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Automatic layout of tables is useful in word processing applications and is required in on-line applications

because of the need to tailor the layout to viewport width, choice of font and dynamic content. However, if the

table contains text, minimizing the height of the table for a given maximum width is a difficult combinatorial

optimization problem because of the need to find the right choice of height/width configuration for each

cell in the table. We investigate the modelling decisions involved in formulating this problem for use with

standard combinatorial optimization techniques that are guaranteed to find the minimal height table. To the

best of our knowledge we are the first to do so. We provide a detailed empirical evaluation of the resulting

models using MIP and constraint programming with lazy clause generation.
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1. Introduction

Tables are provided in virtually all document formatting systems and are one of the most

powerful and useful design elements in current web document standards such as (X)HTML.

For on-line presentation it is not practical to require the author to specify table column

widths at document authoring time since the layout must be adjusted to different view-

port widths and to different-sized text. For instance, the viewer may choose a larger font.

Dynamic content is another reason that it may be impossible for the document author

to fix the table column widths. This is an issue for both web pages and for variable data

printing (VDP) in which print material is customized to a particular recipient. Good auto-

matic layout of tables is therefore needed for both on-line and VDP applications and is

useful in other document processing applications since it reduces the burden on the author

of formatting tables.

However, automatic layout of tables that contain text is computationally difficult. The

reason is that if a cell contains text then this implicitly constrains the cell to take one

of a discrete number of possible width/height configurations arising from different line

breaking choices. Because of the need to choose the configuration for each cell, Anderson

and Sobti (1999) have shown that table layout with text is NP-hard for reasonable layout

requirements such as minimizing table height for a given width.

In this paper we are concerned with complete techniques that are guaranteed to find

the optimal solution. While these are necessarily non-polynomial in the worst case (unless

P=NP) we are interested in finding out if they are practical for small and medium sized

table layout. Furthermore, even if the complete techniques are impractical for normal use,

it is still worthwhile to develop complete methods because these provide a benchmark with

which to compare the quality of layout of heuristic techniques proposed for web browsers

and document processing software. For instance, while Gecko (the layout engine used by

the Firefox web browser) provides sophisticated HTML/CSS rendering, Figure 1 shows

that its automatic table layouts can be far from the most compact as computed by the

algorithms we present.

This is the first paper to look at complete constrained optimization techniques for finding

minimal height table layouts. We give a number of different ways of modelling table layout

This paper collates work presented at DocEng’10 (Bilauca and Healy 2010) and DocEng’11 (Bilauca and Healy
2011, Gange et al. 2011). We also present several improved models, and an extended discussion and evaluation of the
different modelling decisions.
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Figure 1 Example table comparing layout using Gecko (on the left) with the minimal height layout (on the right).

and investigate two approaches to solving these models, based on generic approaches for

solving combinatorial optimization problems that have proven to be useful in a wide variety

of practical applications. The first approach uses a traditional MIP encoding of the models.

Our second approach uses constraint programming (CP) (Marriott and Stuckey 1998). We

use a state-of-the-art hybrid solving approach, lazy clause generation (Ohrimenko et al.

2009), which combines CP and SAT technology. The advantage of the hybrid approach is

that during search it learns nogoods that prevent it from repeating similar search later on,

and it tracks activity of decisions, and uses an automatic search approach that concentrates

on decisions likely to lead to early failure. This can potentially drastically reduce the

search space, if the reasons for failure are lifted from the nm cell variables to the n+m

row/column variables.

We provide an extensive empirical evaluation of these approaches. We first compare the

approaches on a large body of tables collected from the web. This comprised more than

2000 tables that were hard to solve in the sense that the standard HTML table layout

algorithm did not find the minimal height layout. Most methods performed well on this

set of examples and solved almost all problems in less than 1 second. We then tested the

scalability of the algorithms on some artificial table layout examples of increasing size. In

this case we found that the “cell-free” model was the most robust approach, with both CP

and MIP approaches being competitive.

In the next section we review related work. In Section 3, we provide a formal definition

of the table layout problem and give a number of ways of modelling it. In Sections 4 and 5

we give models for solving the layout problem using MIP and CP techniques respectively

while Section 6 gives the empirical evaluation.

2. Related Work

Our review of table layout research is based on that of the recent review of automatic

document formatting by Hurst et al. (2009). Starting with Beach (1985), a number of
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authors have investigated automatic table layout from a constrained optimization view-

point. Beach considered packing rectangular fixed sized cells into a grid and showed this

can be done in polynomial time. He did not consider the case where cells could contain

text with multiple line breaking choices. Wang and Wood (1997) gave a branch and bound

algorithm accelerated with a polynomial-time greedy algorithm for finding a table layout

satisfying linear designer constraints on the column widths and row heights. They showed

that the associated decision problem was NP-Hard. They modelled table layout as a sat-

isfaction problem rather than an optimization problem. In the latter we are interested in

minimising an objective function (the table height) rather than just finding any solution

which satisfies the constraints.

Anderson and Sobti (1999) showed that finding the minimum height layout for a fixed

maximum width is NP-Complete for simple tables even without designer constraints. They

gave two heuristic methods for finding a minimum height layout for simple cells. The first

was based on encoding table layout as the problem of finding the minimum cut in a flow

graph while the second is a linear programming approximation to the problem in which

the convex hull of the configurations is modelled using a conjunction of linear inequality

constraints. Using a continuous linear approximation to the constraint that a cell is large

enough to contain its content has been suggested by a number of other researchers such as

Lin (2006).

Beaumont (2004) and Hurst et al. (2005) suggested a non-linear continuous approxima-

tion in which the area of each cell is constrained to be greater than the area of its content

(when laid out in a single line). Beaumont used the non-linear solver MINOS to solve the

resulting non-linear problem while Hurst et al. noted that it was a convex optimization

problem and could be modelled using conic programming and solved using polynomial

time interior point methods. Hurst et al. (2006) have given a more efficient specialized

variable elimination method for solving a simplified form of the continuous approximation

for simple tables.

Hurst et al. (2005) also suggested a polynomial-time heuristic in which the table is

laid out by starting from the narrowest possible layout for the table and then iteratively

widening a column, choosing the column that leads to the most reduction in height for

least increase in width. This heuristic was further explored in Marriott et al. (2013).
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Another heuristic approach to table layout is column-driven layout. In this approach

three widths – an ideal width, and a minimum and maximum width – are computed for

each column and the columns are proportionately scaled down/up from their ideal size (but

not below their minimum size or above their maximum size) until the table has the desired

width. The row heights are then computed by laying out the content of the cells in each

row. The standard table layout algorithm suggested for HTML, CSS and XSL (Raggett

et al. 1999) is another example of a column-driven approach. Other column-driven layout

approaches include Borning et al. (2000), Badros et al. (1999). These allow the designer

to specify required and preferred linear arithmetic constraints over column widths and use

a linear constraint solver to determine the column widths. Lutteroth and Weber (2006)

also allow linear constraints over column widths in their extension of standard table layout

which allows columns to be partially ordered rather than totally ordered. None of these

approaches directly minimize table height.

Thus we see that, apart from Wang and Word’s work in 1985, all previous research into

table layout with breakable text has focussed on developing heuristic techniques. Here our

focus is on approaches that are guaranteed to find an optimal table layout in the sense that

the table height is minimized. This is in contrast to Wang and Wood who were concerned

with finding a layout that satisfied the designer constraints, rather than minimizing table

height.1

A preliminary version of the methods described here have appeared in three earlier

conference papers (Bilauca and Healy 2010, 2011, Gange et al. 2011): the current paper

extends the conference versions by introducing a unified exposition of the different models

and a new encoding (cell-free) which outperforms the earlier models, fixes some errors and

provides a systematic empirical evaluation of all the different approaches. 2

3. Modelling the Table Layout Problem

We assume throughout this paper that the table of interest has n columns and m rows. A

layout (w,h) for a table is an assignment of widths, w, to the columns and heights, h, to

1 Though one could minimize table height by repeatedly searching for a feasible solution with a table height less than
the best solution so far.

2 An additional A?-based approach was presented in Gange et al. (2011). This method was not competititve, and
does not support the modelling choices discussed in later sections; it has thus been omitted here.
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the rows where wc is the width of column c and hr the height of row r. We make use of

the width and height functions:

wdc1,c2(w) =
∑c2

c=c1
wc, htr1,r2(h) =

∑r2
r=r1

hr

where wdc1,c2(w) gives the sum of the column widths from columns c1 to c2 inclusive, and

htr1,r2(h) gives the sum of row heights from row r1 to r2 inclusive; hence ht1,m(h) and

wd1,n(w), give the overall table height and width respectively.

The designer specifies how the grid elements of the table are partitioned into logical

elements or cells. We call this the table structure. A simple cell spans a single row and

column of the table while a compound (or spanning) cell consists of multiple grid elements

forming a rectangle, i.e. the grid elements span contiguous rows and columns. Compound

cells complicate table layout.

If d is a cell we define rows(d) to be the rows in which d occurs and cols(d) to be the

set of columns spanned by d. We let

bot(d) = max rows(d), top(d) = min rows(d),

left(d) = min cols(d), right(d) = max cols(d).

and, letting Cells be the set of cells in the table, for each row r and column c we define

lcellsc = {d∈Cells | left(d) = c},

rcellsc = {d∈Cells | right(d) = c},

cellsc = {d∈Cells | c∈ cols(d)},

bcellsr = {d∈Cells | bottom(d) = r}.

Each cell d has a minimum width, minw(d), which is typically the length of the longest

word in the cell, and a minimum height minh(d), which is typically the height of the highest

text element in the cell.

The main decision in table layout is how to break the lines of text in each cell. Different

choices give rise to different width/height cell configurations. Cells have a number of mini-

mal configurations where a minimal configuration is a pair (w,h) such that the text in the

cell can be laid out in a rectangle with width w and height h but there is no smaller rectan-

gle for which this is true. That is, for all w′ ≤w and h′ ≤ h either h= h′ and w=w′, or the

text does not fit in a rectangle with width w′ and height h′. These minimal configurations
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are anti-monotonic in the sense that if the width increases then the height will strictly

decrease. For text with uniform height with W words (or more exactly, W possible line

breaks) there are up to W minimal configurations, each of which has a different number

of lines. In the case of non-uniform height text there can be no more than O(W 2) minimal

configurations.

A number of algorithms have been developed for computing the minimal configurations

of the text in a cell (Hurst et al. 2009). Here we assume that these are pre-computed and

that

Cd = [(w1, h1), ..., (wNd
, hNd

)]

gives the width/height pairs for the minimal configurations of cell d sorted in increasing

order of width. We will make use of the function minheight(d,w) which gives the minimum

height h≥minh(d) that allows the cell contents to fit in a rectangle of width w≥minw(d).

This can be readily computed from the list of configurations.

Designer constraints specify relationships between the column widths and/or row

heights. These are specific to a particular table. Useful designer constraints include:

• fixed size for selected column widths or rows

• fixed ratios between selected column widths or between selected rows

For simplicity we do not consider nested tables or designer constraints until Section 7.

The table layout style captures what is required in a good layout. We shall focus on

the minimum height layout style, i.e. find a layout that minimizes the table height for a

particular table width. For simplicity, we assume that the viewport is wide enough to allow

the table to be laid out.

We have explored a number of different ways of modelling table layout since, as we shall

see, efficiency depends crucially on the choice of model. Our starting point is the model:

find w and h that minimize ht1,m(h) subject to

(cwd, chd)∈Cd, ∀d∈Cells (3.1)

∧ wdleft(d),right(d)(w)≥ cwd, ∀d∈Cells (3.2)

∧ httop(d),bot(d)(h)≥ chd, ∀d∈Cells (3.3)

∧ wd1,n(w)≤W (3.4)

Since the decision variables in this model are the row heights h and column widths w

we call it the extent table layout model.
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A B C

D E F

Figure 2 A small instance with column-spans.

Example 1. Consider the table shown in Figure 2. The basic extent model is con-

structed:

find p and q that minimize pm subject to

(cwd, chd)∈C(d), ∀ d∈ {A, . . . ,F}

∧



qc1 ≥ cwA

∧ qc2 ≥ cwB

∧ qc3 + qc4 ≥ cwC

∧ qc2 + qc3 ≥ cwE

∧ qc4 ≥ cwF


∧



∧ pr1 ≥ chA
∧ pr1 ≥ chB
∧ pr1 ≥ chC
∧ pr2 ≥ chD
∧ pr2 ≥ chE
∧ pr2 ≥ chF


∧ qc1 + qc2 + qc3 + qc4 ≤W

�

An alternate model is to determine the positions of the rows p and columns q rather

than their widths and heights. The variable pr gives the bottom of row r and qc the right

hand side of column c. We call this the positional model. Note that the variables in the

two models are related by pr = ht1,r and qc =wd1,c and we define

wdc1,c2(q) = qc2 − qc1−1, htr1,r2(p) = pr2 − pr1−1

The model is:

find p and q that minimize pm subject to

(cwd, chd)∈Cd, ∀d∈Cells

∧ wdleft(d),right(d)(q)≥ cwd, ∀d∈Cells

∧ httop(d),bot(d)(p)≥ chd, ∀d∈Cells

∧ qn ≤W

∧ q0 = 0 ∧ p0 = 0

∧ qc ≤ qc+1, c= 1, . . . , n− 1

∧ pr ≤ pr+1, r= 1, . . . ,m− 1
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This has the potential advantage that the width/height constraints associated with com-

pound cells contain fewer variables.

An unfortunate property of the positional model is that if qc changes, the values of

[qc+1, . . . , qn] will all also change (similarly for pr). In a solver where variable bounds are

maintained, this can cause considerable degradation. To reduce this impact, we can decom-

pose the columns (and rows) into contiguous blocks, such that every column (resp. row)

span is contained strictly within a single block. We then encode the width of each column-

block using the positional model, and require that the sum of block widths is no greater

than w. We call this the position-block model. In the worst case, of course, we may be

unable to decompose the columns, and we end up with the positional encoding. In practice,

however, the blocks tend to be quite small.

Example 2. Consider again the table illustrated in Figure 2. While there are cells

spanning across the end of columns 2 and 3, there are no cells crossing the end of column

1. As such, we can partition the columns into regions {[1,2), [2,5)}, encoding the width

of each region using the positional encoding, and combining the regions using the extent

encoding. This yields the following modified width constraints:

wd1,2(w)≥ cwd, ∀d∈ {A,D}

∧ wd2,3(w)≥ cwB

∧ wd2,4(w)≥ cwE

∧ wd2,5(w)≥wd2,3(w) + cwC

∧ wd2,5(w)≥wd2,4(w) + cwF

∧ wd1,2(w) +wd2,5(w)≤W

�

One possible way of improving the model is to restrict the choice of column and row

positions or widths based on the configurations of the cells in the row or column. In the

case of a simple table the row heights or column widths can be restricted to being the

height or width of one of the configurations of the cells in that row or column. For column

c and row r we define

configsc = sort<([w | ∃d∈Cells, ∃h, c= left(d) = right(d)∧ (w,h)∈Cd])

configsr = sort<([h | ∃d∈Cells, ∃w, r= top(d) = bot(d)∧ (w,h)∈Cd])
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A

B C glue

Figure 3 Example table showing that if there are column spans then the column widths cannot be restricted to

column width configurations

where sort< returns a list of values in ascending order. We can then add the redundant

constraints to the model

wc ∈ configsc, c= 1, . . . , n

∧ hr ∈ configsr, r= 1, . . . ,m.

In the case of tables with cell or row spans it is more difficult to restrict the row heights

or column widths. Consider the table in Figure 3 in which compound cell A has a single

configuration (3,1) and simple cells B and C have the single configuration (1,1). Clearly

in this case we cannot restrict the width of column 2 to the width configurations of cell C.

One way to handle this is to allow extra spacing in the columns and rows that are spanned

by a compound cell, we call this spacing “glue” because of its similarity to glue in TEX.

For each column c and row r we introduce a new non-negative variable gc and fr. The

model becomes

find w, g, h and f that minimize
∑m

r=1(hr + fr) subject to

(cwd, chd)∈Cd, ∀d∈Cells

∧ wc ≥ cwd, ∀d∈Cells s.t. ∃c, left(d) = right(d) = c

∧
∑right(d)

c=left(d)(wc + gc)≥ cwd, ∀d∈Cells s.t. left(d) 6= right(d)

∧ hr ≥ chd, ∀d∈Cells s.t. ∃r, top(d) = bot(d) = c

∧
∑bot(d)

r=top(d)(hr + fr)≥ chd, ∀d∈Cells s.t. top(d) 6= bot(d)

∧
∑n

c=1(wc + gc)≤W

∧ fr ≥ 0 ∧ hr ∈ configsr, r= 1, . . . ,m

∧ gc ≥ 0 ∧ wc ∈ configsc, c= 1, . . . , n

If a column or row contains no simple cells then it has a dummy 0 width or height config-

uration. We can further constrain this model by setting gc and fr equal to 0 if there are no

column spans or row spans that finish on that row or column. We call this the glue model.
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Example 3. Consider again the width constraints for the table in Example 1, where

the set of minimal configurations are given by:

C(d) =

{(1,2), (3,1)} if d∈ {A,B,D,F}

{(1,3), (2,2), (4,1)} if d∈ {C,E}

Column c1 contains only simple cells, so gc1 = 0. c3 contains no simple cells, so qc3 may be

fixed to 0. This yields the following encoding.

· · ·

∧ qc1 ∈ {1,3}∧ gc1 = 0

∧ qc2 ∈ {1,3}∧ gc2 ≥ 0

∧ qc3 = 0∧ gc3 ≥ 0

∧ qc4 ∈ {1,3}∧ gc1 ≥ 0

∧ qc1 ≥ cwA

∧ qc2 ≥ cwB

∧ (qc3 + qc4) + (gc3 + gc4)≥ cwC

∧ (qc2 + qc3) + (gc2 + gc3)≥ cwE

∧ qc4 ≥ cwF

∧ (qc1 + qc2 + qc3 + qc4) + (gc1 + gc2 + gc3 + gc4)≤W

�

An alternative method for restricting column and row positions when there are column or

row spans is to generalise the idea of column and row configurations to row and column

spans. We call this the row and column span value (RCSV) model. We define

configsc1,c2 = sort([w | ∃d∈Cells, ∃h, c1 = left(d) ∧ c2 = right(d)∧ (w,h)∈Cd])

configsr1,r2 = sort([h | ∃d∈Cells, ∃w, r1 = top(d) ∧ r2 = bot(d)∧ (w,h)∈Cd])

spansc = {left(d) | ∃d∈Cells, c= right(d)}

spansr = {top(d) | ∃d∈Cells, r= bot(d)}.

We can add the (redundant) constraints to the extent model:

hr ∈ configsr ∧ ∀r ∈ 1, . . . ,m s.t. spans(r) = {r}

∧ hr,r′ ∈ configsr,r′ ∧ htr,r′ ≥ hr,r′ ∀r ∈ 1, . . . ,m, ∀r′ ∈ spansr s.t. spans(r) 6= {r}

∧ wc ∈ configsc ∀c∈ 1, . . . , n, s.t. spans(c) = {c}

∧ wc,c′ ∈ configsc,c′ ∧ wdc,c′ ≥wc,c′ ∀c∈ 1, . . . ,m, ∀c′ ∈ spansc. s.t. spans(c) 6= {c}

We can add similar constraints to the positional model.
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(wi+1, hi+1)

(wi, hi)

Figure 4 Two adjacent configurations for a cell. Any feasible configuration must have either at least width wi+1,

or height at least hi.

Example 4. Consider the cell configurations described in Example 3. The spans of

interest are {[1,2), [2,3), [2,4), [3,5), [4,5)}. The span [1,2) is a single column consisting

only of simple cells, so can be represented directly with qc1 . We must introduce an additional

variable wc,c′ for the remaining spans. Applying this to the extent encoding yields the

following width constraints:

. . .

∧



qc1 ∈ {1,3}

∧ wc2,c3 ∈ {1,3}

∧ wc2,c4 ∈ {1,2,4}

∧ wc3,c5 ∈ {1,2,4}

∧ wc4,c5 ∈ {1,3}


∧



qc1 ≥ cwA

∧ wc2,c3 ≥ cwB

∧ wc3,c5 ≥ cwC

∧ wc2,c4 ≥ cwE

∧ wc4,c5 ≥ cwF


∧


qc2 ≥wc2,c3

∧ qc2 + qc3 ≥wc2,c4

∧ qc3 + qc4 ≥wc3,c5

∧ qc4 ≥wc4,c5


∧ qc1 + qc2 + qc3 + qc4 ≤W

This increases the number of variables in the problem, but can reduce the search space if

the cell configurations are sparse. �

A crucial decision in the model is how to model the choice of configuration. Until now

we have explicitly modelled the choice of configuration (cwd, chd) for cell d using a list

membership constraint. However, because the height of the configurations varies anti-

monotonically with the width, we can use an alternate model.

Let Cd = [(w1, h1), ..., (wN , hN)] be the configurations for cell d ordered according to

increasing width (or, equivalently, decreasing height). Consider two adjacent configura-

tions, (wi, hi) and (wi+1, hi+1). As Figure 4 illustrates, if the cell is in a configuration c≤ i,

then hc ≥ hi. If the cell is in a configuration c≥ i+ 1, then wc ≥wi+1. By introducing these
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constraints for each pair of adjacent configurations, we obtain an alternate encoding of

(cwd, chd)∈Cd by

cwd ≥w1 ∧
N−1∧
i=1

(chd ≥ hi ∨ cwd ≥wi+1)∧ chd ≥ hN .

We call this the cell-free encoding. It can be used with any of the previous models.

Example 5. Consider again cell C from Example 3, with minimal configurations

{(1,3), (2,2), (4,1)}. Rather than an explicit membership constraint, we can encode the

configurations as follows:

wdC ≥ 1∧htC ≥ 1

∧ wdC ≥ 2∨htC ≥ 3

∧ wdC ≥ 4∨htC ≥ 2

∧ htC ≥ 1

�

Observe that the effectiveness of this encoding is dependent on the ability to express

disjunctions of inequalities. In the following sections, we shall see that this is possible in

both CP and MIP models.

We can slightly improve the resulting models by eliminating the variables cwd and chd

from the model and replacing them by wleft(d) and htop(d) in the case that cell d is simple,

and so avoiding the need to introduce configuration variables for each simple cell. And if

we use the RCSV extension, we can eliminate the variables cwd and chd for all cells d and

replace them by wleft(d),right(d) and htop(d),bot(d) in the case that cell d spans multiple columns

or rows.

4. MIP Encoding

In this section we describe how we have transformed the high-level models in the previous

section to models that are suitable for MIP solving techniques. Consider our first and

simplest model, the extent table layout model. The only non-linear constraint is (cwd, chd)∈

Cd.

The standard encoding of such a set membership constraint is to introduce a Boolean

selector bk for each configuration, and constrain exactly one selector to be true; this results
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in the following constraints for each cell d where Cd = [(w1, h1), ..., (wN , hN)] is the ordered

list of configuration pairs:

cwd =
∑N

k=1 bkwk ∧

chd =
∑N

k=1 bkhk ∧∑N
k=1 bk = 1

where bi ∈ {0,1} for all i.

An alternative approach is use a unary encoding of the variable domain. In the unary

encoding, we again introduce Boolean selectors to determine the value. However, rather

than requiring a single selector to be true, we require an initial sequence to be true; the

choice of configuration is determined by the last true selector.

cwd =w1 +
∑N

k=2(wk−wk−1)bk

∧ chd = h1 +
∑N

k=2(hk−hk−1)bk
∧ bi−1 ≥ bi, i= 3, . . . ,N.

As the configurations are sorted by width, this has the useful property that Boolean bk

is true iff the inequality cwd ≥ wk is true – bk can be used to represent the reified con-

straint cwd ≥wk. This greatly simplifies the construction of complex formulae, such as the

disjunctions of inequalities.

In the glue model and the span configurations in the RCSV extension there are additional

non-linear constraints of the form x ∈ [v1, . . . , vN ]. We can use either the standard or the

unary encoding to model these set membership constraints. In the case that we use the

unary encoding we again have the property that Boolean bk effectively represents the reified

constraint x ≥ vk since the vi are in ascending order. For convenience, we will use the

notation Jx≥ viK to refer to the Boolean variable representing such an inequality.

Encoding the cell-free model requires us to model disjunctions of the form chd ≥ hi ∨
cwd ≥ wi+1. The straightforward encoding for such a disjunction is to introduce a fresh

Boolean variable b and add the constraints

chd−hib≥ 0∧ cwd +wi+1b≥wi+1

Alternatively, if we are using the RCSV extension with the unary encoding we have intro-

duced Boolean variables Jchd ≥ hiK and Jcwd ≥wi+1K. We can simply re-use these variables

and model the disjunction by

Jchd ≥ hiK + Jcwd ≥wi+1K≥ 1
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Implementation details

We used a script to construct a mixed integer programming model for each table, which

was solved using CPLEX 12.1.

5. Constraint Programming

Constraint programming (e.g. Marriott and Stuckey 1998) is another popular generic

approach to solving combinatorial satisfaction problems.

The constraint model is defined in terms of a domain of possible values for each variable,

and propagators for each constraint. The role of a propagator is to remove values from the

domains of the variables for that constraint which cannot be part of a solution. Constraint

programming can implement combinatorial optimization search by solving a series of sat-

isfaction problems, each time looking for a better solution, until no better solution can be

found and optimality is proved.

We consider constraint satisfaction problems, consisting of a set of constraints C over

n variables xi taking integer values, each with a given finite domain Dorig(xi). A feasible

solution is a valuation to the variables such that each xi is within its allowable domain and

all constraints are satisfied simultaneously.

A propagation solver maintains a domain restriction D(xi)⊆Dorig(xi) for each variable,

and considers only solutions that lie within D(x1)×D(x2)× . . .×D(xn). Propagators for

the constraints C determine, given the current domain, whether we can remove values

that cannot take part in any solution. For example, if x1 ∈ {1,2,3} and x2 ∈ {2,3} and

C = {x1 ≥ x2} then the value x1 = 1 cannot be part of any solution, so it can be elimi-

nated. Propagation solving interleaves propagation, which repeatedly applies propagators

to remove unsupported values until no further domain reduction is detected, and search

which (typically) splits the domain of some variable in two and considers both the resulting

sub-problems. This continues until all variables are fixed and a solution found, or propa-

gation detects failure (a variable with empty domain) in which case execution backtracks

and tries another subproblem.

Lazy clause generation (Ohrimenko et al. 2009) is a hybrid approach to combinatorial

optimization combining finite domain propagation and Boolean satisfiability methods. A

lazy clause generation solver performs finite domain propagation just as in a standard

CP solver, but records the reasons for all propagations. When a failure is determined it
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determines a minimal set of reasons that have caused this failure and records this as a

nogood in the solver. This nogood prevents the search from examining similar sets of choices

which lead to the same inability to solve the problem.

Lazy clause generation is implemented by defining an alternative model for the domains

D(xi), which is maintained simultaneously. Specifically, Boolean variables are introduced

for each potential value of a variable, named [[xi = j]] and similarly [[xi ≥ j]]. Negating them

gives the opposite, [[xi 6= j]] and [[xi ≤ j− 1]]. Fixing such a literal modifies D to makes

the corresponding fact true in D(xi) and vice versa. Hence these literals give an alternate

Boolean representation of the domain.

In a lazy clause generation solver, the actions of propagators (and search) to change

domains are recorded in an implication graph over the literals. Whenever a propagator f

changes a domain it must explain how the change occurred in terms of literals. That is, each

literal l that is made true must be explained by a clause L→ l where L is a conjunction

(or set) of literals. When the propagator causes failure it must explain the failure as a

nogood, L→ false, where L is a conjunction of literals which cannot hold simultaneously.

Note that each explanation and nogood is a clause. The explanations of each literal and

failure are recorded in the implication graph by introducing an edge to l from each literal

used to infer l (that is, an edge from l′ to l for each l′ ∈L).

The implication graph is used to build a nogood that records the reason for search

failure. We explain the First Unique Implication Point (1UIP) nogood (Moskewicz et al.

2001), which is standard. Starting from the initial failure nogood, a literal l (explained by

L→ l) is replaced in the nogood by L by resolution. This continues until there is at most

one literal in the nogood made true after the last decision. The resulting nogood is learnt,

i.e. added as a clause to the constraints of the problem. It will propagate to prevent search

trying the same subsearch in the future.

Lazy clause generation effectively imports Boolean satisfiability (SAT) methods for

search reduction into a propagation solver. The learnt nogoods can drastically reduce the

search space, depending on how often they are reused (i.e. propagated). Lazy clause gener-

ation can also make use of SAT search heuristics such as activity-based search (Moskewicz

et al. 2001). In activity-based search each literal seen in the conflict generation process

has its activity bumped, and periodically all activities are decayed. Search decides a literal

with maximum activity, which tends to focus on literals that have recently caused failure.
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The reason for considering that lazy clause generation might be so effective for the table

layout problem is the small number of key decisions that need to be made. While there may

be O(nm) cells each of which needs to have an appropriate configuration determined for it,

there are only n widths and m heights to decide. These variables define all communication

between the cells. Hence if we learn nogoods about combinations of column widths and

row heights there are only a few variables involved, and these nogoods are likely to be

highly reusable.

It is straightforward to encode the models given in Section 3 using constraint program-

ming. Constraint programming is more expressive than MIP, allowing the use of non-linear

constraints. Particularly convenient is that constraint programming solvers typically pro-

vide table as a built-in global constraint, with the following semantics:

table((x1, . . . , xm), i, [(v11, . . . , vm1), . . . , (v1n, . . . , vmn)])

≡

1≤ i≤ n∧∀k ∈ [1, n] . i= k⇒ x1 = v1k ∧ . . .∧xm = vmk

That is, it requires x to be the ith element of [v1, . . . , vn]. We can then encode the configu-

ration constraints (cwd, chd)∈ {(w1, h1), . . . , (wn, hn)} directly as:

∃i . table([cwd, chd], i, [(w1, h1) . . . , (wn, hn)])

Constraint programming solvers also provide reified versions of most primitive con-

straints which make it straightforward to model disjunction.

Implementation details

For the constraint programming approaches we used the Chuffed lazy clause generation

solver. Chuffed is a state-of-the-art CP solver, which scored the most points in all categories

of the 2010 MiniZinc Challenge (MiniZinc Challenge 2010) which compares CP solvers.

6. Evaluation

In this section, we evaluate the impact of these modelling techniques when applied to each

class of solver. We then evaluate the behaviour of the best model for each solver as the

problem size increases. All experiments are performed on a 3.0GHz Core2 Duo with 4Gb

RAM running Ubuntu 10.04. For the MIP models, we do not include preprocessing time

(to convert the table into a linear program) in the reported runtimes. The models included

in the evaluation are outlined in Table 1. All cp models are unary-encoded.
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model description
mipbase Basic extent model (standard-encoded)
mipr Extent model with RCSV
mipord Extent model with unary encoding
mipglue Glue model
mipr+p Positional encoding with RCSV
mipcf Cell-free model (unary-encoded, incl. RCSV)

model description
cp Basic extent model (unary-encoded)
cpr Extent model with RCSV
cpr+p Positional encoding with RCSV
cpr+b Position-block encoding with RCSV
cpcf Cell-free model (incl. RCSV)

Table 1 Description of the evaluated models.

time (s) mipbase mipr mipord mipglue mipr+p mipcf

≤ 0.01 973 778 900 674 809 949
≤ 0.10 1158 1120 1167 1052 1130 1236
≤ 1.00 1234 1232 1241 1247 1239 1270
≤ 10.00 1268 1269 1267 1271 1271 1271
> 10.00 3 2 4 0 0 0

Table 2 Comparison of MIP models on the web-simple data-set. We give the number of instances solved

within each time limit.

We first evaluate the model refinements using the corpus of real-world tables described

in Gange et al. (2011). This corpus was created by crawling more than 10,000 web pages,

then extracting non-nested tables (nested tables are discussed in Section 7), resulting in

over 50,000 tables. To choose the goal width for each table, we laid out each web page

for three viewport widths (760px, 1000px and 1250px) intended to correspond to common

window widths. We then discarded any instances for which the HTML layout algorithm

found the optimal solution. This left 2063 table layout problems in the original corpus.

The corpus is partitioned into sets web-simple and web-compound, based on whether

the given table contains any column or row spans. We have expanded the web-compound

data-set with an additional 231 instances not present in the original evaluation (Gange

et al. 2011).

Tables 2 and 3 compare the performance of different refinements to the MIP model.

Perhaps surprisingly, although RCSV (mipr) provides a slight performance improvement

in most cases, in cases where the set of configurations are quite dense, the additional

constraints can introduce considerable overhead without reducing the search space. Indeed,

none of the other individual refinements provide a substantial improvement beyond the

base model. However, the combination of the unary encoding and RCSV with the cell-free

encoding produces a model (mipcf ) that performs substantially better than any of the

component models.

A comparison of the different CP models on the real world data-set is given in Tables 4

and 5. We evaluate the models only using a lazy clause generation solver; a classical non-
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time (s) mipbase mipr mipord mipglue mipr+p mipcf

≤ 0.01 756 706 771 564 675 766
≤ 0.10 916 874 927 843 881 964
≤ 1.00 989 987 997 977 991 1010
≤ 10.00 1007 1007 1009 1005 1008 1013
> 10.00 6 6 4 8 5 0

Table 3 Comparison of MIP models on the web-compound data-set. We give the number of instances solved

within each time limit.

time (s) cp cpr cpr+p cpr+b cpcf

≤ 0.01 1091 1184 1045 1201 1258
≤ 0.10 1219 1259 1224 1264 1271
≤ 1.00 1260 1271 1268 1271 1271
≤ 10.00 1271 1271 1271 1271 1271
> 10.00 0 0 0 0 0

Table 4 Comparison of CP models on the web-simple data-set. We give the number of instances solved within

each time limit.

time (s) cp cpr cpr+p cpr+b cpcf

≤ 0.01 665 841 726 867 952
≤ 0.10 914 954 946 995 1004
≤ 1.00 962 1001 1003 1012 1013
≤ 10.00 975 1006 1008 1013 1013
> 10.00 38 7 5 0 0

Table 5 Comparison of CP models on the web-compound data-set. We give the number of instances solved

within each time limit.

learning CP approach was evaluated in Gange et al. (2011) and found to be totally non-

competitive. The basic model successfully solves all of the web-simple instances; however,

it performs poorly on some of the harder web-compound instances. Augmenting this

model with RCSV (cpr) provides a performance improvement; however, it still fails to solve

some instances which have many symmetric solutions. Using a positional encoding (cpr+p)

solves several of these instances, but causes poor performance on some instances with

large numbers of rows (and incurs an overhead on the non-compound instances). Using the

position-block encoding (cpr+b) allows us to combine the advantages of both encodings;

it solves all web-compound instances, and doesn’t incur an overhead on the long simple

tables. Combining this with the cell-free model (cpcf ) is clearly the best encoding overall.

Tables 6 and 7 collate the results for cp and mipglue – the best models from Bilauca

and Healy (2010, 2011), Gange et al. (2011) – and the improved cell-free models. Table 6

gives the results of the selected methods on the web-simple dataset. All the selected

methods solve all instances within the 10 second time-limit; and the cell-free CP model

clearly outperforms all the other methods, solving all instances in no more than 0.1 seconds.
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time (s) cp cpcf mipglue mipcf

≤ 0.01 1091 1258 674 949
≤ 0.10 1219 1271 1052 1236
≤ 1.00 1260 1271 1247 1270
≤ 10.00 1271 1271 1271 1271
> 10.00 0 0 0 0

Table 6 Number of instances from the web-simple data-set solved within each time limit by selected methods.

time (s) cp cpcf mipglue mipcf

≤ 0.01 665 952 564 766
≤ 0.10 914 1004 843 964
≤ 1.00 962 1013 977 1010
≤ 10.00 975 1013 1005 1013
> 10.00 38 0 8 0

Table 7 Number of instances from the web-compound data-set solved within each time limit by selected

methods.

Results on web-compound are given in Table 7. Only the two cell-free models solved

all instances in less than 10 seconds, with cpcf again being the fastest method. The poor

performance of the original cp model illustrates the impact of the extent encoding in

the presence of compound cells; in many of the failed instances, the cp model quickly

finds the optimum solution, but must test a large number of symmetric solutions to prove

optimality. MIP does not suffer from the same difficulties, as the linear relaxation quickly

determines that the symmetric solutions cannot improve the objective function. Indeed,

there is very little performance difference between mipcf using the extent encoding and the

position-block encoding.

While all the methods perform well on the real-world instances, we are also interested in

how the solver performance scales. We generated a set of artificial tables to test the solver

performance as the number of rows, number of columns, and frequency of compound cells

increases. Artificial n×m tables were generated by selecting a random k-word piece of

text for each cell, where k is chosen from a normal distribution with µ= 6, σ = 3 (with a

minimum of 1 word per cell) – the text is taken from the Project Gutenberg edition of The

Trial (Kafka 1925, 2005). Let minW (resp. maxW ) be the width of the table when each

cell is assigned its narrowest (widest) configuration. We then define the squeeze of a width

W as W−minW
maxW

. For these experiments, we selected a squeeze of 0.25. Given the considerable

difference in performance between methods, all times are shown on a log-scale.

Figure 5 gives the results on r× 10 tables as r is varied between 10 and 200. The MIP

approaches clearly scale better on these instances than the other methods. This is likely



Author: Article Short Title
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 21

50 100 150 200

1
e
−

0
2

1
e
−

0
1

1
e
+

0
0

1
e
+

0
1

1
e
+

0
2

r

ti
m

e

cp
cp.cf
mip.glue
mip.cf

Figure 5 Results for artificially constructed r× 10 tables. Times are in seconds. Missing entries indicate a time-

out.

because, although the number of rows increases, the number of variables that are binding

on the width constraint remains the same.

Figure 6 shows performance on 10 × c tables. In this case, the two cell-free models

scale considerably better than the other methods. Interestingly, cpcf solves these instances

slightly faster than mipcf . This is likely because, with only 10 rows, both methods can

prove optimality relatively easily; and the lazy clause generation solver has slightly less

overhead when propagating values across the cell configuration constraints.

We also tested performance on tables of a fixed size as the number of compound cells

was increased. As the cell-free models solve 10× 10 tables too quickly to give meaningful

results, we constructed 20× 20 tables. Text for a w × h compound cell is again selected

from a normal distribution, but with µ= 6wh. In this case, there isn’t a uniform increase

in difficulty; although introducing compound cells introduces a more complex structure to

the table, it also reduces the overall number of cells. Nevertheless, the cell-free models are

uniformly the most robust approaches, both mipcf and cpcf being competitive.

7. Extensions

Up until now we have only considered layout of a flat table without any designer constraints.

In this section we investigate how our approaches can be extended to handle nested tables

and designer constraints.
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Figure 6 Results for artificially constructed 10× c tables. Times are in seconds. Missing entries indicate a time-

out.
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Figure 7 Results for artificially constructed 20 × 20 tables with an increasing proportion of compound cells.

Missing entries indicate a time-out.

As we saw in Section 3 designer constraints are specific to a table and useful designer

constraints specify that column widths or row heights are fixed ratios of each other or the

overall table width, or have a fixed size. Such designer constraints give rise to simple linear
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A B

C
α β

γ δ

Figure 8 A small instance of a nested table. A, B and C are primitive cells in the outer table. Cell D contains

a sub-table with cells α through δ.

constraints over the column widths or row heights so are readily handled using generic

solving techniques such as MIP or CP.

In practice many tables contain other tables. HTML tables, for example, allow table cells

to contain arbitrary HTML elements which can be tables or text or a mixture of both. The

simplest approach is to perform table layout recursively, using the table layout algorithm

to produce a set of minimal width/height configurations for the innermost tables, and

then work outwards at each stage having the complete set of minimal configurations for

the table’s cells. We call this the recursive approach. The main disadvantage is that the

number of minimal configurations for a table can be very large, meaning that this approach

is expensive.

Usually in nested tables the cells do not contain arbitrary mixtures of tables and other

content. Much more commonly they follow the rule that a table cell either contains a nested

table and nothing else or it contains HTML content but no table. In this case we can solve

the nested table by flattening the nested tables to give a single non-recursive optimisation

problem. If cell d contains a table T d with widths wd and heights hd then we recursively

generate the constraints for T d except for the maximum width requirement and also add

the constraints

cwd =wd1,nT
(w) ∧ chd = ht1,mT

(h)

to constrain the configuration for cell d to be a layout for T d. The height of the outermost

table is then minimised with respect to the complete set of generated constraints.
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Example 6. Consider the small nested table shown in Figure 8. The constraints gen-

erated for the inner table are:

φD =

(cwd, chd)∈Cd, ∀d∈ {α,β, γ, δ}

∧ ht1,1(h
D)≥ chd, ∀d∈ {α,γ}

∧ ht2,2(h
D)≥ chd, ∀d∈ {β, δ}

∧ wd1,1(w
D)≥ cwd, ∀d∈ {α,β}

∧ wd2,2(w
D)≥ cwd, ∀d∈ {γ, δ}

∧ chD = ht1,2(h
D)

∧ cwD =wd1,2(w
D)

Once we have variables (cwD, chD) for the dimensions of the inner table, we can construct

the model for the outer table as usual:

find w and h that minimize ht1,2(h) subject to

(cwd, chd)∈Cd, ∀d∈ {A,B,C}

∧ ht1,1(h)≥ chd, ∀d∈ {A,C}

∧ ht2,2(h)≥ chd, ∀d∈ {B,D}

∧ wd1,1(w)≥ cwd, ∀d∈ {A,B}

∧ wd2,2(w)≥ cwd, ∀d∈ {C,D}

∧ φD

∧ wd1,2(w)≤W

�

It is straightforward to solve the flattened set of constraints using either MIP or CP

techniques. All the modelling techniques described in Section 3 can also be applied to

problems with nested tables, with the exception that RCSV cannot be applied to spans

containing sub-tables.

8. Conclusion

Treating table layout as a constrained optimization problem allows us to use powerful

generic approaches to combinatorial optimization to solve these problems to optimality.

We have given a variety of models for table layout and evaluated these using both MIP

and constraint programming with lazy clause generation implementations.

Our first empirical evaluation used a corpus of over 2,000 HTML tables collected from the

Web that were hard to solve in the sense that the standard HTML table layout algorithm
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did not find the minimal height layout. We found that all methods worked quite well and

solved almost all problems in less than 1 second, the cell-free CP model being uniformly

fastest.

In our second empirical evaluation we “stress-tested” the best methods from the pre-

vious evaluation using artificial table layout examples of increasing number of columns,

rows or percentage of compound cells. In this case we again found the cell-free encodings

dominated, the MIP model being slightly more robust on these artificial instances.

Both approaches can be easily extended to handle designer constraints on table widths

such as enforcing a fixed size or that two columns must have the same width. They can

also be extended to a simple form of nested tables, where the cell contents are allowed to

either be a table or text, but not a combination. The case when complex combinations of

text and tables are allowed is more difficult, and is something we plan to pursue.
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