
Under consideration for publication in Theory and Practice of Logic Programming 1

A CLP Heap Solver for Test Case Generation

Elvira Albert1, Maŕıa Garćıa de la Banda2,5, Miguel Gómez-Zamalloa1,

José Miguel Rojas3 and Peter Stuckey4,5

1 DSIC, Complutense University of Madrid (UCM), E-28040 Madrid, Spain
2 Monash University, Australia

3 DLSIIS, Technical University of Madrid (UPM), E-28660 Boadilla del Monte, Madrid, Spain
4 National ICT Australia, and University of Melbourne, Australia

5 IMDEA Software, Madrid, Spain

submitted ...; revised ...; accepted ...

One of the main challenges to software testing today is to efficiently handle heap-

manipulating programs. These programs often build complex, dynamically allocated data

structures during execution and, to ensure reliability, the testing process needs to consider

all possible shapes these data structures can take. This creates scalability issues since high

(often exponential) numbers of shapes may be built due to the aliasing of references. This

paper presents a novel CLP heap solver for the test case generation of heap-manipulating

programs that is more scalable than previous proposals, thanks to the treatment of

reference aliasing by means of disjunction, and to the use of advanced back-propagation of

heap related constraints. In addition, the heap solver supports the use of heap assumptions

to avoid aliasing of data that, though legal, should not be provided as input.

1 Introduction

Software testing (King 1976; Müller et al. 2004; Ammann and Offutt 2008; Tillmann

and de Halleux 2008) is the most commonly used technique for validating the quality of

software. In practice, software testing is often a mostly manual process that accounts for a

large fraction of the software development and maintenance costs. Many techniques have

thus been developed to automate software testing by automatically generating test cases

that achieve high coverage of the program execution. One of these techniques is symbolic

execution (King 1976; Gotlieb et al. 2000; Meudec 2001; Müller et al. 2004; Tillmann and

de Halleux 2008), which executes programs with symbolic rather than concrete inputs.

In doing so, it maintains a path condition that is updated whenever a branch instruction

is executed, and encodes the constraints that inputs must satisfy to reach that program

point. Test case generation (TCG) is performed by solving the constraints collected for

each path using a constraint solver.

One of the main challenges in software testing today is to efficiently handle heap-

manipulating programs (Pǎsǎreanu and Visser 2009), that is, programs that create and

use dynamically heap-allocated data structures. This is because the testing process needs

to consider all possible shapes these data structures can take, in order to ensure reliability.

This creates a significant scalability issue for symbolic execution, since an exponential

number of shapes may be built due to the aliasing of references.

To handle unknown heap structures, existing systems such as PET (Gómez-Zamalloa

et al. 2010) and SPF (Pǎsǎreanu and Rungta 2010), use lazy initialization (Khurshid et al.

2 E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

1 void m(Ref x, Ref y, Ref z)
2 { x.f=1;
3 z.f=−5;
4 call a();
5 y.f=x.f+1;
6 call b();
7 if (x==z) call c(y.f);
8 else call d(y.f);
9 }

10 minit([r(X),r(Y),r(Z)],[],Hin,Hout) :−
11 m([X,Y,Z],[],Hin,Hout).
12

13 m([X,Y,Z],[],Hin,Hout) :−
14 set field(Hin,X,f,1,H1),
15 set field(H1,Z,f,−5,H2),
16 call a([],[],H2,H3),
17 get field(H3,X,f,Xf,H4),
18 #=(Yf,Xf+1),
19 set field(H4,Y,f,Yf,H5),
20 call b([],[],H5,H6),
21 cond([X,Y,Z],[],H6,Hout).

22 cond([X,Y,Z],[],H6,Hout) :−
23 ref eq(H6,X,Z,H7),
24 get field(H7,Y,f,Yf,H8),
25 call c([Yf],[],H8,Hout).
26

27 cond([X,Y,Z],[],H6,Hout) :−
28 ref neq(H6,X,Z,H7),
29 get field(H7,Y,f,Yf,H8),
30 call d([Yf],[],H8,Hout).

Fig. 1. Motivating example (left). CLP translation (right)

2003). This means that symbolic execution starts with no knowledge of the object values

referenced by program variables and, as the program symbolically executes and accesses

object fields, it learns the field values in an on-demand fashion. When an unknown integer

field is read, a fresh symbol is created for that integer value. When an unknown reference

field is read, all possibilities are explored by non-deterministically choosing among the

following values: (a) null, (b) any existing symbolic object whose type is compatible

with the field’s type and might alias with it and (c) a fresh symbolic object. Such non-

deterministic choices are materialized into branches of the symbolic execution tree. The

motivation of this work stems from the observation that branching due to aliasing choices

can be made “more lazily” than in previous approaches. As we will see, delaying aliasing

choices is crucial for the scalability of TCG.

Let us motivate our approach by symbolically executing the m method appearing on

the left of Fig.1, assuming that the executions of call a and call b do not modify the

heap. The symbolic derivation tree computed using standard lazy initialization (as in,

e.g., PET and SPF) is shown on the left of Fig.2. Note that before a field is accessed, the

execution branches if it can alias with previously accessed fields. For example, the second

field access z.f branches in order to consider the possible aliasing with the previously

accessed x.f. Similarly, the write access to y.f must consider all possible aliasing choices

with the two previous accessed fields x.f and z.f. This ensures that the effect of the field

access is known within each branch. For example, in the leftmost branch the statement

y.f=x.f+1 assigns -4 to x.f, y.f and z.f, since in that branch all these objects are aliased.

The advantage of this approach is that (at least for this program) by the time we reach

the if statement we know the result of the test, since each variable is fixed. However,

such early branching creates a combinatorial explosion problem since, for example, call a

is symbolically executed in two branches and call b in five.

Our challenge is to be able to execute symbolically as shown on the rightmost tree

of Fig.2, where branching is only produced due to explicit branching in the program,

rather than to aliasing. For this purpose, we present a heap solver that handles the

disjunction due to aliasing of references. In particular, at instruction 5 the solver will

carry the following conditional information for x.f’ (the current value of field f of x):

x = z → x.f ′ = z.f ∧ x 6= z → x.f ′ = x.f indicating that if x and z are aliased, then x.f’

will take its value from z.f and, otherwise, from x.f. Once the conditional statement at 7

is executed and we learn that x and z are aliased (in the then branch), we need to look up

backwards in the heap and propagate this unification so that instruction 5 can be fully

A CLP Heap Solver for Test Case Generation 3

.

x.f=1
��.

x=z

vvnnnnnnnnn x 6=z

((QQQQQQQQQQ

z.f=−5
��

z.f=−5
��

call a() �� call a() ��.
y=z

~~||
||

| y 6=z

 B
BB

BB
.

y=z

||yy
yy

y
y 6=z,y=x ""E

EE
EE y 6=z,y 6=x

((QQQQQQQQQ

y.f=x.f+1
��

y.f=x.f+1
��

y.f=x.f+1
��

y.f=x.f+1
��

y.f=x.f+1
��

call b()
��

call b()
��

call b()
��

call b()
��

call b()
��

x=z
��

x=z
��

x 6=z
��

x 6=z
��

x 6=z
��

call c(y.f) �� call c(y.f) �� call d(y.f) �� call d(y.f) �� call d(y.f)��.

.

x.f=1
��

z.f=−5
��

call a()
��

y.f=x.f+1
��

call b() ��.
x=z

~~||
||

| x 6=z

 B
BB

BB

call c(y.f) �� call d(y.f) ��. .

Fig. 2. Symbolic Execution Trees (Left: former approach and Right: our proposal)

executed. This will allow the symbolic execution of call d(y.f) with a known value for y.f.

Our heap solver works on a novel internal representation of the heap that encodes the

disjunctive information and easily allows looking up backwards in the heap. In addition,

it is possible to provide heap assumptions on non-aliasing, non-sharing and acyclicity

of heap-allocated data in the initial state. The heap solver takes the assumptions into

account to discard aliasing that is known not to occur for some input data. Importantly,

our heap solver can be used by any TCG tool for imperative languages through its

interface heap operations.

We have integrated our solver in PET and performed an experimental evaluation on

methods from the well-known net.datastructures library (Goodrich et al. 2003). Our re-

sults demonstrate that our approach can handle heap-manipulating programs efficiently.

Structure of the paper. Section 2 introduces our CLP-based TCG framework. Section 3

develops our heap solver, providing the details of its internal representation, handled

operations and propagation mechanisms. Section 4 extends the heap solver with support

for heap assumptions. Section 5 reports on implementation and validation results; and

finally, Section 6 concludes and summarizes related work.

2 The CLP-based Test Case Generation Framework

CLP-based Test Case Generation (Gómez-Zamalloa et al. 2010) advocates the use of CLP

technology to perform test case generation of imperative programs. The process has two

main steps. In the first step, the imperative program is automatically transformed into an

equivalent CLP-translated program in which instructions that manipulate heap-allocated

data are represented by means of calls to specific heap operations (Gómez-Zamalloa et al.

2009). In the second step, the CLP-translated program is executed using the standard

CLP execution mechanism, which inherently integrates the use of constraint solvers, and

must be extended with a heap solver to handle the heap operations.

A CLP-translated program consists of a set of predicates, each of them defined by

one or more mutually exclusive clauses. Mutual exclusion is ensured either by means of

4 E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

mutually exclusive guards, or by information made explicit on the clause heads (as it

is usual in CLP). Each clause p receives as input a (possibly empty) list of arguments

Argsin and an input heap Hin, and returns the (possibly empty) output Argsout and a

possibly modified output heap Hout. Clauses adhere to the following grammar where, as

usual, terminals start with lowercase (or special symbols), non-terminals with uppercase

and subscripts are provided for clarity:

Clause ::=Pred (Argsin,Argsout,Hin,Hout) :- [G,]B1,B2,. . . ,Bn.

Pred ::=Block | MSig Args ::= [] | [Data|Args] Data ::= Num | Ref
B ::=Var #= Num AOp Num|Pred (Argsin,Argsout,Hin,Hout)|new object (Hin,C,Ref,Hout)

| get field (Hin,Ref,FSig,Var,Hout)| set field (Hin,Ref,FSig,Data,Hout)

G ::=Num ROp Num | ref eq (Hin,Ref,Ref’,Hout) | ref neq (Hin,Ref,Ref’,Hout)

Ref ::=null | r(Var) AOp ::= + | - | ∗ | / | mod H ::= Var

FSig ::=C:FN ROp ::= #> | #< | #>= | #=< | #= | #\=
Non-terminals Block, Num, Var, FN, MSig, FSig and C denote, resp., the set of predicate

names, numbers, variables, field names, method signatures, field signatures and class

names. Note that clauses can define methods that appear in the original program (MSig),

or additional predicates that correspond to intermediate blocks in the program (Block).

A field signature FSig contains the class where the field is defined and the field name

FN. Guards might contain comparisons between numeric data and between references.

In particular, instructions ref eq and ref neq check whether Ref and Ref’ are equal and

different, respectively. They receive the heap as an explicit parameter since, as we will

see later, their execution might modify the heap’s contents.

Instructions in the body of clauses include arithmetic operations, calls to other predi-

cates, object creation, and read and write access to object fields. Instruction get field re-

trieves from Hin the value of the field identified by FSig from the object referenced by

Ref, and returns its value in Var leaving the heap unchanged. Instruction set field sets

the field identified by FSig from the object referenced by Ref to the value Data, and re-

turns the modified heap Hout. Since subclasses inherit the fields of the class they extend,

new object needs to access the set of classes partially ordered with respect to the sub-

class relation, and the fields declared by each class. Hence, we assume this information

is available. Since virtual invocations do not add any complexity to the heap solver, we

do not consider them here. Also, for simplicity, the language presented does not include

features of OO imperative languages like bitwise operations, static fields, exceptions, ac-

cess control (e.g., the use of public, protected and private modifiers) and primitive types

besides integers and booleans. However, most of these features can be easily handled by

this framework, as shown by our implementation, which handles actual Java bytecode.

Example 1
Fig. 1 shows in the two rightmost columns the CLP-translated code of method m, which

was obtained automatically from the bytecode of m. For simplicity, we have omitted the

rules that capture the exceptional behaviour when the references are null, since they do

not require any special treatment in the heap solver. Thus, our initial predicate, minit,

assumes that the three input references are non-null (since they match r()) and invokes

m. We have also omitted the implicit parameter this of all non-static methods as it does

not play any role in the example. The main features that can be observed from the

translation are the following. All clauses contain input and output arguments and heaps.

A CLP Heap Solver for Test Case Generation 5

The heap is accessed using the heap operations set field and get field. Instruction 5 in the

source code is translated into the three CLP instructions 17, 18 and 19. This is because

the CLP-translated code is obtained from the bytecode, where addition is performed

using three operations: pushing the field value to the stack, increasing it by one and

then putting the value again to the heap. Conditional statements in the source program

are translated into guarded rules (e.g., cond). Methods (like m) and intermediate blocks

(like cond) are uniformly represented by means of predicates and are not distinguishable

in the CLP-translated program. Although not present in the example, iteration in the

source program is translated into recursion in the CLP program. 2

As mentioned before, CLP-translated programs can be executed by using the standard

execution mechanism of CLP, given a suitable heap solver. The execution is performed

on symbolic values, often represented as constraint variables, which are accumulated into

path conditions (also called path constraints). The path constraints in feasible paths

provide pre-conditions on the input data that guarantee the corresponding path will be

executed at run-time. Whenever a path constraint is updated, it is checked for satisfi-

ability by the solver. If the path constraint is unsatisfiable, the procedure backtracks.

Otherwise, execution continues until a solution (representing a test case) is produced.

Collecting all solutions returns the entire set of tests generated for the original program.

In previous work (Gómez-Zamalloa et al. 2010), the heap in the CLP-translated pro-

grams was represented explicitly as a list of locations, each being a pair made of a unique

reference and a cell. This paper presents a novel approach where the heap is treated

as a black-box through its associated operations, which are handled more efficiently by

means of a heap solver. As a result, our heap is always represented by a variable. Other

constraint-based approaches (Charreteur et al. 2009; Degrave et al. 2010) also represent

the heap as a variable, but they differ from us on the definition of the heap operations

(see Sec. 6 for a more detailed comparison).

3 The Heap Solver

This section presents our heap solver. In particular, it provides the internal representation

of the heap, presents the heap operations, proposes an advanced method for the back-

propagation of constraints that allows pruning unfeasible branches earlier, and discusses

a simple extension of the heap solver to handle arrays.

3.1 Internal Representation

The heap is internally represented by the heap solver as a tuple 〈S,N ,RC〉, where:

• S is a recursive term that stores every read/write access performed on object fields

that have not been explicitly created during symbolic execution, in the order in which

such accesses occurred. S can be seen as a stack of field accesses (the reason for this will

become apparent later). Formally, it is defined as S ::= getF (Ref ,FSig ,Var{R},S) |
setF (Ref ,FSig ,Data,S) | ∅, where Ref , FSig and Data have the same meaning as in

the get field and set field instructions introduced before, Var is an attributed variable

andR is its attribute, that is, a set of rules representing possible aliasing configurations.

Each rule in attribute R is a conjunction of constraints of the form
∧k−1

i=0 Ref 6= Ref i∧
Ref = Ref k → Var = Vark, corresponding to the aliasing configuration in which if

Ref is only aliased with Ref k, then Var = Vark.

6 E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

• N is a dictionary that maps fresh numeric references to new objects explicitly created

by new object during the symbolic execution, where an object is a list of fields.

• RC is a set of disequality constraints over references.

Note that references to objects explicitly created by new object will appear in N , while

references to all other objects will appear in S.

3.2 Heap Operations

The heap solver is accessed by means of its heap operations, get field, set field, new object,

ref eq and ref neq, which are invoked directly from the CLP-translated program, and by

the solve operation which is only invoked at the end of a symbolic execution branch

to get one or more concrete solutions. Heap operations, which update the input heap

Hin = 〈S,N ,RC〉 to obtain Hout = 〈S ′,N ′,RC′〉, denoted as Hin ; Hout (the conditions

for the update will appear over the transition), are handled by the solver as follows:

set field(Hin,Ref,FSig,Data,Hout). If Ref maps to an object O in N , then this op-

eration updates field FSig in O. Otherwise, it adds a new setF element to S, indicating

that field Ref .FSig is set to value Data.
(Ref 7→ O) ∈ N

N ′ ← N [Ref 7→ O[FSig 7→ Data]]

〈S,N ,RC〉; 〈S,N ′,RC〉

(Ref 7→ O) /∈ N
S′ ← setF (Ref ,FSig,Data,S)
〈S,N ,RC〉; 〈S′,N ,RC〉

get field(Hin,Ref,FSig,Var{R},Hout). If Ref maps to an object O in N , then this

operation simply accesses O, gets the value of field FSig in Var{R}, and sets Hout = Hin.

Otherwise, a new getF element is added to S and Var{R} is a fresh variable whose R
attribute and domain are calculated by function ψ.

(Ref 7→ O) ∈ N
Var{R} ← O[FSig]

〈S,N ,RC〉; 〈S,N ,RC〉

(Ref 7→ O) /∈ N 〈R, dom(Var)〉 ← ψ(S,Ref ,FSig,Var , true)
S′ ← getF (Ref ,FSig,Var{R},S)
〈S,N ,RC〉; 〈S′,N ,RC〉

where ψ(S,Ref ,FSig,Var , ϕ) =

〈{ϕ→ Var = F} , dom(F)〉 (F fresh) S = ∅ (1)

〈{ϕ→ Var = F} , dom(F)〉 S = [g|s]etF (Ref ,FSig, F,Si) (2)

〈{ϕ ∧ Ref = Ref i → Var = F} ∪ Ri, dom(F) ∪Di〉 S = getF (Ref i,FSig, F,Si) (3)

where 〈Ri, Di〉 = ψ(Si,Ref ,FSig,Var , ϕ)

〈{ϕ ∧ Ref = Ref i → Var = F} ∪ Ri, dom(F) ∪Di〉 S = setF (Ref i,FSig, F,Si) (4)

where 〈Ri, Di〉 = ψ(Si,Ref ,FSig,Var , ϕ ∧ Ref 6= Ref i)

ψ(Si,Ref ,FSig,Var , ϕ) S = [g|s]etF (Ref i,FSig, F,Si) (5)

As an optimization, if R contains only one single rule r ≡ true → Var = F , meaning

that no aliasing is possible, then R is emptied and Var{R} = F is added to the store.

ref eq(Hin,Ref1,Ref2,Hout). Propagates constraint Ref 1 = Ref 2.
t ≡ Ref 1 = Ref 2 S′ ← propagate(S, t)

〈S,N ,RC〉; 〈S′,N ,RC〉

propagate returns S ′ by simplifying S w.r.t. a constraint t. Each rule r in attribute R of

each getF (Ref ,FSig , Var{R},) subterm in S is treated as follows:

(I) If lhs(r) contains t, we remove t from lhs(r). If the resulting lhs(r) becomes true,

we add the constraint rhs(r) to the store.

(II) If lhs(r) contains ¬t, then lhs(r) can never hold and we remove r from R.

A CLP Heap Solver for Test Case Generation 7

Our CLP implementation of ref eq simply unifies Ref 1 and Ref 2. This wakes up the

constraints in the attributes involving these references so that the above simplification is

performed. In addition, we recalculate dom(Var) when rules are removed in (II).

ref neq(Hin,Ref1,Ref2,Hout). Propagates constraint Ref 1 6= Ref 2. The disequality is

added to the RC store, since we may later try to add Ref 1 = Ref 2 and this must fail.

t ≡ Ref 1 6= Ref 2 S′ ← propagate(S, t) RC′ = RC ∪ {t}
〈S,N ,RC〉; 〈S′,N ,RC′〉

new object(Hin,C,Ref,Hout). Adds to N a fresh numeric reference mapped to the

newly created object whose fields are initialized to default values (integers are initialized

to 0 and references to null).

new(Ref) createObject(C,O) N ′ = N ∪ {Ref 7→ O}
〈S,N ,RC〉; 〈S,N ′,RC〉

Example 2

Consider the method m whose translation was given on the two right columns of Fig.1.

Let us show part of the symbolic execution tree for m([X,Y,Z],[],Hin,Hout), starting from

the empty heap Hin = 〈∅, ∅, ∅〉. The following shows, after each ;n arrow, the update

performed to the heap by the execution of the instruction appearing in line n:

Hin ;14 H1 = 〈S1, ∅, ∅〉 where S1 = setF (X, f, 1,∅)

;15 H2 = 〈S2, ∅, ∅〉 where S2 = setF (Z, f,−5,S1)

;16 H3 = 〈S3, ∅, ∅〉 where S3 = S2
;17 H4 = 〈S4, ∅, ∅〉 where S4 = getF (X, f,XfR4

,S3),

R4 ≡ {X = Z → Xf = −5;X 6= Z → Xf = 1} and dom(Xf) = {−5, 1}
;18 dom(Yf) = {−4, 2}
;19 H5 = 〈S5, ∅, ∅〉 where S5 = setF (Y, f,Yf ,S4)

;20 H6 = H5

;23 H7 = H6[Xf = −5,Yf = −4]

;24 H8 = 〈S8, ∅, ∅〉 where S8 = getF (Y, f,−4,S7) . . .

Note that when executing the get field in instruction 17, the value stored in the heap

for the field is XfR4
, where Xf is a fresh variable with an associated attribute R4 built

according to the definition of get field. Namely, we have traversed S3 down until reaching

the setF that has been set in step 14 and we have found two fields 〈Z,−5〉, 〈X, 1〉. Thus,

we set up the domain of R4 to dom(Z) ∪ dom(X) which results in dom(Xf) = {−5, 1},
and we add two rules which correspond to cases (4) and (2) in the definition. The first

rule is obtained from 〈Z,−5〉 and thus has the head X = Z, while the second rule is

obtained from the negation of the head X 6= Z. Observe the role of getF to record a local

name for the current value of the field (e.g., Xf for X.f) so that if we look up the same

field twice in succession, we get the same name. Instruction 18 simply adds one to the

gathered value and stores it in an intermediate variable Yf whose domain is obtained

by adding one to dom(Xf). The next interesting step occurs when executing the cond

statement. The derivation shows only the branch that applies to the first definition of

cond. The execution of the instruction 23 wakes up the definition R4 and allows us to

apply the first rule in R4, namely as we know that X = Z, we can unify Xf to −5.

This in turn propagates Yf = −4. These unifications are applied to H6 denoted as

H6[Xf = −5,Yf = −4]. Finally, when we apply get field on Y.f at instruction 24 and

traverse the heap, we directly find a setF for Y.f with the value Yf = −4. Thus, we do

8 E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

not traverse it further and call call c with this fixed argument. Although not shown, the

second rule for cond sets X 6= Z and wakes the definition R4 and sets Xf = 1, which in

turn propagates Yf = 2. The instruction in line 29 retrieves Yf = 2 and then calls call d

with this fixed argument.

Assume now that we include the instruction x=new C(); as the first instruction of

method m. It will be CLP-translated into new object(Hin, C,X,H1). According to the

definition for new object, the new object is stored in N . Then, the get field for x.f will

be performed with X being a numeric reference and its value will be retrieved from N .

The next instructions will therefore not create (infeasible) aliasings of x with y and z. 2

As we can see in the definition of get field, we only add Ref 6= Ref i to the lhs if Ref i arose

from a setF term. Let us explain this by means of an example. First, consider the fragment

“int a=x.f; int b=y.f; int c=z.f”. It is sound to have the following attributes associated

to Zf in the third get field instruction, R ≡ {Z = Y → Zf = Yf ;Z = X → Zf = Xf },
i.e., it is not necessary to include Z 6= Y in the second rule, nor have a rule with

Z 6= Y ∧ Z 6= X → Zf = F . The point is that as the simplified rules are not mutually

exclusive, they both apply if Z = Y = X, which is correct. The advantage of having

unitary guards is that if the body of the rule becomes unsatisfiable, we can negate the

head of the rule and propagate this knowledge. This is illustrated in the next section.

However, if we add a set field instruction to the previous fragment “int a=x.f; w.f=a; int

b=y.f; int c=z.f”, then we must add the non-aliasing guard. We should then have the

following attribute for Zf : R ≡ {Z = Y → Zf = Yf ;Z = W → Zf = Wf ;Z 6= W ∧ Z =

X → Zf = Xf ;Z 6= W → Zf = F}. This prevents us from applying the third unification

of the values of Wf and Xf (which would be incorrect) when Z and W are aliased.

Regarding computational complexity, the heap solver asymptotic complexity is poly-

nomial in the program size. However, this asymptotic complexity is irrelevant since it

is dwarfed by the exponential path complexity of symbolic execution. In practice, our

experiments show that the practical complexity is acceptable, and more importantly has

the effect we want of exponentially reducing the path complexity.

3.3 Backwards Propagation of Constraints

As described in the previous section, our heap solver uses information about equality

and disequality of references to determine equality among the heap cells. This is done

by propagating such information forwards in the rules of attributes. We can extend the

solver straightforwardly to also propagate information backwards. Consider a rule r that

defines field F and is part of some attribute R. If rhs(r) is F = F ′ and the current store

implies F 6= F ′, then r cannot be applied. We can thus recalculate the domain of F by

excluding dom(F ′) from the calculation. Further, if all literals in lhs(r) except one – say

l – are known to be true in the current store, we can also assert ¬l.

Example 3

Consider the method m but with the condition of the if (in instruction 7) changed to “if

(x.f == 1)”. This would be translated as get field(H6,X,f,Xf2 ,H7) followed by Xf2 = 1.

The get field operation creates propagation rules X = Y → Xf2 = Yf and X 6= Y →
Xf2 = Xf . When setting Xf2 = 1 the integer solver determines that Xf2 = Yf cannot

hold. This means that the solver can propagate X 6= Y , which then causes Xf2 = Xf .

Since we know that Xf = 1, the rule X = Z → Xf = −5 also back propagates to add

A CLP Heap Solver for Test Case Generation 9

the information X 6= Z. As a result, we recalculate dom(Yf) = {2} and the call call c is

performed with that fixed value for y.f. 2

3.4 Extension to Arrays

It is straightforward to extend our language to handle arrays, since we can use the same

method as for handling object fields. In this case, the array indices play the role of the

references that point to the heap-allocated data.

Example 4

Consider the following fragment of code: “ x[k] = -1; x[i] = 2; x[j] = 5; if (x[k]> 0)... ”

The heap access x[k] is CLP-translated into the operation getArrayElem(X, k,Xk{R}, H)

where Xk{R} is an attributed variable built in a similar way to how FR is built by the

get field instruction. In particular, R will have the propagation rules {K = J → Xk =

5;K 6= J ∧K = I → Xk = 2;K 6= J ∧K 6= I → Xk = −1} and dom(Xk) = {5, 2,−1}. 2

Note that this is basically an encoding of the SMT theory of arrays into the same chain

of constraints. However, our encoding has an advantage over the SMT approach, since

it allows us to later refine the domain of x[k]: if in the above example we later find that

k = i, we can then refine dom(Xk) to {5, 2} (regardless of whether i = j or not).

4 Testing with Heap Assumptions

As we have seen, the TCG process described so far assumes that all possible kinds

of aliasing among heap-allocated (reference) input data of the same type can occur.

However, it may be the case that while some of these aliasings might indeed occur, others

might not (consider, for instance, aliased data structures that cannot be constructed

using the public methods in the Java class). In order to avoid generating such inputs, we

have extended our framework to handle heap assumptions, that is, assertions describing

reachability, aliasing, separation and sharing conditions in the heap. We currently support

three types of heap assumptions:

• non-aliasing(a,b): specifies that memory locations a and b are not the same.

• non-sharing(a,b): specifies disjointness, i.e., that references a and b do not share

any common region in the heap.

• acyclic(a): specifies that a is an acyclic data structure.

Non-aliasing is implicit in the framework and implemented by simply using the constraint

a 6= b. Non-sharing and acyclicity are properties of the initial heap. In order to implement

them correctly we define a CHR predicate initial(S,Ref ,F), which succeeds if field F

of Ref refers to the original heap state ∅. Its implementation, shown in Fig. 3, simply

unrolls the S term ensuring that there is no set field applied to Ref for field F . Both non-

sharing and acyclicity need to track references to the original heap. We assume each call

to get field(〈S,N ,RC 〉,Ref ,F ,Cell ,H ′) creates a call to track get(S,Ref ,F ,Cell) which

is implemented as a CHR predicate. Non-sharing of a and b is implemented via the

nonsharing(a, b) CHR predicate of Fig. 3, which simply checks that any field reachable

in the initial heap from a is not the same as a field reachable from b. Acyclicity of a

is implemented via the acyclic(a) CHR predicate, which checks that each path of fields

reachable from a cannot reach back to itself.

10E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

initial(∅,Ref,F) <=> true.
initial(getF(, , ,S), Ref, F) <=> initial(S,Ref,F).
initial(setF(Ref,F, ,S), Ref, F) <=> fail.
initial(setF(Ref1,F1, ,S), Ref, F) <=> Ref != Ref1 | initial(S,Ref,F).
initial(setF(Ref1,F1, ,S), Ref, F) <=> F != F1 | initial(S,Ref,F).

track get(S,Ref,F,Cell) <=> not initial(S,Ref,F) | true.

nonsharing(X,X) => fail.
nonsharing(X,Y), track get(S,X,F,FX) => initial(S,X,F) | nonsharing(FX,Y).
nonsharing(X,Y), track get(S,Y,F,FY) => initial(S,Y,F) | nonsharing(X,FY).

acyclic(Ref) <=> path(Ref, []).
path(Ref, Path), track get(S,Ref,F,Cell) => initial(S, Ref, F), member(Ref,Path) | fail.
path(Ref, Path), track get(S,Ref,F,Cell) => initial(S, Ref, F), notmember(Ref,Path)

| path(Cell, [Ref|Path]).

Fig. 3. Implementation of Heap Assumptions in CHR

Example 5

Consider the pre-condition nonsharing(X, Y) for the method starting with fragment

if (y.f == z && x.f = z && x == z.f) ...

where field f has reference type. The initial get field on y creates track get(∅, Y , f, Yf).

This, together with the third rule for nonsharing, adds the constraint nonsharing(X, Yf).

The first conjunct forces Z = Yf . The set field of the second conjunct does not create a

track get and does not cause any CHR execution. The third statement creates track get(S,

Z ,f, Zf), which creates nonsharing(X,Zf) using nonsharing(X,Yf). Then X = Zf and

the first rule of nonsharing causes failure. Hence, the then branch will not be visited. 2

5 Implementation and Experimental Results

We have implemented a prototype of the heap solver and integrated it within PET, an

automatic TCG for Java Bytecode available at http://costa.ls.fi.upm.es/pet. The

prototype is implemented in SWI-Prolog and makes use of its support for attributed

variables and of its clpfd library (Wielemaker 2010). All experiments can be reproduced

online at the PET web interface by selecting the option “CLP Heap Solver”. The im-

plementation provides support for full sequential Java Bytecode. This includes exception

handling, which is managed by the transformation from Java Bytecode to CLP and does

not require extending the heap solver. Regarding inheritance/polymorphism, realistic

Java code makes extensive use of type checks and castings. This is handled during sym-

bolic execution by constraints of the form “subtype of”, “not subtype of” and “instance

of”, over reference types. Our prototype includes a solver to handle such type constraints.

In particular, get field makes use of these type constraints and the solver checks whether

the types of two references are compatible before considering their aliasing.

Our experiments aim at illustrating the scalability of our approach on realistic OO

programs. They have been performed using as benchmarks a selection of classes from

the net.datastructures library (Goodrich et al. 2003), a well-known library of algorithms

and data-structures for Java. In particular, we have used as “methods-under-test” the

most relevant public methods of the classes DoublyLinkedList, NodeSequence, SortedList-

PriorityQueue, BinarySearchTree and HeapPriorityQueue, abbreviated respectively as

DLL, Seq, PQ, BST and HPQ. Table 1 compares the performance of the new approach

(columns labeled with 3) against that of the standard approach based on lazy initial-

A CLP Heap Solver for Test Case Generation 11

Table 1. Experimental evaluation

Method C N1 T1 U1 N2 T2 U2 N3 T3 U3

DLL.add 139 33 36 1.8k 200 177 7.5k 33 42 2.2k
Seq.removeAt 213 36 42 1.3k 89 116 3.9k 37 50 1.5k
Seq.replaceAt 187 36 41 1.1k 39 47 1.3k 37 27 1.1k
PQ.insert 399 101 160 3.6k 3602 10672 196.7k 101 182 3.6k
PQ.remove 193 12 11 0.4k 86 68 1.2k 12 15 0.4k
BST.addAll 293 379 2019 115.3k 919 - 1832.6k 379 2535 115.3k
BST.find 269 62 108 4.8k 184 285 10.6k 62 98 4.8k
BST.findAll 428 330 2385 120.7k 1165 - 1655.7k 330 2538 120.7k
BST.insert 426 970 2527 84.8k 8365 - 758.5k 970 3924 84.8k
BST.remove 516 203 615 28.7k 2745 5587 200.6k 203 725 28.8k
HPQ.insert 349 61 283 5.4k 135 638 8.3k 95 163 5.2k
HPQ.remove 469 80 1814 69.7k 2021 - 824.8k 146 2378 66.5k

ization, with and without considering reference aliasing (columns labeled with 2 and

1, respectively). For each run we provide the number of clauses in the CLP-translated

program (C), the number of generated test cases (N), the time in milliseconds of the

TCG process (T) and the number of (thousands of) derivation steps (U). For all runs

we use the loop-1 coverage criterion, which limits the number of iterations on loops to at

most one. As customary, the test cases are obtained by means of a solve operation which

is invoked at the end of each symbolic execution branch and gives a concrete solution.

All times are obtained as the arithmetic mean of five runs on an Intel Core i5 CPU at

1.8GHz with 4GB of RAM, running OSX 10.8.2. We use ’-’ in column T2 to indicate

that the process has not finished within a timeout of 30 seconds. In those cases, N2 and

U2 correspond to the accumulated numbers when the process is aborted. The figures

on columns N2, T2 and U2 clearly show that the approach based on lazy initialization

quickly blows up. By comparing those numbers with N1, T1 and U1, where aliasing of

references is not being taken into account, we confirm that the explosion on the number

of branches is due to the aliasing. Looking at N3, T3 and U3, we can observe that

our heap solver does not suffer from this explosion problem. Indeed, in terms of speed,

in general, our approach (T3) can be up to two orders of magnitude faster than the

standard approach with aliasing support (T2), and similar to (or in some cases even

faster than) the standard approach without aliasing support (T1). It should be noted

that we achieve such speedup even if the back-propagation of constraints is currently

only partially implemented. Importantly, observe that the more complex the structure

of the program is (in terms of C or N) the more gain we get with our heap solver.

As regards the number of test cases, the figures in N3 are in general only slightly

greater than those in N1. This is because N3 includes not only the paths of the program

that can be reached when there is no aliasing (as N1), but also those that can only

be reached when some objects are aliased. All additional branches obtained in N2 are

spurious, i.e., they do not lead to further coverage. This becomes apparent in the leftmost

tree of Fig. 2 which has five branches (and hence five test cases will be obtained from it),

while we only need two branches to have full coverage.

6 Conclusions and Related Work

Ignoring aliasing in TCG leads to loss of coverage and, as a consequence, errors due to

undesired aliasing of data go undetected. We have proposed a novel approach to TCG for

12E. Albert, M. Garćıa de la Banda, M. Gómez-Zamalloa, J.M. Rojas and P. Stuckey

heap-manipulating programs which (a) avoids the explosion that occurs when handling

aliasing of references and (b) allows specifying initial heap assumptions on acyclicity and

disjointness. While we have presented our approach within the CLP-based framework to

TCG, where the imperative program in translated to CLP, the heap solver at the core

of our approach can indeed be used by other TCG tools by means of its interface heap

operations. Therefore, our work is widely applicable.

Constraint-based testing approaches to TCG (Charreteur et al. 2009; Degrave et al.

2010) are closely related to our work. These approaches first extract a constraint system

from the source code of the program under test, and then obtain concrete test cases by

solving this constraint system. The solvers handle the two sources of non-determinism:

the one associated with the control flow (conditional, while statements) and the one asso-

ciated with the selection of concrete input data (the heap constraints). A main difference

with our CLP-based approach is that we represent the control flow by means of a CLP

program and handle the constraints associated to heap allocated data by means of the

heap solver. This separation of concerns has the advantage that control decisions can be

made as soon as possible, while the heap constraints can be lazily executed. Our definition

of the symbolic heap operations is different from those of (Charreteur et al. 2009; Degrave

et al. 2010). In particular, (Degrave et al. 2010) defines a heap solver using CHRs which

is equivalent to the SMT theory of arrays. Since it does not track possible domains of cell

lookups as we do, it propagates less information. Note that propagating less information

on the heap cells may lead to many infeasible branches which are not pruned until the

delayed operations are executed. This could degrade the efficiency. Also their framework

is defined only for list-manipulating programs. While they discuss how to extend the

approach to new data types, each new data type requires adding new reasoning capabil-

ities, as opposed to our generic approach to memory. The approach of (Charreteur et al.

2009) defines their own constraint operators, but suffers from the severe restriction of

being unable to handle inter-procedural calls, which our approach handles transparently.

They do not define heap assumption handling. Degrave et al. (2010) mention that their

framework could incorporate heap assumptions. We have provided an implementation

for the most common heap assumptions, which could be also used in their framework.

While heap assumptions are extensively used in software verification (Podelski et al.

2008), their use in software testing is less common. Notable exceptions are (Visser et al.

2004; Offutt and Liu 1999). In (Visser et al. 2004), user-defined assumptions are given

as Java methods that are executed during test case generation. This can be inefficient

since the pre-conditions are not given in the same language of the constraint solver (as

ours are). Offutt and Liu (1999) use a declarative language to specify preconditions. Our

approach is the only one capable of specifying preconditions at the level of the data on

which they operate, rather than having heap operations that integrate such preconditions

as in (Gómez-Zamalloa et al. 2010). Finally, instead of using constraint operations, we

could also use SMT solvers (Peleska et al. 2011). It remains as future work to compare

how an SMT-based approach (e.g., (Tillmann and de Halleux 2008)) compares to our

pure CLP-based scheme. Note that while the R attributes mimic the solver for a theory

of arrays, our solver keeps track of the disjunction of possible values for base types,

without forcing equalities. Hence, it can propagate disequality more strongly than the

SMT approach. The backwards propagation explained in Ex. 3 would not occur using an

SMT approach (at least until X 6= Y was decided by the solver after further decisions).

A CLP Heap Solver for Test Case Generation 13

Acknowledgments. This work was funded partially by projects TIN2008-05624, TIN2012-

38137, PRI-AIBDE-2011-0900, S2009TIC-1465, ARC DP110102579, and ARC DP110102258.

References

Ammann, P. and Offutt, J. 2008. Introduction to Software Testing. Cambridge UP.

Charreteur, F., Botella, B., , and Gotlieb, A. 2009. Modelling Dynamic Memory Man-
agement in Constraint-Based Testing. Journal of Systems and Software 82, 11, 1755–1766.

Degrave, F., Schrijvers, T., and Vanhoof, W. 2010. Towards a Framework for Constraint-
Based Test Case Generation. In LOPSTR 2009. LNCS 6037. Springer, 128–142.

Gómez-Zamalloa, M., Albert, E., and Puebla, G. 2009. Decompilation of Java Bytecode
to Prolog by Partial Evaluation. Information and Software Technology 51, 10, 1409–1427.

Gómez-Zamalloa, M., Albert, E., and Puebla, G. 2010. Test Case Generation for Object-
Oriented Imperative Languages in CLP. Theory and Practice of Logic Programming, ICLP’10
Special Issue 10, 4–6, 659–674.

Goodrich, M., Tamassia, R., and Zamore, R. 2003. The net.datastructures Package, version
3. Available at http://net3.datastructures.net.

Gotlieb, A., Botella, B., and Rueher, M. 2000. A CLP Framework for Computing Struc-
tural Test Data. In Computational Logic. LNAI 1861. Springer, 399–413.

Khurshid, S., Pǎsǎreanu, C. S., and Visser, W. 2003. Generalized Symbolic Execution for
Model Checking and Testing. In TACAS. LNCS 2619. Springer, 553–568.

King, J. C. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7, 385–394.

Meudec, C. 2001. ATGen: Automatic Test Data Generation using Constraint Logic Program-
ming and Symbolic Execution. Softw. Test., Verif. Reliab. 11, 2, 81–96.

Müller, R. A., Lembeck, C., and Kuchen, H. 2004. A Symbolic Java Virtual Machine for
Test Case Generation. In IASTED Conf. on Software Engineering. ACTA Press, 365–371.

Offutt, A. J. and Liu, S. 1999. Generating Test Data from SOFL Specifications. Journal of
Systems and Software 49, 1, 49–62.

Peleska, J., Vorobev, E., and Lapschies, F. 2011. Automated Test Case Generation with
SMT-Solving and Abstract Interpretation. In NASA FM. LNCS 6617. Springer, 298–312.

Podelski, A., Rybalchenko, A., and Wies, T. 2008. Heap Assumptions on Demand. In
CAV. LNCS, vol. 5123. Springer, 314–327.

Pǎsǎreanu, C. S. and Rungta, N. 2010. Symbolic PathFinder: Symbolic Execution of Java
Bytecode. In ASE. ACM, 179–180.

Pǎsǎreanu, C. S. and Visser, W. 2009. A Survey of New Trends in Symbolic Execution for
Software Testing and Analysis. Int. J. Softw. Tools Technol. Transf. 11, 4, 339–353.

Tillmann, N. and de Halleux, J. 2008. Pex: White Box Test Generation for .NET. In TAP.
LNCS 4966. Springer, 134–153.

Visser, W., Pǎsǎreanu, C. S., and Khurshid, S. 2004. Test Input Generation with Java
PathFinder. In ISSTA. ACM, 97–107.

Wielemaker, J. 2010. The SWI-Prolog User’s Manual 5.9.9. Available from
http://www.swi-prolog.org.

