
Under consideration for publication in Theory and Practice of Logic Programming 1

Failure Tabled Constraint Logic Programming

by Interpolation ∗

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

(e-mail: {gkgange,jorge.navas,schachte,harald,pstuckey}@unimelb.edu.au)

Abstract

We present a new execution strategy for constraint logic programs called Failure Tabled CLP.
Similarly to Tabled CLP our strategy records certain derivations in order to prune further
derivations. However, our method only learns from failed derivations. This allows us to compute
interpolants rather than constraint projection for generation of reuse conditions. As a result,
our technique can be used where projection is too expensive or does not exist. Our experiments
indicate that Failure Tabling can speed up the execution of programs with many redundant
failed derivations as well as achieve termination in the presence of infinite executions.

1 Introduction

Constraint Logic Programming (clp) (Jaffar and Lassez 1987) has been successfully used

in many different contexts such as management decision problems, trading, scheduling,

electrical circuit analysis, mapping in genetics, etc. (Marriott and Stuckey 1998). How-

ever, its standard execution model based on depth-first search with left-to-right clause

selection suffers from two major drawbacks inherited from Logic Programming (lp):

1. the derivation tree containing all program executions can be huge even if many

subtrees may be redundant, and

2. it is incomplete in the presence of infinite derivations since the execution may choose

these rather than executing the finite ones.

To tackle these issues, an alternative lp execution strategy called Tabling was pro-

posed (Tamaki and Sato 1986; Warren 1992). This strategy records calls and their an-

swers, for reuse in future calls. Tabled Constraint Logic Programming (tclp) (Codognet

1995) is a natural extension of Tabling to clp programs. tclp makes explicit the re-

quirement of the tabling execution on the constraint domain. For instance, to detect

when a more particular call can consume answers from a more general one, it uses con-

straint entailment. And for determining the calling constraint for a tabled call, it needs

to make use of constraint projection. The projection operation is a particularly onerous

requirement. Many constraint domains have no projection operation (or weak projection

only) (Marriott and Stuckey 1998), and for those that do, the cost is often prohibitive.

∗ We wish to thank Jose. F. Morales for providing support integrating MathSAT into Ciao and Manuel
Carro and Corneliu Popeea for fruitful discussions about tabling and interpolation, respectively. We ac-
knowledge support of the Australian Research Council through Discovery Project Grant DP110102579.

2 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

?- 0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15, p1(X,Y,R) .

p1(X1, Y1, R1) :- X ′

1 = X1 + Y1 + 2, p2(X ′

1, Y1, R1) .

p1(X2, Y2, R2) :- X ′

2 = X2 + Y2 + 1, /*?*/ p2(X ′

2, Y2, R2) .

p2(X3, Y3, R3) :- Y ′

3 = Y3 + 1, p3(X3, Y
′

3 , R3) .

p2(X4, Y4, R4) :- Y ′

4 = Y4 + 2, p3(X4, Y
′

4 , R4) .

p3(X5, Y5, R5) :- R5 = X5 + Y5 − 1 .

p3(X6, Y6, R6) :- R6 = X6 + Y6 .

Fig. 1. A recursion-free clp program with redundant derivations

We present Failure Tabled Constraint Logic Programming (ftclp), a new execution

strategy that augments the classical top-down clp execution algorithm to benefit from

pruning redundant failed derivations that can avoid non-terminating executions without

the use of constraint projection. Our algorithm executes the clp program in a top-down

manner while labelling nodes in the derivation tree with two kinds of objects:

1. A reuse condition is a formula that, if it is implied by a goal’s constraint store (the

constraints accumulated during the execution of the derivation of the goal), then

it is guaranteed that no new answers can be generated, and thus, the search can

stop and backtrack to another choice point.

2. A set of answers for a goal is the constraint stores resulting from the successful

derivations for the goal.

Whenever a new goal is executed and its constraint store implies the reuse condition of

a recorded goal, the current clp execution can be stopped and the set of answers from

the more general state can be consumed without the need of running that goal. We show

that this is possible even in the presence of recursive clauses with infinite derivations.

To generate reuse conditions we use interpolation (Craig 1957), a technique that has

attracted much interest in counterexample-driven verification during the last decade.

We start by describing our method through a recursion-free clp program. Later, we

will show how to deal with recursion and infinite derivations.

Example 1 (Recursion-Free Clauses)

Consider the query/program in Figure 1. Its depth-first, left-to-right derivation tree is

shown in Figure 2. Each oval node represents the call to a body atom and an edge denotes

a derivation step. A successful derivation is marked with a (green) “tick” symbol and a

failed derivation with a (red) “cross” symbol. It is easy to check that this tree has seven

failed derivations in addition to the successful one yielding (X = 5, Y = 3, R = 15).

Our method takes advantage of the fact that some failed derivations can be summarized

by compact explanations which can be used to produce a smaller derivation tree while

preserving all original answers. The non-dashed fragment of Figure 2 gives the derivation

tree computed by our method. Note that the clauses of p2/3 are explored only once.

From the leftmost derivation we collect in π all its constraints (including both primitive

and user-defined ones). That is, π ≡ [0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15, p1(X,Y,R),

X ′

1 = X + Y + 2, p2(X ′

1, Y,R), Y
′

3 = Y + 1, p3(X ′

1, Y
′

3 , R), R = X ′

1 + Y ′

3 − 1] . Note

that we rename variables accordingly whenever there is a match between a body atom

and a clause head. For instance, the match between the atom p1(X,Y,R) and the head

Failure Tabled Constraint Logic Programming by Interpolation 3

Interpolant:

X ′

1 + Y + 2 ≤ R

subsumed

0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15

p1(X,Y,R)

X ′

1 = X + Y + 2

p2(X ′

1, Y, R)

Y ′

3 = Y + 1

p3(X ′

1, Y
′

3 , R)

R = X ′

1 + Y ′

3 − 1

✗

R = X ′

1 + Y ′

3

✗

Y ′

4 = Y + 2

p3(X ′

1, Y
′

4 , R)

R = X ′

1 + Y ′

4 − 1

✗

R = X ′

1 + Y ′

4

✓

X ′

2 = X + Y + 1

p2(X ′

2, Y, R)

p3(X ′

2, Y
′

3 , R)

✗ ✗

p3(X ′

2, Y
′

4 , R)

✗ ✗

Fig. 2. The ftclp derivation tree (solid edges) for the program in Figure 1. Dashed parts show
the additional parts to make up the clp tree. The curved arrow shows the shortcut enabled by
the interpolant.

p1(X1, Y1, R1) produces the renaming {X1 7→ X,Y1 7→ Y,R1 7→ R} which transforms

the first clause of p1/3 to: p1(X,Y,R) :- X ′

1 = X + Y + 2, p2(X ′

1, Y,R) .

The constraint store contains the formula

(0 ≤ X ≤ 5)∧(0 ≤ Y ≤ 3)∧(R ≥ 15)∧(X ′

1 = X+Y +2)∧(Y ′

3 = Y +1)∧(R = X ′

1+Y ′

3−1)

which is the conjunction of all primitive constraints in π. Now, this formula is unsatisfi-

able, so the derivation fails. But before backtracking we want to record some explanation

of the failure. This is the role of an interpolant.

Given two formulas A and B such that the query A∧B is unsatisfiable, an interpolant

is a formula I that over-approximates A (that is, A |= I) while preserving the falsity of

the query (that is, I ∧B = false). The other essential property of an interpolant is that

the only variables allowed in I are those common to A and B.

We partition π into A and B where A contains the primitive constraints added up to

p2(X ′

1, Y,R), whereas B contains the primitives added subsequently:

A = {0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15, X ′

1 = X + Y + 2}

B = {Y ′

3 = Y + 1, R = X ′

1 + Y ′

3 − 1}

By the chosen partitioning, the common variables between A and B are X ′

1, Y , and R—

exactly the variables of the body atom p2/3 called inside the first clause of p1/3 (after

renaming as explained in Section 2). Interpolants can be computed by most SMT-solvers

as a by-product of unsatisfiability proofs. As an example, a valid interpolant computed

by MathSAT (Griggio 2012) is X ′

1 + Y + 2 ≤ R which can be recorded together with

the goal p2(X ′

1, Y,R). The advantage of recording the interpolant I is that whenever we

4 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

come across another call to p2/3 whose current constraints are at least as strong as I, for

example at program point /*?*/, we can, without further ado, consider the call failed.

Interpolants are computed for each atom along π (so for p1(X,Y,R) and p3(X ′

1, Y
′

3 , R)

as well). We have left them out, as p2/3 turns out to be the interesting predicate in the

example. Moreover, we compute an interpolant for each atom L and for every failed

execution within the subtree rooted at L. The interpolant for L is the conjunction of all

the interpolants generated from L’s subtree. In our example, from the second and third

derivations, the interpolants generated for p2(X ′

1, Y,R) do not further strengthen the

interpolant from the leftmost derivation. Using MathSAT we obtain

(X ′

1 + Y ′

3 + 2 ≤ R) ∧ (X ′

1 + Y ′

3 + 2 ≤ R) ∧ (X ′

1 + Y ′

3 + 2 ≤ R) ≡ X ′

1 + Y3 + 2 ≤ R

Note that the fourth derivation will produce the only answer of the program X = 5, Y =

3, R = 15 so no interpolant is generated.

After we backtrack finishing the execution of p1/3’s first clause, we would like to

avoid exploring the clauses of p2/3 again when visiting the program point /*?*/. As

before, we collect all the constraints up to that point π′ ≡ [0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥

15, p1(X,Y,R), X ′

2 = X+Y +1, p2(X ′

2, Y,R)]. To be able to reuse the interpolant from

p2(X ′

1, Y,R) we must apply the renaming {X ′

1 7→ X ′

2}. Then, we can check if the current

constraint store entails the interpolants stored for p2(X ′

1, Y,R) after renaming

(0 ≤ X ≤ 5) ∧ (0 ≤ Y ≤ 3) ∧ (R ≥ 15) ∧ (X ′

2 = X + Y + 1) |= X ′

2 + Y + 2 ≤ R

and this entailment is easily seen to hold.

Next we try to reuse the answer computed so far. Like tclp, ftclp cannot directly

consume answers since an answer may not be possible with the constraint store of the

subsumed goal. So when we attempt to reuse an answer, we discard it if it becomes a

failure under the execution of the subsumed goal. In our example, the answer from the

fourth derivation of Figure 2, effectively, X ′

2 = 10, Y = 3, R = 15, when renamed and

conjoined with the current store, leads to failure. Thus, no more answers are generated.

If the entailment had failed then we would have to re-explore the clauses of p2/3.

Those explorations generate new interpolants for each clause. Then, we can either form

disjunctive interpolants or record each one separately as a different entry. The former can

provide more pruning than the latter at the expense of more expensive entailment tests.

In our experiments, we have implemented both and failed to observe any improvement

from keeping disjunctive interpolants. �

Note that the approach relies, for correctness, on depth-first traversal of the derivation

tree. The reuse of an interpolant I for atom H assumes that I has come about as the

result of one or more complete derivations from H.

It is not hard to see that interpolation corresponds to a weak form of constraint

projection, but an interpolant provides unique benefits:

1. it can be computed in linear time relative to the size of the unsatisfiability proof;

2. many useful theories, for which we do not have efficient constraint projection algo-

rithms or any projection at all, are equipped with interpolation: integer and real

linear arithmetic, uninterpreted functors, arrays, etc.; and

3. it can be quite effective as a reusable condition for pruning other derivations.

Failure Tabled Constraint Logic Programming by Interpolation 5

〈G′ | C′〉 ,















〈L2, . . . , Lm | C ∧ L1〉 if L1 is primitive and C ∧ L1 is satisfiable
〈L′

1, . . . , L
′

k, L2, . . . , Lm | C〉 if L1 is user-defined and
(H:-L′

1, . . . , L
′

k) ∈ unify(L1, vars(C) ∪ vars(G))
〈� | false〉 otherwise

Fig. 3. The result of a derivation step 〈G | C〉 ⇒ 〈G′ | C′〉 where G ≡ L1, . . . , Lm.

However, interpolants are computed only from failed derivations, and so our method

should not be considered a substitute for projection-based tclp.

2 Preliminaries

We assume the reader is familiar with the operational semantics of Constraint Logic

Programming (clp) as described by, for example, Marriott and Stuckey (1998). Here we

define Craig interpolants, a key concept in our method.

The operational semantics of a clp program is based on the concept of derivation. A

state σ is a pair written 〈G | C〉 where G is a goal and C is a constraint. A goal, G, is

a sequence of literals L1, . . . , Lm where m ≥ 0 and each literal is either an atom or a

primitive constraint. We assume for simplicity that clauses have been translated so that

every atom has distinct variables as arguments. In case m = 0, we say the goal is empty,

denoted by the symbol �. C is called the constraint store. A derivation step from 〈G | C〉

to 〈G′ | C ′〉, written 〈G | C〉 ⇒ 〈G′ | C ′〉, is defined in Figure 3. Given two atoms A and

A′, let σ = variant(A,A′) be a renaming such that σ(A) = A′ or σ = ⊥ if there is no such

renaming (the atoms are for a different predicate). The function unify(L,W) returns the

set of all renamed rules originated from matching a selected atom L with the head of a

rule renamed to be L and all other variables have been suitably renamed so that all are

disjoint from the set W .

A derivation for state 〈G0 | C0〉 is the sequence of states 〈G0 | C0〉 ⇒ 〈G1 | C1〉 ⇒ . . .

such that for each i ≥ 0 there is a derivation step from 〈Gi | Ci〉 to 〈Gi+1 | Ci+1〉.

A derivation tree for a goal G and program P is a tree with states as nodes where each

path corresponds to a derivation of G, and branches occur in the tree whenever there is

a choice of rule with which to rewrite a user-defined constraint.

Definition 1 (Craig Interpolant)
Given formulas A,B with A ∧ B unsatisfiable, a Craig interpolant is a formula P , such

that: (1) A |= P , (2) P ∧B is unsatisfiable, and (3) vars(P) ⊆ vars(A) ∩ vars(B). �

An interpolant P allows us to discard irrelevant information from A not needed to

ensure unsatisfiability with B. Thus, P is an over-approximation of A. Importantly, P

is defined only in terms of the variables shared by A and B. In this sense, interpola-

tion acts as a specialized form of projection. Efficient interpolation procedures exist for

quantifier-free fragments of theories such as linear real and integer arithmetic, uninter-

preted functions, pointers and arrays, and bitvectors. In all these cases, interpolants can

be extracted from the refutation proof in time linear in the size of the proof. We refer

the reader to Cimatti et al. (2008) and McMillan (2011) for details.

Note that we would like to annotate multiple points along the failed derivation since

our ultimate goal is to annotate the whole derivation tree with interpolants. Therefore,

it is convenient to use the following definition.

6 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

Definition 2 (Inductive Sequence Interpolant)
Given a sequence of formulas π ≡ [F1, . . . , Fn], [P 0, . . . , Pn] is an inductive sequence of

interpolants (also called a path interpolant) (Jhala and McMillan 2006) for π when:

1. P 0 = true and Pn = false,
2. ∀ (1 ≤ i ≤ n) : P i−1 ∧ Fi |= P i, and
3. ∀ (1 ≤ i < n) : vars(P i) ⊆ vars(Fi) ∩ vars(Fi+1)

That is, the i-th element of the interpolant is a formula in the common language of Fi

and Fi+1, and is a logical consequence of the first i elements of π. �

We will assume a procedure SeqIntp that takes a sequence of formulae [F1, . . . , Fn] and

returns an inductive sequence of interpolants [P 0, . . . , Pn]. Note that since Pn = false

the formula F1 ∧ . . . ∧ Fn must be unsatisfiable.

3 A Tabled CLP Algorithm with Interpolation

We present in Figure 4 a new clp execution algorithm that, given an initial state 〈G | C〉,

produces all its answers. During this process, the algorithm explores the derivation tree

corresponding to the execution of 〈G | C〉, while recording knowledge about the failed

derivations encountered during the traversal as well as all the answers. The main purpose

is to eliminate future executions which cannot lead to additional answers. There are two

tables at the heart of our algorithm. The Failure table (FT) maps an atom A appearing

in a derivation to an interpolant (its reuse condition). The Answer table (AT) maps an

atom A to the set of answers generated so far during the execution of A.

While AT has an entry per predicate, FT has at least one entry per clause head. It is

to facilitate this that different clause heads for the same predicate use different variables,

as exemplified in Figure 1. The reason for the distinction is that a given predicate can

be explored repeatedly during the execution of the program, and we want to store inter-

polants for each of these explorations separately. Initially, FT maps all entries to ⊥ and

AT maps all entries to ∅. For clarity of presentation, both tables will be global variables.

Before describing the algorithm, we stress that FailureTabling (as described in

Figure 4) will run forever if an infinite derivation is executed. In the next section, we will

describe how to extend the algorithm to deal with this difficult problem.

FailureTabling takes two inputs, an initial state 〈G | C〉 and Path, a stack that

contains all constraints (both primitive and user-defined) along the current derivation.

Its output is the set of answers generated during the execution of 〈G | C〉.

If the goal is empty we simply return a singleton set with the current store as the unique

answer. Otherwise if the first literal L1 is a primitive constraint and satisfiable with the

current store, we add it to the store and continue execution. If it is not satisfiable, we

update FT with the interpolants generated from the failed derivation.

Generation and combination of interpolants. Since Path is a stack that contains

all the constraints along the current derivation, it is a sequence of the form

[c11, . . . , c
1
k1
, H1, c

2
1, . . . , c

2
k2
, H2, . . . , c

n−1
1 , . . . , cn−1

kn−1
, Hn−1, c

n
1 , . . . , c

n
kn

]

where cij is a primitive constraint and Hi is an atom. From this, we can form the sequence

F = [c11 ∧ · · · ∧ c1k1
, c21 ∧ · · · ∧ c2k2

, · · · , cn−1
1 ∧ · · · ∧ cn−1

kn−1
, cn1 ∧ · · · ∧ cnkn

]

Failure Tabled Constraint Logic Programming by Interpolation 7

FailureTabling(〈G | C〉, Path)
if G = � then return {C}
Let G be L1, . . . , Lm for some m ≥ 1
if L1 is primitive then

Path.push(L1)
if C ∧ L1 is satisfiable then

Aret := FailureTabling(〈L2, . . . , Lm | C ∧ L1〉, Path)
else

FT := CombineIntp(FT, Path,SeqIntp(Path))
Path.pop

else % L1 is a user-defined constraint
if for some H and σ = variant(H,L1), C |= σ(FT [H]) then

Aret := {σ(C′) ∧ C | C′ ∈ AT (H), σ(C′) ∧ C is satisfiable}
Path.push(not σ(FT [H]))
FT := CombineIntp(FT, Path,SeqIntp(Path))
Path.pop

else

Rs := unify(L1, vars(C) ∪ vars(G)))
Path.push(L1)
Aret := ∅
foreach L1:-L

′

1
, . . . , L′

k
in Rs do

Aret := Aret∪ FailureTabling(〈L′

1
, . . . , L′

k
, L2, . . . , Lm | C〉, Path)

Path.pop
AT := AT [L1 7→ Aret ∪AT (L1)]

return Aret

Fig. 4. Tabled CLP algorithm based on interpolation.

Then, SeqIntp(F) will return a sequence of inductive interpolants [P 0, . . . , Pn]. From

those, P 1, . . . , Pn−1 (recall that P 0 = true and Pn = false) can be used directly as

reuse conditions for atoms H1, . . . , Hn−1, respectively. Abusing notation, the procedure

SeqIntp will also take a path constraint Path as input and transform it into a sequence

of formulae F , as described above, before calling the interpolation algorithm. Once the

interpolants have been generated we need to record them in the failure table. This is

the purpose of the procedure CombineIntp that takes as arguments FT , the current

path constraints Path, a sequence of interpolants as returned by SeqIntp and returns

an updated FT .

CombineIntp(FT , Path, [P1, . . . , Pn−1])

foreach Hi in Path do

if FT (Hi) = ⊥ then FT := FT [Hi 7→ true]

FT := FT [Hi 7→ Pi ∧ FT (Hi)]

return FT

Pruning and reusing answers. When we reach a user-defined constraint L1 we first

check whether the failure table has an answer for atomH that can be reused. If the current

store C implies the suitably renamed interpolant FT [H], we filter the answers for H to

find those applicable to the current state 〈G | C〉. In general we may have multiple entries

in FT that are variants of L1. Thus, we check each of these entries to see if the entailment

test succeeds. Moreover, we need to generate interpolants from the subsumed derivation.

Otherwise, it would be unsound. Note that we know that C |= σ(FT [H]) or equivalently,

C ∧ not σ(FT [H]) is unsatisfiable. Note also that Path contains all constraints in C

but it does not contain not σ(FT [H]). So we simply push not σ(FT [H]) temporarily

onto Path and call SeqIntp. As before, the new interpolants must be combined by the

procedure CombineIntp which will further update FT . Otherwise we consider all the

8 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

rules that match L1 and recursively visit the resulting states, collecting all the answers

in Aret. When we pop L1 off the path, we are guaranteed that the interpolant stored in

FT [L1] is correct, since it then considers all possible derivations for L1.
1 Finally, before

leaving the call to FailureTabling we update the answers attached to L1 in the answer

table AT to include Aret.

We can show that FailureTabling returns the correct answers for a state, by showing

that when the FT lookup succeeds, it returns the correct answers for the derivation.

Theorem 1

Given a goal G, the algorithm in Figure 4 preserves all answers. That is,

FailureTabling(〈G | true〉, []) = {C | 〈G | true〉 ⇒∗ 〈� | C〉, C is satisfiable} ✷

We observed during the evaluation of our method (discussed in Section 5) that if we

generate an interpolant for each atom within a failed derivation, the algorithm described

in Figure 4 can degrade. The reason is that the number of calls to the interpolation

procedure is too high. Thus, it is important to reduce the number of calls to interpolation.

The following lemma provides a key optimization.

Lemma 1

Let π1 = [F1, . . . , Fk, Fk+1, . . . , Fn] and π2 = [F1, . . . , Fk, F
′

k+1
, . . . , F ′

m] be two formula

sequences, and let [P0, . . . , Pn] and [P ′

0, . . . P
′

m] be two corresponding inductive sequence

interpolants. If Pk |= P ′

k then [P0, . . . , Pk, P
′

k+1
, . . . , P ′

m] is a correct inductive sequence

interpolant for π2. ✷

This allows us to start computing interpolants backwards from P ′

m in a lazy manner

and stop if for some point i, Pi |= P ′

i where Pi is the current interpolant at that point,

without the need to eagerly compute all the interpolants from each failed derivation.

4 How to Handle Infinite Derivations

The algorithm FailureTabling does not give any special treatment to recursive clauses.

Therefore, it will not terminate in the presence of infinite derivations. We propose a simple

extension based on counter instrumentation (Gulwani et al. 2009; McMillan 2010) that

can produce complete and finite derivation trees even with infinite derivations:

1. Transform the original program P into a new program P ′ by adding a new counter

variable ki to each recursive clause i such that ki is decremented by one each time a

goal is called recursively. Moreover, each recursive clause fails if ki < 0. The purpose

of this transformation is to generate some fake failed derivations (depending on ki

counters) within recursive clauses so that the clp execution can terminate.

2. Set each di = 0 (these are the limits on recursive calls for clause i)

3. Run FailureTabling on P ′ with ki = di
4. After termination of FailureTabling extract from each failed derivation the deep-

est atom L that corresponds to a recursive clause i and whose interpolant involves

ki. Then, check if the procedure Check Inductive Invariant(L,i) succeeds for

every L. If yes, we can stop. Otherwise, set di = di + 1 and go to Step 3.

1 Here we assume that there are no two syntactically identical recursive calls—renaming can ensure this.

Failure Tabled Constraint Logic Programming by Interpolation 9

x := i ; y := j;
while (x 6= 0) {

x := x− 1;
y := y − 1;

}
if (i == j) assert(y ≤ 0);

?- X = I, Y = J , l(X,Y, I, J) .

l(X1, Y1, I1, J1) :- X1 6= 0, X ′

1 = X1 − 1, Y ′

1 = Y1 − 1,
l(X ′

1, Y
′

1 , I1, J1) .

l(X2, Y2, I2, J2) :- X2 = 0, error(X2, Y2, I2, J2) .

error(, Y3, I3, J3) :- I3 = J3, Y3 > 0 .

Fig. 5. C and clp version of a verification example from (Jhala and McMillan 2006).

We now describe how the procedure Check Inductive Invariant(L,i) performs the

inductive invariant test. During the execution of FailureTabling we keep track, for

every failed derivation, of the atom L at level di that corresponds to a recursive clause

and whose interpolant may depend on ki (that is, the interpolant is fake). Moreover, we

identify each ancestor Lanc of L. For a given derivation π in which L appears, the set of

all its ancestors is all the occurrences of the same recursive predicate corresponding to L

that is defined above on π (that is, at level < di).

For every atom L we then repeat the following process until there are no more candi-

dates to check (we have at most di candidates for each L) or a candidate is confirmed

to be an inductive invariant for every L. Let ILanc
be the interpolant (our candidate) of

an ancestor Lanc after ignoring the part that involves ki. This can be done by plugging

ki = 0. Then check that ILanc
in conjunction with all the constraints from every possible

derivation from Lanc to L entails the candidate ILanc
after proper renaming.

This process is the analogue of tabling’s completion check, but without the need for

constraint projection. Note that our renaming to perform the entailment test is purely

syntactic and it does not need projection.

We omit details of the entailment test because although straightforward it is quite te-

dious. Instead, we show our method for handling infinite derivations through an example.

Example 2 (Infinite derivations)

clp has been shown a successful model for verifying safety properties in infinite state

systems, see for example Jaffar et al. (2009), Angelis et al. (2012). The resulting Horn

clauses are usually recursive and the goal is to prove that clp model of the program is

empty (that is, no answers). Figure 5 shows a C program from Jhala and McMillan (2006)

and its corresponding clp translation. We describe now how our method can terminate

and prove that the derivation tree has no successful derivations.

We first show the code of the recursive predicate after the counter instrumentation-

based transformation that ensures a finite derivation tree:

l(X1, Y1, I1, J1,K1) :- K1 ≥ 0, X1 6= 0, X ′

1 = X1 − 1, Y ′

1 = Y1 − 1,K ′

1 = K1 − 1,

l(X ′

1, Y
′

1 , I1, J1,K
′

1) .

l(X2, Y2, I2, J2,) :- X2 = 0, error(X2, Y2, I2, J2) .

Let us assume we fix di = 0 and let us focus on the interpolants generated for the atom

l(X,Y, I, J,K). From one derivation (the one corresponding to the recursive clause)

we obtain K ≤ 0 and from the derivation that explores error/4 (the non-recursive

clause) we obtain the interpolant Y + I ≤ X + J . Therefore, the resulting interpolant is

P ≡ K ≤ 0∧Y + I ≤ X+J . Unfortunately, we cannot claim to prove the derivation tree

has no solutions yet since the interpolant depends on K which was not originally in the

10 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

clp ftclp ftclp+opt
C Answers Time(s) States Failure Time(s) States Failure Time(s)
150 2 1.7 5112 1056 4.3 4269 862 3.8
200 16 14.4 40342 8302 22.5 16870 3026 18.8
225 58 44.1 116684 23961 47.3 28624 4636 37.5
250 164 138 323154 65865 88.2 43796 6327 67.0
275 451 450 827770 167969 148.6 61276 7529 111.5

Table 1. Execution of a clp program that implements the RCSP problem with data

from the instance rcsp-1 in the OR-library. All answers with cost ≤ C are generated.

program. We then construct the formula P ′ ≡ (P ∧K = 0) to eliminate the dependency

on K. Next we check whether P ′ is an inductive invariant. That is,
C

︷ ︸︸ ︷

(Y1 + I1 ≤ X1 + J1)∧

Π
︷ ︸︸ ︷

(X1 6= 0, X ′

1 = X1 − 1, Y ′

1 = Y1 − 1) |=

C′

︷ ︸︸ ︷

(Y ′

1 + I1 ≤ X ′

1 + J1)

Note that we rename both C and C ′ using substitutions {X 7→ X1, Y 7→ Y1, I 7→ I1, J 7→

J1} and {X 7→ X ′

1, Y 7→ Y ′

1 , I 7→ I1, J 7→ J1}, respectively but once again constraint pro-

jection is not required. In general, Π can be a disjunctive formula encoding the execution

of all body literals. Although this may be expensive, we rely on SMT to deal with it.

Since the entailment test holds, we have proven that the interpolant P ′ ≡ Y + I ≤ X+J

is an inductive invariant and hence, we can finally claim that the derivation tree will

not have answers, that is, the safety property holds. Note that the invariant cannot be

expressed in difference logic. Therefore, a tclp system such as that of Chico de Guzmán

et al. (2012) using a difference logic constraint domain (which has efficient projection)

will run forever. It is worth mentioning that, in general, the interpolant generated may

not be an inductive invariant. In that case, we increment the value of di and repeat the

process (for example, the program t5 in the online appendix requires to fix di = 2). The

process of repeatedly incrementing di could, of course, also be an indefinite one. �

5 Experimental Evaluation

To evaluate our method we have implemented a proof-of-concept clp meta-interpreter2

using the Ciao system (Hermenegildo et al. 2012) and the SMT solver MathSAT (Griggio

2012) for checking satisfiability and generation of interpolants. Our prototype does not

necessarily compute inductive sequence interpolants. This does not affect the use of

Theorem 1 but it does affect the applicability of Lemma 1. Thus, we only make use of

Lemma 1 after checking that a sequence interpolant is inductive.

All experiments3 have been run on a single core of a 2.7GHz Core i7-26202M with 8GB

memory. The first experiment compares clp programs that implement the RCSP problem

examined in Jaffar et al. (2008). The results are shown in Table 1. Columns labelled with

clp, ftclp, and ftclp+opt is our interpreter without pruning, with pruning, and with

pruning and optimization using Lemma 1, respectively. Clearly as the size of derivation

2 Available at http://code.google.com/p/ftclp together with all test programs.
3 It would be natural to compare against the system of Chico de Guzmán et al. (2012). However, at
the time of writing, this system is not entirely stable, and we observed incorrect behaviour in the two
experiments.

Failure Tabled Constraint Logic Programming by Interpolation 11

Program ftclp BLAST HSF TRACER
t1 ∞ ∞ 0.3s ∞
t1-a 0.1s ERR 0.2s ∞
t2 0.1s 0.1s UNSAFE 0.1s
t3 0.1s 0.1s 0.25s 0.1s
t4 0.1s 0.6s 0.3s 0.2s
t5 0.2s 0.2s 0.3s 0.1s

Table 2. Comparing ftclp with several verifiers for some verification problems. For

ftclp we show execution time of running the clp encodings. For the rest, we show the

time to verify the C programs. ERR indicates an error, ∞ timeout after 5 minutes, and

UNSAFE is a false positive.

tree (column States) grows, the number of failed derivations (column Failure) grows and

failure tabling becomes more and more competitive. The overhead of computing and

looking up interpolants eventually pays off in terms of a massive search reduction.

Although the results of this experiment are promising, we recognize that the execution

times obtained by ftclp+opt are not yet fully satisfactory. In a preliminary experiment

we modified our interpreter to use the simplex method implemented in the Ciao system

and compared with the same interpreter with MathSAT. We observed that the former

was at least one order of magnitude faster than the latter. We suspect that the method

implemented in Ciao is more incremental that the one in MathSAT.

The second experiment compares the verification times of several C programs, each

taken from different verification publications. In the interest of the readers, we give

each original C program and its clp encoding in the online appendix. Table 2 shows

the execution times for ftclp in running the clp encodings. There are no successful

derivations for any of these programs (since the conditions to be verified holds in each

case). We also show the verification times of three state-of-the-art verifiers: BLAST (Beyer

et al. 2007), HSF (Grebenshchikov et al. 2012) and TRACER (Jaffar et al. 2012) taking the

C programs as inputs. Both HSF and TRACER use clp as intermediate representation.

As can be seen, ftclp is highly robust, and comparable to specialised verification tools

on these problems, while it can achieve termination in cases where other tools cannot.

6 Related Work

In previous sections we compared with tclp through several examples We review now

works from other areas (mostly from verification) which inspired us.

Jaffar et al. (2008) proposed a solution for a combinatorial optimization problem, the

Resource-Constrained Shortest Path (RCSP). The RCSP problem is modelled as a clp

program and a dynamic programming algorithm computes either strongest or weakest

preconditions for pruning derivations that violate the maximum resource consumption.

Since it is an optimization problem the method keeps track of only one answer, namely the

optimal one. Jaffar et al. (2009) focus on the problem of verification of safety properties

in loop-free C programs.4 The C program is again modelled as a clp program, and then

verification boils down to checking whether the program does not have any successful

4 Although the method can be extended to handle loops assuming loop invariants are provided.

12 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

derivation. The method only prunes finite derivations and since this is a decision problem,

no answers are generated. Our method can be seen as a generalization of these works.

Rather than solving specific problems we aim at improving arbitrary (recursive) clp

programs. Another important difference is that Jaffar et al. (2008) and Jaffar et al.

(2009) generate reuse conditions by computing either strongest or weakest preconditions

which are defined in terms of constraint projection.

Another approach for proving safety properties computes an over-approximation of

the set of reachable states via predicate abstraction (Graf and Säıdi 1997). The set of

predicates π is usually very coarse (for example, π = ∅) and new predicates are added into

π whenever a counterexample is found. Interpolation has proven a very effective technique

to discover those predicates (Henzinger et al. 2004). Gupta et al. (2011a) observed that

the interpolation problem can be reduced to solving a set of recursion-free Horn clauses.

They proposed an algorithm that builds a derivation tree proving the unsatisfiability of a

set of recursion-free Horn clauses and augments it with some inference rules to compute

interpolants over linear rational arithmetic. Gupta et al. (2011b) and Grebenshchikov

et al. (2012) follow this line of research and extend it for uninterpreted functions and

further applications such as inter-procedural interpolants. A very recent work also using

clp clauses as intermediate representation is Rümmer et al. (2013) which introduces

disjunctive interpolants solving a more general class of problems in one step by handling

multiple paths simultaneously.

These works encode into clp clauses only the set of spurious counterexamples encoun-

tered by the predicate abstraction-based exploration. Since these counterexamples are

spurious (i.e. unsatisfiable) and finite, the set of clp clauses is ensured to be recursion-

free and without answers. Moreover, they rely on building a derivation tree which can

be of exponential size relative to the number of clauses since no pruning techniques are

employed. Our approach can be also seen as an interpolation method based on Horn

clauses and, in fact, it subsumes previous works since it can handle (recursive) Horn

clauses producing also disjunctive interpolants without restriction (e.g . Rümmer et al.

2013 handle only body disjoint Horn clauses). Moreover, these methods can benefit from

our pruning technique to mitigate their exponential search space.

7 Conclusions and Future Work

We have presented a new clp execution strategy called Failure Tabling (ftclp) that

allows the pruning of redundant failed derivations, and can produce, in some cases,

a finite derivation tree even in the presence of infinite executions. From the verification

community we have borrowed ideas developed for symbolic reachability with interpolation

and we have adapted these to the new setting of executing clp programs. Interpolation

can remove the tyrannic dependency in tclp on projection algorithms which may either

not exist or be too inefficient. However, ftclp should not be seen as a substitute for

tclp since they provide different benefits.

Future work should involve better assessing of the practical benefits of ftclp with a

broader set of programs, the generation of inductive sequence interpolants (e.g . Christ

et al. 2012), and the integration of our method within a tclp system (such as Chico de

Guzmán et al. 2012) to take advantage of a real tabling implementation.

Failure Tabled Constraint Logic Programming by Interpolation 13

References

Albarghouthi, A., Gurfinkel, A., and Chechik, M. 2012. Craig interpretation. In SAS.
300–316.

Angelis, E. D., Fioravanti, F., Proietti, M., and Pettorossi, A. 2012. Software model
checking by program specialization. In CILC. 89–103.

Ball, T., Cook, B., Levin, V., and Rajamani, S. K. 2004. SLAM and static driver verifier:
Technology transfer of formal methods inside Microsoft. In IFM. 1–20.

Beyer, D. 2012. Competition on software verification. In TACAS. 504–524. http://sv-
comp.sosy-lab.org.

Beyer, D., Henzinger, T., Jhala, R., and Majumdar, R. 2007. The software model checker
BLAST. International Journal on Software Tools for Technology Transfer (STTT) 9, 505–525.

Beyer, D., Henzinger, T. A., Majumdar, R., and Rybalchenko, A. 2007. Path invariants.
In PLDI. 300–309.

Chico de Guzmán, P., Carro, M., Hermenegildo, M. V., and Stuckey, P. J. 2012. A
general implementation framework for tabled CLP. In FLOPS. 104–119.

Christ, J., Hoenicke, J., and Nutz, A. 2012. SMTInterpol: An interpolating SMT solver.
In SPIN. 248–254.

Cimatti, A., Griggio, A., and Sebastiani, R. 2008. Efficient interpolant generation in sat-
isfiability modulo theories. In TACAS. 397–412.

Codognet, P. 1995. A tabulation method for constraint logic programming. In Symposium
and Exhibition on Industrial Applications of Prolog.

Craig, W. 1957. Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal of
Symbolic Logic 22, 3, 250–268.

Delzanno, G. and Podelski, A. 2001. Constraint-based deductive model checking. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 3, 3.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs of infinite systems with
PVS. In 9th CAV, O. Grumberg, Ed. Vol. 1254. 72–83.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Synthesizing
software verifiers from proof rules. In PLDI. 405–416.

Griggio, A. 2012. A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic.
Journal on Satisfiability, Boolean Modeling and Computation 8, 1–27.

Gulavani, B., Nori, A., and Rajamani, S. 2008. Automatically refining abstract interpreta-
tions. In TACAS. 443–458.

Gulwani, S., Mehra, K. K., and Chilimbi, T. M. 2009. SPEED: Precise and efficient static
estimation of program computational complexity. In POPL. 127–139.

Gupta, A., Popeea, C., and Rybalchenko, A. 2011a. Predicate abstraction and refinement
for verifying multi-threaded programs. In POPL. 331–344.

Gupta, A., Popeea, C., and Rybalchenko, A. 2011b. Solving recursion-free Horn clauses
over LI+UIF. In APLAS. 188–203.

Henzinger, T. A., Jhala, R., Majumdar, R., and McMillan, K. L. 2004. Abstractions
from proofs. In POPL. 232–244.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,

J. F., and Puebla, G. 2012. An overview of Ciao and its design philosophy. Theory and
Practice of Logic Programming 12, 1–2, 219–252.

Jaffar, J. and Lassez, J. 1987. Constraint logic programming. In POPL. 111–119.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic
execution tool for verification. In CAV. 758–766.

Jaffar, J., Santosa, A. E., and Voicu, R. 2005. Modeling systems in CLP. In 21st ICLP,
M. Gabbrielli and G. Gupta, Eds. Vol. 3668. 412–413.

14 G. Gange, J.A.Navas, P.Schachte, H. Søndergaard, P.J.Stuckey

Jaffar, J., Santosa, A. E., and Voicu, R. 2008. Efficient memoization for dynamic pro-
gramming with ad-hoc constraints. In AAAI. 297–303.

Jaffar, J., Santosa, A. E., and Voicu, R. 2009. An interpolation method for CLP traversal.
In CP. 454–469.

Jhala, R. and McMillan, K. L. 2006. A practical and complete approach to predicate
refinement. In TACAS. 459–473.

Marriott, K. and Stuckey, P. J. 1998. Introduction to Constraint Logic Programming. MIT
Press, Cambridge, MA, USA.

McMillan, K. L. 2010. Lazy annotation for program testing and verification. In CAV. 104–118.

McMillan, K. L. 2011. Interpolants from Z3 proofs. In FMCAD. 19–27.

Rümmer, P., Hojjat, H., and Kuncak, V. 2013. Disjunctive interpolants for Horn-clause
verification. To appear in 25th International Conference on Computer Aided Verification.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In ICLP. 84–98.

Warren, D. S. 1992. Memoing for logic programs. Communcations of the ACM 35, 3, 93–111.

