
Telecommunications Feature Subscription
as a Partial Order Constraint Problem

Michael Codish, Vitaly Lagoon2, and Peter J. Stuckey2,3

1 Department of Computer Science, Ben-Gurion University, Israel
2 Department of Computer Science and Software Engineering

The University of Melbourne, Australia
3 National ICT Australia, Victoria Laboratory

mcodish@cs.bgu.ac.il, {lagoon,pjs}@cs.mu.oz.au

Abstract. This paper describes the application of a partial order con-
straint solver to a telecommunications feature subscription configuration
problem. Partial order constraints are encoded to propositional logic and
solved using a state-of-the-art Boolean satisfaction solver. The encoding
is based on a symbol-based approach: symbols are viewed as variables
which take integer values and are interpreted as indices in the order.
Experimental evaluation indicates that partial order constraints are a
viable alternative to previous solutions which apply constraint program-
ming techniques and integer linear programming.

1 Introduction

Modern telecommunications providers enable a customer to subscribe to services
selected from a catalog of features. The configuration of a feature subscription is
often personalized based on preferences provided by the customer and constraints
imposed by the provider to prevent undesirable feature interactions at run-time.
When the subscription requested by a user is inconsistent, one problem is to find
an optimal relaxation which is consistent.

In recent research, described in [4], the authors formalize the telecommunica-
tions feature subscription configuration problem and prove that the complexity
of finding an optimal relaxation is NP-hard. That paper compares three tech-
niques to address the problem using: constraint programming, SAT encoding,
and integer linear programming. The authors conclude that the constraint pro-
gramming approach is able to scale well compared to the other approaches.

This paper reexamines the encoding of telecommunications feature subscrip-
tion configuration problem to SAT. Our approach to the encoding leads to a
scalable solution which is considerably faster than the three techniques reported
in [4]. Our approach is based on an encoding of partial order constraints into
propositional logic and using the same implementation described in [2]. Partial
order constraints are just like usual propositional formulae except that proposi-
tions involve also statements about a partial order on a finite set of symbols.

The encoding considered in [4] is atom-based. It models an atom of the form
(f > g) (which may be interpreted as f is after g) as a propositional variable.
Then, propositional statements are added to encode the axioms of partial orders
which the atoms are subject to. For a partial order constraint on n symbols, such

encodings typically introduce O(n2) propositional variables and involve O(n3)
propositional connectives to express the axioms. In contrast, the proposal in [2]
takes a symbol-based approach modeling the symbols in a partial order con-
straint as integer values (in binary representation). For n symbols this requires
k = dlog2 ne propositional variables for each symbol. The integer value of a sym-
bol reflects its index in a total order extending the partial order. Constraints
of the form (f > g) are then straightforward to encode in k-bit arithmetic and
involve O(log n) connectives each.

2 Problem Statement

This section presents the formal statement of the telecommunications feature
subscription configuration problem and is taken (with slight modification) from [4].

Let F denote a finite set of features. For fi, fj ∈ F a precedence constraint
(fi>fj) indicates that fi is after fj . An exclusion constraint (fi<>fj) between fi

and fj indicates that fi and fj cannot appear together in a sequence of features,
and is equivalent to the pair (fi>fj), (fj>fi). A catalog is a pair 〈F, P 〉 with F a
set of features and P a set of precedence constraints on F . A feature subscription
S of a catalog 〈Fc, Pc〉 is a tuple 〈F,C,U,WF ,WU 〉 where F ⊆ Fc is the set of
features selected from Fc, C is the projection of Pc on F , U is a set of user defined
precedence constraints on F , and WF :F → N and WU :U → N are maps which
assign weights to features and user precedence constraints. The value of S is
defined by V alue(S) = Σf∈FWF (f) +Σp∈UWU (p). The weight associated with
a feature or a precedence constraint signifies its importance for the user.

A feature subscription 〈F,C,U,WF ,WU 〉 is consistent iff the directed graph
〈F,C∪U〉 is acyclic. Checking for consistency is straightforward using topological
sort as described in [4]. If a feature subscription is inconsistent then the task is
to relax it and to generate a consistent one with maximum value. A relaxation
of a feature subscription S = 〈F,C,U,WF ,WU 〉 is a consistent subscription
S′ = 〈F ′, C ′, U ′,WF ′ ,WU ′〉 such that F ′ ⊆ F , C ′ is the projection of C on F ′,
U ′ is a subset of the projection of U on F ′, WF ′ is the restriction of WF to F ′,
and WU ′ is the restriction of WU to U ′. We say that S′ is an optimal relaxation
of S if there does not exist another relaxation S′′ of S such that V alue(S′′) >
V alue(S′). In [4], the authors prove that finding an optimal relaxation of a
feature subscription is NP-hard. This is the problem addressed in this paper.

3 Partial Order Constraints

Partial order constraints were introduced in [2]. Informally, a partial order con-
straint is just like a formula in propositional logic except that statements may
involve propositional variables as well as atoms of the form (f > g) where f and
g are symbols.4

The semantics of a partial order constraint is a set of solutions. A solution
is an assignment of truth values to propositional variables and atoms which is
4 For brevity of presentation, we omit here atoms of the form (f=g) considered in [2].

required to satisfy both parts of the formula: the “propositional part” and the
“partial order part”. Namely, if ϕ is a partial order constraint and µ a truth
assignment, then µ is a solution for ϕ if: it satisfies ϕ when viewing the atoms
as propositional variables, µ does not map an atom of the form (f > f) to true,
and if µ maps both (f > g) and (g > h) to true then also µ maps (f > h) to
true.

We are concerned with the question of satisfiability of partial order con-
straints: given a partial order constraint ϕ does it have a solution? Similarly to
the general SAT problem, the satisfiability of partial order constraints is NP-
complete, and the reduction from SAT is straightforward.

The following definition from [2] introduces the integer-based interpretation
of partial order constraints. Let ϕ be a partial order constraint on propositional
variables B and symbols F and let |F| = n. An integer assignment for ϕ is
a mapping µ which maps propositional variables from B to truth values {0, 1}
and symbols from F to values from {0, . . . , n− 1}. We say that µ is an integer
solution of ϕ if it makes ϕ true under the standard interpretation of > on the
non-negative integers. In [2], the authors prove that a partial order constraint is
satisfiable if and only if it has an integer solution.

To check the satisfiability of partial order constraints we apply an encoding
to propositional logic. A partial order constraint ϕ on a set of propositional
variables B and symbols F is encoded by a propositional formula ϕ′ such that
each solution of ϕ corresponds to a model of ϕ′ and in particular such that ϕ is
satisfiable if and only if ϕ′ is. The idea is to construct the encoding in terms of the
integer-based interpretation of partial order constraints. We view the n symbols
in F as integer variables taking finite domain values from the set

{
0, . . . , n− 1

}
.

Each symbol is thus modeled using k = dlog2 ne propositional variables which
encode the binary representation of its value. Constraints of the form (f > g) on
F are interpreted as constraints on integers and it is straightforward to encode
them in k-bit arithmetic.

The experiments described in [2] apply a partial order constraint solver writ-
ten in SWI-Prolog [5] which interfaces the MiniSat solver [3] for solving SAT
instances as described in [1]. This paper makes use of the same constraint solver.

4 The Encoding

Let S = 〈F,C,U,WF ,WU 〉 be a subscription of a catalog 〈Fc, Pc〉. We seek an
optimal relaxation S′ = 〈F ′, C ′, U ′,WF ′ ,WU ′〉. With each feature f ∈ F we
associate a propositional variable bf indicating if f is included in F ′. With each
constraint p ∈ C (and p ∈ U) we associate a propositional variable bp to indicate
if p is in C ′ (or in U ′).

For each constraint p = (f > g) in C, f and g occur in the relaxation F ′ iff
p occurs in the relaxation C ′. Hence we introduce the propositional constraint

bf ∧ bg ↔ bp (1)

For each constraint p = (f > g) in U , p may occur in the relaxation U ′ if f and
g occur in F ′. Hence we introduce the propositional constraint

bf ∧ bg ← bp (2)

For each constraint p = (f > g) in C ∪ U , if p occurs in the relaxation (C ′ or
U ′) then the corresponding partial order constraint must hold

bp → (f > g) (3)

Solving the partial order constraint obtained as the conjunction of the above
equations (1), (2), and (3) assigns truth values to the propositional variables bf
and bp indicating a consistent relaxation. To obtain an optimal relaxation we
need an additional step. Let ϕ be the encoding of the above constraints (1) –
(3) to a propositional formula.

With each of the propositional variables bf and bp, which indicate if feature f
and constraint p are selected to appear in the relaxation, we associate a (integer
value) weight wf and wp. To simplify presentation, consider the multiset Bits
of propositional variables which contains wf occurrences of bf for each f ∈ F
and wp occurrences of bp for each p ∈ U . Let ψ be the propositional formula
which specifies that the sum of these Bits is the binary number with digits
Sum = {s1, . . . , sk}.

The Prolog interface to MiniSat described in [1] offers the functionality
maximize(Vector,Cnf) which seeks a satisfying assignment for the conjunc-
tive normal form Cnf which maximizes the binary number Vector. If Cnf is
unsatisfiable this call fails. This functionality is implemented by successively de-
termining the bits in the Vector. This involves a call to the underlying SAT
solver for each bit. If the Vector represents the sum of n bits then this involves
log n calls to the SAT solver.

For the telecommunications feature subscription configuration problem, this
functionality is applied taking the conjunctive normal form of ϕ ∧ ψ (Cnf) and
the sum bits Sum = {s1, . . . , sk} (Vector). In the actual encoding, the formula
representing the Sum is constructed by summing the pseudo Boolean formula
bf ∗ wf and bp ∗ wp and not as described above.

5 Experimental results

The experimentation is based on a collection of random catalogs and feature
subscriptions obtained following the guidelines described in [4].

Table 1 describes the experiments for random catalogs with 50 features and
250 (750) precedence constraints (involving {<,>}). Each row labeled by 〈f, p〉
specifies a random subscription with f features and p user precedence constraints
with weights selected between 1 and 4. Times are measured in seconds. The
column marked pocsp corresponds to our Prolog implementation of partial order
constraints built on top of MiniSat (average times over 10 random instances5).
The columns marked pwmsat, cplex and cp are the times taken from Tables 2
and 3 of [4] for their: SAT encoding6, ILP solver and CP solver. Note that the
5 The precise instances used may be found at http://www.cs.bgu.ac.il/~mcodish/

Papers/Pages/feature_subscription.html
6 The authors of [4] use the SAT4J solver - http://www.sat4j.org/.

Table 1. Timings (sec) for two catalog sizes

catalog 〈50, 500, {<, >, <>}〉 catalog 〈50, 750, {<, >}〉
〈f, p〉 pocsp pwmsat cplex cp pocsp pwmsat cplex cp

〈30, 20〉 0.18 6.40 1.02 0.65 0.44 5.03 18.46 2.38
〈35, 35〉 0.47 23.95 22.76 7.43 2.30 18.28 126.35 12.88
〈40, 40〉 1.08 282.76 247.14 67.80 6.37 92.11 514.27 42.27
〈45, 90〉 39.36 12638.25 7690.90 1115.51 105.51 2443.23 3780.54 188.83
〈50, 4〉 0.39 195.72 1010.38 413.61 1.00 319.53 3162.08 342.49

random instances for pocsp are most likely different than those applied in [4].
The machines are also different. Theirs is a PC Pentium 4 (CPU 1.8 GHz and
768 MB of RAM). Ours is a PC Pentium 4 (CPU 2.4 GHz and 512 MB of RAM).
Ours is running SWI Prolog under Linux, kernel 2.6.11-6. With no intention to
compare the two machines, the timings are clear enough.

6 Conclusions

Our encoding indicates the clear benefit in choosing the right tool for the prob-
lem at hand: Once stating the feature subscription configuration problem as one
of partial order constraints, the solution is straightforward. Our results indi-
cate that the application of partial order constraints to the telecommunications
feature subscription configuration problem provides a viable alternative to other
solution techniques. The partial order approach improves upon the previous SAT
approach by avoiding the O(n3) encoding of partial order, and over the other
approaches because of the nogood learning capabilities of SAT.

References

1. M. Codish, V. Lagoon, and P. J. Stuckey. Logic programming with satisfiability.
TPLP, 8(1):121–128, 2008.

2. M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints for lpo
termination. Journal on Satisfiability, Boolean Modeling and Computation, 5:193–
215, 2008. An earlier version appears in the proceedings of RTA 2006, LNCS 4098.

3. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003 (Selected Revised Papers), volume 2919 of Lecture Notes in
Computer Science, pages 502–518. Springer, 2004.

4. D. Lesaint, D. Mehta, B. O’Sullivan, L. Quesada, and N. Wilson. Solving a telecom-
munications feature subscription configuration problem. In Proceedings of CP, 2008.
forthcoming (an earlier version appears in the Proceedings of Innovative Applica-
tions of Artificial Intelligence (July 2008).

5. J. Wielemaker. An overview of the SWI-Prolog programming environment. In
F. Mesnard and A. Serebenik, editors, Proceedings of the 13th International Work-
shop on Logic Programming Environments, pages 1–16, Heverlee, Belgium, Dec.
2003. Katholieke Universiteit Leuven. CW 371.

