If we are searching for an
explanation for the death of an edge, it is most likely to be near the edge being
explained. This is particularly the case for constraints which are local in nature,
where the possible values for xj are most strongly constrained by the values of
variables in nearby levels. Second, if the cause of the propagation is far from the
killed node, this may indicate the presence of a narrow cut in the graph, which
eliminates a large set of nodes. The goal of the incremental algorithm is to search
the section of the graph where the explanation is likely to be, but follow chains of
propagation to hopefully find any narrow cuts (which provide explanation for an
entire subgraph).

Pseudo-code explaining the inference var 6= val is given in Figure 6. Again
the pseudo-code for explain up is omitted since it is completely analogous to ex-

plain down. The code makes use of function killed below to check if a node has been
killed from below. In practice, the results of this function are memoed to avoid
recomputation. The function explain down keeps track of pending nodes of the next
level which may be required to be explained. We omit code to explain failure which
is similar.

The algorithm first records the reason for the removal of each edge. We then
traverse the graph from all the edges defining a removed value var = val depending
on how they were killed. For those killed from below we search breadth-first for
edges below that were killed by domain reduction, whose endpoint was not also
killed from below. They are added to the reason for the removal of var = val. We
then traverse the edges which are not already part of the reason and add their
child edges to check in the next level. Pending edges are edges whose end node may
be required to be explained on the next level, but it can happen that before the
current level is finished they are already explained. Hence the two pass approach.

A greedier algorithm which just tried to find a “close” reason why var = val

has been removed would stop the search whenever it reached a edge killed by
domain reduction. On first sight this might seem to be preferable, as it traverses
less of the MDD and gives a more “local” explanation. Our experiments showed
two deficiencies: in many cases this killed edge may be redundant as it is explained
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inc explain(G, var, val) {
kfa = {}; % edges killed from above
kfb = {}; % edges killed from below
for edge in G.edges(var, val) {

% Split possible supports
if killed(edge, above) {

kfa ∪={edge};
} else {

kfb ∪={edge};
}

}
% Explain all those killed from below
return explain down(kfb)
% And all those killed from above

∪ explain up(kfa);
}

killed below(G,node) {
% node is killed below if
for edge in node.out edges {

s = G.status[edge]
if s ∈ {alive, above}

% No outgoing edge is alive
% or killed from above
return false;

}
return true;

}

explain down(kfb) {
reason = {};
% Breadthfirst traverse the MDD downwards
while ¬is empty(kfb) {

% Scan the current level for edges
% that will need explaining.
pending = {};
for e in kfb {

% For each edge requiring explanation
if G.status[e] = dom and
¬killed below(G, e.end) {
% There is no later explanation,
% so add (e.var, e.val) to the reason.
reason ∪={(e.var, e.val)};

} else {
pending ∪={e};

}
}
next = {};
% Collect the edges that haven’t been
% explained at this level.
for e in pending {

if (e.var, e.val) 6∈ reason
% If e is not explained already
% collect its outgoing edges
next ∪= e.end.out edges;

}
% Continue with the next layer of edges.
kfb = next;

}
return reason;

}

Fig. 6: Pseudo-code for explanation.

by other edges killed higher up that are still required to be part of the explanation
for other reasons; and it failed to find “narrow cuts” in the MDD which lead to
more reusable explanations.

Example 5 Consider the explanation of x0 6= 0 determined in Example 3. The edge
(x0, 0, 1, 12) is marked as below, so it is added to kfb. In explain down we add 12
as a pending node. We then insert (x1, 1, 12, 13) and (x1, 0, 12, 15) into next and
restart the while loop. Nodes 13 and 15 become pending and in the next iteration
of the while loop kfb is {(x2, 1, 13, 14), (x2, 1, 15, 16)}. The first edge is killed by
domain and its end node 14 is not killed from below so we add (x2, 1) to reason.
For the second edge node 16 is killed from below, so (x2, 1, 15, 16) is a pending
edge. In the second for loop over kfb we determine that is already explained by
reason. The algorithm terminates with the reason {(x2, 1)}. This becomes the
clause ¬[[x2 = 1]]→ ¬[[x0 = 0]]. 2

Example 6 Unfortunately, these explanations are not guaranteed to be minimal.
Consider again the constraint demonstrated in Example 3, but instead with x3 6= 1
fixed first, and x0 6= 0 fixed later. This kills nodes {15, 16} from below, and nodes
{5, 6, 12, 13, 14, 17} killed from above. In order to explain x2 6= 1, we must deter-
mine reasons for the edges (x2, 1, 13, 14) and (x2, 1, 15, 16). Explaining (x2, 1, 13, 14)



MDD Propagators with Explanation 13

gives us {x0 6= 0}. As (x2, 1, 15, 16) was killed from below, we also add x3 6= 1 to
the reason, even though x0 6= 0 already explains this edge.

The algorithm inc explain is O(|G|) for a single execution, no better than the
non-incremental explanation in the worst case. However, if the constraint is reason-
ably local in nature, significantly fewer edges will be explored – if an explanation
e contains variables Ve, the algorithm will explore at most those edges between
min(Ve) and max(Ve).

4.3 Shortening Explanations for Large Domains

Both the non-incremental and incremental algorithms for MDD explanation collect
explanations of the form (∧¬[[xi = vij ]]) → ¬[[x = v]]. These are guaranteed to be
correct, and, in the non-incremental case, minimal. But they may be very large
since for a single variable xi with large initial domain D(xi) we may have up to
|D(xi)| − 1 literals involved.

A first simplification is to replace any subexpression ∧d∈D(xi),d6=d′¬[[xi = d]]
by the equivalent expression [[xi = d′]]. This serves to shorten explanation clauses
considerably without weakening them. But it does not occur that commonly. A
second simplification is to replace ∧d∈S¬[[xi = d]] by ¬[[xi ≤ l − 1]] ∧ [[xi ≤ u]] ∧
∧d∈S∩[ l .. u ]¬[[xi = d]] where l = min(D(xi) − S) and u = max(D(xi) − S) are
the least and greatest values of xi consistent with the formula. Again this can
sometimes shorten clauses considerably, but sometimes is of no benefit.

Finally we can choose to weaken the explanation. Suppose that in the cur-
rent state D(xi) = d′, that is xi is fixed to d′, then we can choose to replace
∧d∈S¬[[xi = d]], where |S| > 1 and d′ 6∈ S by [[xi = d′]]. This shortens the explana-
tion, but weakens it.

While we could perform this as a postprocess by first creating an explanation
and then weakening it, doing so will make the explanations far from minimal.
Hence we need to adjust the explanation algorithms so that as soon as they collect
(xi, e) and (xi, e

′) in a reason, when in the current state xi = d′ we in effect add
all of (xi, e

′′), e′′ ∈ D(xi)− {d′} to the reason being generated (which will simplify
to a single literal [[xi = d′]] in the explanation).

Example 7 Consider the MDD state shown in Figure 7(a) after the external infer-
ences that x1 6= 0, x1 6= 1, and x0 6= 2. The two leftmost x1 nodes are killed from
below, while the third x1 node is killed from above. In explaining the inference
x2 6= 0, the incremental explanation algorithm starts at the edges to be explained,
then collects x1 6= 0 and x1 6= 1 as values that must remain removed. Since the
edge x1 = 2 has not yet been explained, the algorithm continues, fixing x0 6= 2.
We can then shorten this explanation to x1 = 3 ∧ x0 6= 2. However, if we weaken
the explanation during construction, we detect that x1 6= 0 ∧ x1 6= 1 can be weak-
ened to x1 = 3, which eliminates the remaining x1 6= 2 edge, giving us a final
explanation of x1 = 3→ x2 6= 0. 2

5 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 2 Gb of RAM running
Ubuntu GNU/Linux 8.10. Our solver is a modified version of MiniSAT2 (release
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Fig. 7: Explaining the inference x2 6= 0. The incremental explanation algorithm
will generate the explanation x0 6= 2∧x1 6= 0∧x1 6= 1. This can then be shortened
to x0 6= 2 ∧ x1 = 3. If weakening is performed during explanation, x1 6= 0 ∧ x1 6= 1
will immediately be shortened, and the edge x0 = 2 will never be reached, yielding
the explanation x1 = 3.

070721), augmented with MDD propagators. Explanations are constructed on de-
mand during conflict analysis, and added to the clause database as learned clauses.

We compare a number of variations of our solver: base propagation and non-
incremental explanation; ip is the incremental propagation approach described
herein, with non-incremental explanation; weak is the incremental propagation
approach with non-incremental explanation, using weakened explanations as de-
scribed in Section 4.3. ipe is the incremental propagation approach with incre-
mental explanation; and ipe weak is the incremental propagation approach with
incremental explanation using weakened explanations. All times are given in sec-
onds.

5.1 Nonograms

Nonograms are a set of puzzles that have been studied both in terms of constraint
programming, and in their own right, and a number of standalone solvers have
been designed to solve these problems. A nonogram consists of an n ×m matrix
of blocks which may or may not be filled. Each row and column is marked with a
sequence of numbers [n0, n1, ..., nk]. This constraint indicates that there must be a
sequence of n0 filled squares, followed by one or more empty squares, followed by
n1 filled squares, and so on. Nonogram solvers are often used to assist puzzle design
– rather than finding a single solution, a solver is used to determine uniqueness of
a solution.

In all cases, the model is constructed introducing a Boolean variable for each
square in the matrix, and converting each row and column constraint into a DFA,
then expanding the DFA into a BDD.

An example nonogram is given in Figure 8a. The [2, 2] next to the second row
indicates that there must be a block of 2 filled blocks, followed by a gap, then
another 2 filled squares. This constraint is converted into a DFA. The solution to
this puzzle is given in Figure 8b.
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Fig. 8: (a) An example nonogram puzzle, (b) the corresponding solution.

Without learning

Problem
pbnsolve gecode Seq

time fails time fails base ip fails
1 dancer.inst 0.0 0 0.0 0 0.03 0.03 0
6 cat.inst 0.0 0 0.0 0 0.04 0.04 0
21 skid.inst 0.0 0 0.0 3 0.04 0.04 0
27 bucks.inst 0.0 2 0.0 9 0.06 0.06 2
23 edge.inst 0.0 22 0.0 25 0.03 0.03 26
2413 smoke.inst 0.0 7 0.0 8 0.05 0.05 9
16 knot.inst 0.0 0 0.00 0 0.08 0.08 0
529 swing.inst 0.0 0 0.01 0 0.16 0.15 0
65 mum.inst 0.0 22 0.01 22 0.10 0.10 23
1694 tragic.inst 0.03 193 0.11 255 0.23 0.18 256
1611 merka.inst 0.00 25 0.02 13 0.29 0.26 14
436 petro.inst 0.07 246 69.20 106919 34.54 15.89 106920
4645 m and m.inst 0.07 180 0.64 428 0.78 0.39 429
3541 signed.inst 0.03 146 8.44 6484 4.96 1.78 6485
803 light.inst 0.42 995 — — — — —
6574 forever.inst 3.94 147112 4.90 30900 2.88 1.47 30901
2040 hot.inst 0.90 2508 — — — — —
6739 karate.inst 0.90 9959 53.19 170355 33.80 13.15 170356
8098 domIII.inst 11.82 208689 — — 366.96 247.61 8351050
2556 flag.inst 0.49 22184 3.02 16531 1.94 0.67 16532
2712 lion.inst 6.84 44214 — — — — —∑

25.51 436504 — — — — —

Table 1: Unique-solution performance results on hard nonogram instances from
[24], using solvers without learning.

The nonogram puzzle instances are taken from [24], which compares 13 different
solvers for the problem on a 2.6GHz AMD Phenom quad-core processor with 8Gb
of memory. These solvers either find two distinct solutions, or prove that there is a
unique solution. Only two are listed as solving all problems (PBNSolve and BGU)
solving them in a total of 23.79s and 251.38s respectively. One solves all but one
problem (Kjellerstrand/LazyFD), taking 427s to do so. The other solvers all fail
to solve at least two of the instances within 30 minutes.

The results in Tables 1 and 2 compare various approaches: the best solver
from [24] pbnsolve 1.09, Gecode 3.10, and our solvers. The tables show the av-
erage time (over 25 runs) in seconds and the number of failures in the search for
each instance. The sums of each column are given in row

∑
. Since the MDDs

are BDDs in this case weakening (Section 4.3) is not applicable. Note that base
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With learning

Problem
Seq VSIDS

base ip fails ipe fails base ip fails ipe fails
1 dancer 0.03 0.03 0 0.03 0 0.03 0.03 0 0.03 0
6 cat 0.04 0.04 0 0.04 0 0.04 0.05 0 0.04 0
21 skid 0.04 0.05 0 0.05 0 0.04 0.05 0 0.04 0
27 bucks 0.06 0.06 2 0.06 2 0.06 0.06 2 0.06 2
23 edge 0.03 0.03 18 0.03 22 0.03 0.03 10 0.03 10
2413 smoke 0.05 0.05 7 0.05 8 0.05 0.05 4 0.04 3
16 knot 0.08 0.08 0 0.08 0 0.08 0.08 0 0.08 0
529 swing 0.15 0.15 0 0.16 0 0.16 0.15 0 0.16 0
65 mum 0.11 0.11 22 0.11 22 0.11 0.10 11 0.11 8
1694 tragic 0.20 0.20 141 0.18 123 0.22 0.20 107 0.18 102
1611 merka 0.29 0.27 13 0.28 10 0.29 0.28 11 0.27 11
436 petro 0.53 0.36 3068 0.54 5173 0.12 0.11 21 0.11 64
4645 m and m 0.40 0.30 130 0.28 128 0.39 0.30 146 0.28 131
3541 signed 0.40 0.31 337 0.31 425 0.69 0.45 531 0.29 292
803 light 0.37 0.23 1585 0.19 1064 0.12 0.10 40 0.10 39
6574 forever 0.07 0.06 207 0.07 258 0.07 0.06 128 0.07 199
2040 hot 1.08 0.73 4708 0.72 5527 0.48 0.36 221 0.29 141
6739 karate 0.66 0.48 4525 0.39 3717 0.16 0.15 150 0.13 92
8098 domIII 8.36 7.06 147444 6.14 130704 0.15 0.12 2089 0.10 1652
2556 flag 0.18 0.16 179 0.17 389 0.16 0.15 25 0.15 16
2712 lion 11.03 8.17 39193 6.89 29673 2.12 1.27 6940 0.30 898∑

24.16 18.93 201579 16.77 177245 5.57 4.15 10436 2.86 3660

Table 2: Unique-solution performance results on hard nonogram instances from
[24] using sequential and VSIDS search strategies.

and ip perform exactly the same search. We use two search strategies: (Seq) filling
in the matrix in order from left-to-right and top-to-bottom which is also used by
gecode; and (VSIDS) using activity based VSIDS search [25] which concentrates
on the exploring decisions that have been most active in contributing to failure.

Table 1 compares the non-learning approaches. Note that VSIDS search is only
applicable with learning since activity is derived from learning. The results here
show that specialized code PBNSolve (which is not based on constraint program-
ming) is highly competitive. Gecode and our approaches have the same sequential
search. Clearly incremental propagation is advantageous over the base approach
in terms of speed.

Table 2 compares our algorithms with learning. Clearly learning makes an
enormous difference on these benchmarks. First, note that even base is compet-
itive with the best reported solution. Next, the results show that incremental
propagation is clearly beneficial, although it can increase search space because it
creates non-minimal explanations.

Since the survey benchmarks were very easy for the MDD propagators we also
experimented on a hard artificial class of nonogram problems domino logic, or n-
Dom problems, described at [23]. These are very hard to solve, no solver on the
website can solve instances beyond size n = 16. These instances are constructed
from n identical rotated V shapes, illustrated in Figure 9. Comparative results
are shown in Tables 3 and 4. As before, incremental propagation is beneficial,
and learning is vital. The BDDs for these constraints are very narrow (between 2
and 6 nodes), so explanation generation accounts for only 1% of execution time;
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Fig. 9: An example of the domino logic problem set, with n = 3.

Without learning

n
pbnsolve gecode Seq

time fails time fails base ip fails
05 0.00 121 0.01 163 0.04 0.04 163
06 0.04 718 0.11 2K 0.10 0.08 2K
07 0.34 8K 1.70 29K 0.98 0.76 29K
08 2.14 30K 29.89 435K 16.59 11.88 435K
09 17.09 209K — — 362.63 247.50 8351K
10 169.89 1745K — — — — —
11 — — — — — — —

Table 3: Unique solution performance results for non-learning solvers on domino

logic nonograms. None of these solvers solve any problem of size greater than 10.

With learning

n
Seq VSIDS

base ip fails ipe fails base ip fails ipe fails
5 0.03 0.02 60 0.04 76 0.05 0.03 34 0.04 41
6 0.04 0.04 328 0.04 341 0.04 0.03 135 0.04 108
7 0.10 0.08 2K 0.08 2K 0.04 0.05 330 0.04 345
8 0.48 0.38 12K 0.54 16K 0.06 0.06 733 0.06 670
9 8.37 7.04 147K 6.12 131K 0.14 0.14 2K 0.10 2K
10 91.63 79.42 1069K 87.96 1174K 0.33 0.23 5K 0.15 3K
11 — — — — — 0.53 0.39 7K 0.28 5K
12 — — — — — 1.38 0.98 15K 0.70 11K
13 — — — — — 2.33 1.68 24K 1.06 15K
14 — — — — — 5.59 3.88 51K 2.44 32K
15 — — — — — 7.86 5.40 65K 3.14 37K
16 — — — — — 18.03 12.40 123K 5.76 60K
17 — — — — — 68.32 50.48 382K 12.38 109K
18 — — — — — 101.31 74.19 500K 30.83 227K
19 — — — — — 118.16 83.57 539K 65.66 395K
20 — — — — — 384.99 293.43 1341K 124.45 606K∑

— — — — — 709.16 526.94 3056K 247.13 1503K

Table 4: Unique solution performance results on the domino logic nonogram in-
stances using sequential and VSIDS search strategies.

differences between the execution time of ip and ipe are due to differences in search.
While ipe seems to perform slightly worse than ip using a sequential search method,
it appears to drive VSIDS consistently towards better search decisions, reducing
time and backtracks by up to 50%.
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5.2 Nurse Scheduling

The second set of experiments use nurse scheduling benchmarks from Section 6.2
of [4], where nurses are rostered to day shifts, evening shifts, night shifts and days
off. In model 1, each nurse must work 1 or 2 night shifts in every 7 days, 1 or 2
evening shifts, 1 to 5 day shifts and 2 to 5 days off. In model 2, nurses must work
1 or 2 night shifts every 7 days, and 1 or 2 days off every 5 days (which makes
day and evening shifts indistinguishable). In both models, a nurse cannot work a
second shift within 12 hours of the first. The constraints are encoded as a single
regular constraint per nurse and a global cardinality [2] constraint per shift,
converted to MDDs. We use the 50 instances of 28 day schedules used in [4] for
each model with a 5 minute time limit, plus the next 50 instances from the N30
dataset, available at [22]. Results for both gecode and the non-learning solvers
are omitted, as they were unable to solve any instances in 5 minutes.

Tables 5 and 6 show the results on the nurse scheduling benchmarks using
sequential search (assigning each nurse for day 1, then each nurse for day 2, etc.),
first fail search (picking the nurse/day pair with the smallest remaining domain,
breaking ties according to the sequential search), and VSIDS search. The first line
is for direct comparison: it gives the average time and fails for problems solved
by all solvers using the given search strategy. The second line gives number of
problems solved by each solver and the average solving time and average failures
for these solved problems. Comparing to the best results from [4] (which used first
fail and a 100 second time limit) our base solver solves more instances (24 versus
9, and 32 versus 8).1

Comparing base versus ip we see that incremental propagation is usually ben-
eficial. For the problems with more backtracking required on average we can see
that the incremental propagation can be substantially faster than non-incremental
propagation. Incremental explanation for these problems usually reduces the num-
ber of problems that can be solved.

The results show that weakening can be beneficial even with the very small
domains of this benchmark. Weakening improves on almost all examples for model
2, except first fail with incremental explanation. Although it requires more search
it is almost always faster and sometimes more robust.

5.3 Pentominoes

For another set of experiments we consider the pentomino problems, which involve
placing a set of 5-block shapes in such a way as to fill a given area. The most
common variant of the puzzle is to place 12 of these shapes, which may be rotated
or reflected, inside a rectangle with an area of 60 units (one of 3 × 20, 4 × 15, 5 ×
12, 6 × 10). A model of the pentomino problems using the regular constraint is
described in [13].

Tables 7 to 10 compare the performance of our explaining MDD propagators
with the conventional regular constraints of [13] (implemented in gecode 3.1.0).
We tested both the finite domain and Boolean models of the pentomino problems,

1 The experiments from [4] are run on a Pentium 4 3.20GHz machine with 1Gb RAM.
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Search base fails ip fails weak fails

Seq
1.43 856.83 0.83 862.11 1.45 1277.83

49 / 7.52 6059.65 49 / 5.63 6449.96 49 / 6.70 7212.41

FF
14.30 12735.22 6.76 13329.56 16.09 19907.58

41 / 25.76 19191.93 41 / 12.68 19721.29 39 / 28.97 27757.59

VSIDS
7.67 4049.46 2.90 2468.26 4.98 3404.62

73 / 10.84 5981.86 71 / 5.10 4879.04 73 / 10.95 6858.56

Search ipe fails ipe weak fails

Seq
1.21 1191.04 3.98 2134.45

47 / 1.21 1191.04 47 / 3.98 2134.45

FF
7.22 12436.06 13.65 13321.17

38 / 10.78 14856.13 37 / 18.59 16945.57

VSIDS
2.76 3485.91 3.97 4121.40

72 / 6.54 6647.18 73 / 7.10 6838.68

Table 5: Nurse sequencing, multi-sequence constraints, model 1.

Search base fails ip fails weak fails

Seq
0.64 490.53 0.43 527.36 0.44 291.08

70 / 3.26 4956.57 70 / 1.85 5011.67 70 / 1.31 3021.19

FF
1.29 1015.11 0.58 890.89 0.52 806.81

41 / 14.84 19189.46 41 / 6.98 15314.46 41 / 15.23 27240.39

VSIDS
1.07 1021.73 1.56 2877.52 0.66 750.35

86 / 4.44 3421.27 87 / 6.02 8687.74 87 / 4.10 5821.41

Search ipe fails ipe weak fails

Seq
0.41 508.11 0.53 774.44

69 / 4.17 5669.68 69 / 5.70 10942.51

FF
0.54 1332.59 0.68 1378.43

37 / 0.54 1332.59 39 / 7.14 20791.82

VSIDS
2.38 4574.18 0.65 1184.52

84 / 2.38 4574.18 85 / 0.65 1186.12

Table 6: Nurse sequencing, multi-sequence constraints, model 2

using a time limit of 20 minutes. All approaches use the same search strategy as
in [14] which is slightly different to the default strategy in the Gecode model.

First incremental propagation is always better than non-incremental expla-
nation, and indeed the difference without learning is quite substantial. Next, we
find that incremental explanations provide a significant improvement over non-
incremental explanations. On the finite-domain model, weak explanations provide
a significant improvement in propagation speed with relatively little increase in
search – the combination of the two techniques is on all instances the best algo-
rithm, and significantly outperforms the conventional regular constraints. While
the base solver is not as good as gecode on the FD model, once we add learning
and weakening our results are substantially better. Note that all the variants of
the learning solver have very similar failure counts; the difference in performance
is due primarily to faster propagation and explanation algorithms.
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Without learning

Size gecode fails base ip fails
3x20 19.87 36K 33.64 7.63 36K
4x15 338.60 649K 546.86 131.41 651K
5x12 — — — 519.81 2482K
6x10 — — — — —∑

— — — — —

With learning

Size base ip fails weak fails ipe fails ipe weak fails
3x20 9.68 4.99 11K 4.02 10K 3.26 10K 2.57 9K
4x15 300.91 172.90 380K 165.41 382K 128.85 379K 97.58 353K
5x12 — 730.34 1571K 761.40 1657K 590.18 1656K 497.88 1586K
6x10 — — — — — — — — —∑

— — — — — — — — —

Table 7: Time to find all solutions for pentominoes, with FD model and no sym-
metry breaking.

Without learning

Size gecode fails base ip fails
3x20 5.22 9K 9.20 2.29 9K
4x15 131.78 239K 209.41 50.70 239K
5x12 464.75 788K 653.59 173.04 789K
6x10 — — — 447.97 1840K∑

— — — 674.00 2877K

With learning

Size base ip fails weak fails ipe fails ipe weak fails
3x20 4.84 2.62 4K 2.34 4K 1.58 4K 1.35 4K
4x15 106.60 62.70 128K 49.64 116K 45.23 129K 34.76 121K
5x12 379.78 233.76 465K 205.10 444K 183.23 481K 148.44 448K
6x10 949.09 558.72 1176K 511.00 1106K 480.99 1235K 390.51 1111K∑

1440.31 857.80 1774K 768.08 1670K 711.03 1850K 575.06 1684K

Table 8: Time to find all solutions for pentominoes, with FD model and symmetries
removed.

5.4 Other Problems

There are some circumstances, however, where learning is not particularly helpful.
When solving the crossword instances used in [6], learning does not produce any
re-usable nogoods at all; the number of bactracks of the learning solver is exactly
the same as a purely propagation-based solver. As the MDDs for these constraints
are quite wide – some propagators have an average width of ∼2700 nodes, rather
than 10–30 for most of the regular constraints we have considered – and have
very little sharing between nodes, explanation generation is very expensive, and
constructs quite large explanations – ∼1000 literals/nogood, as opposed to 10–
100. Since maintaining these nogoods is pure overhead, this results in the learning
solver being an order of magnitude slower on some instances.

On another common table benchmark, the Renault problems [7], we have rather
the opposite problem. Despite having a large extensional representation, the result-
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Without learning

Size gecode fails base ip fails
3x20 5.32 36K 2.66 1.82 36K
4x15 88.68 649K 47.67 32.50 651K
5x12 346.42 2478K 185.73 127.98 2482K
6x10 907.59 5998K 477.58 325.84 6008K∑

1348.01 9161K 713.64 488.14 9176K

With learning

Size base ip fails ipe fails
3x20 1.00 0.78 9K 0.72 9K
4x15 41.17 33.41 398K 28.27 424K
5x12 176.49 144.59 1677K 120.74 1749K
6x10 437.29 353.48 4089K 299.71 4277K∑

655.95 532.26 6173K 449.44 6460K

Table 9: Time to find all solutions for pentominoes, with Boolean model and no
symmetry breaking.

Without learning

Size gecode fails base ip fails
3x20 1.39 9K 0.96 0.58 9K
4x15 33.77 239K 22.46 13.40 239K
5x12 113.62 788K 72.96 45.26 789K
6x10 288.91 1838K 179.21 112.14 1840K∑

437.69 2874K 275.59 171.38 2877K

With learning

Size base ip fails ipe fails
3x20 0.51 0.41 4K 0.33 4K
4x15 13.87 10.38 117K 9.65 129K
5x12 52.02 41.03 442K 36.14 462K
6x10 128.40 100.56 1088K 89.15 1136K∑

194.80 152.38 1651K 135.27 1730K

Table 10: Time to find all solutions for pentominoes, with Boolean model and
symmetries removed.

ing MDDs are small enough that the learning engine drives the solver immediately
to a solution, irrespective of which explanation algorithm is used; without learning,
however, the solver takes longer than 10 minutes.

6 Conclusion

In this paper we have defined an MDD propagation with explanation. We introduce
an incremental propagation algorithm for MDDs using watches, and incremental
approach to explaining propagation for MDD constraints. The incremental propa-
gation algorithm is significantly better than approaches starting from the root, at
least on the kind of MDDs with large arity and low width appearing in the prob-
lems we study. Incremental explanation often improves on non-incremental expla-
nation particularly when using activity based search where the non-minimality
of the resulting explanations is not so critical. The resulting system provides the
state-of-the-art solution to nonogram puzzles.
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