
Dynamic Analysis of Bounds versus Domain
Propagation

Christian Schulte1 and Peter J. Stuckey2

1 ICT, KTH - Royal Institute of Technology, Sweden, cschulte@kth.se
2 National ICT Australia, Victoria Laboratory, Department of Computer Science and

Software Engineering University of Melbourne, Australia, pjs@cs.mu.oz.au

Abstract. Constraint propagation solvers interleave propagation (re-
moving impossible values from variable domains) with search. Previously,
Schulte and Stuckey introduced the use of static analysis to determine
where in a constraint program domain propagators can be replaced by
more efficient bounds propagators and still ensure that the same search
space is traversed.
This paper introduces a dynamic yet considerably simpler approach to
uncover the same information. The information is obtained by a linear
time traversal of an analysis graph that straightforwardly reflects the
properties of propagators implementing constraints. Experiments con-
firm that the simple dynamic method is efficient and that it can be used
interleaved with search, taking advantage of the simplification of the
constraint graph that arises from search.

1 Introduction

In building a finite domain constraint programming solution to a combinatorial
problem a tradeoff arises in the choice of propagation that is used for each con-
straint: stronger propagation methods are more expensive to execute but may
detect failure earlier; weaker propagation methods are (generally) cheaper to ex-
ecute but may (exponentially) increase the search space explored to find an an-
swer. In this paper we investigate the possibility of dynamically analysing finite
domain constraint problems and determining whether the propagation meth-
ods used for some constraints could be replaced by simpler, and more efficient
alternatives without increasing the size of the search space.

Example 1. Consider the following constraints where x1, . . . , x4 range over inte-
ger values −3 to 3 (the constraint graph is shown in Fig. 1):

x1 = |x2|, x2 6= x3, 2x3 − 3x4 = 3, x4 ≥ x1

Each constraint could be implemented using domain propagation or bounds
propagation. Clearly, if each constraint uses domain propagation we have stronger
information, and the search space explored in order to find all solutions for the
problem will be no larger than if we used bounds propagation. The question we
ask is: can we get the same search space with bounds propagation?

/.-,()*+x1
x1=|x2| /.-,()*+x2

x2 6=x3 /.-,()*+x3
2x3+3x4=3 /.-,()*+x4

x4≥x1

Fig. 1. Binary constraint graph for x1 = |x2|, x2 6= x3, 2x3 − 3x4 = 3, x4 ≥ x1

Domain propagation on x4 ≥ x1 is equivalent to bounds propagation since
the constraint only places upper and lower bounds on its variables. This is not
the case for the remaining constraints: If x2 = 2 and x3 ∈ [−3 .. 3] then do-
main propagation on x2 6= x3 determines that x3 ∈ {−3,−2,−1, 0, 1, 3} whereas
bounds propagation learns nothing. Similarly if x1 ∈ {0, 2, 3} and x2 ∈ [−3 .. 3]
then domain propagation determines that x2 ∈ {−3,−2, 0, 2, 3} but bounds
propagation learns nothing. From the initial set of values domain propagation
determines that x3 ∈ {−3, 0, 3} and x4 ∈ {−1, 1, 3} while bounds propagation
determines that x3 ∈ [−3 .. 3] and x4 ∈ [−1 .. 3].

Suppose that we use a labelling strategy that either assigns a variable to its
lower bound, or constrains it to be greater than its lower bound. Then none of
the constraints added during search creates holes in the domains and depends
only on the variable bounds. This is in contrast to a strategy that assigns a
variable to its middle domain value, or excludes its middle domain value.

Domain propagation and bounds propagation differs if changing the bounds
of some variable (by search) causes change in the bounds of some variable by
domain propagation which is not found by bounds propagation.

Suppose search sets x3 = 0, then bounds and domain propagation of 2x3 +
3x4 = 1 sets x4 = 1. Bounds (and domain, as it is identical) propagation of
x4 ≥ x1 forces x1 ∈ [−3 .. 0]. Bounds and domain propagation on x1 = |x2|
forces x2 ∈ [−1 .. 1]. Bounds propagation on x2 6= x3 makes no changes, resulting
in a fixpoint for bounds propagation. Domain propagation on x2 6= x3 makes
x2 ∈ {−1, 1}. Domain propagation on x1 = |x2| then forces x1 = 1. The resulting
bounds for x1 have changed, hence future search is affected.

But we do not need to use domain propagation for all constraints. Domain
propagation on x2 6= x3 and x1 = |x2| is vital, as the above discussion shows.
Domain propagation on 2x2 + 3x3 = 3 is not required. As discussed above, the
bounds of x2 and x3 after domain or bounds propagation are identical, and
indeed we can prove this is always the case. Neither of the other constraints on
x2 and x3 can propagate information from holes in their domains, hence the
resulting propagation will be the same. 2

Previously [1] we introduced a static analysis of a finite domain CLP program
that was able to determine when to replace domain propagators by bounds
propagators without increasing search space. This paper provides a dynamic
linear time analysis of the propagation graph that determines whether domain
propagators can be replaced by bounds propagators without increasing search
space. The approach simplifies and generalizes the previous approach.

Example 2. Consider the constraints

x1 = |x2|, x2 6= x3, 2x3 − 3x4 = x5, x4 ≥ x1, x5 6= x4 − 1, x5 ≥ x2

where x1, . . . , x5 range over integers from −3 to 3. Analysing this problem using
the method of [1] or this paper will determine that no domain propagator can
be replaced by a bounds propagator. But if search sets x5 = 3 the constraints
of Example 1 are obtained, since x5 is replaced by 3 in 2x3 − 3x4 = x5, and the
redundant constraints x5 6= x4−1 and x5 ≥ x2 are removed. A dynamic analysis
can now detect that bounds propagation can be used for 2x3 − 3x4 = 3 without
increasing search space. 2

The contributions of this paper are:

– A linear time analysis of the propagation graph that allows us to deter-
mine if we can replace bounds propagators by domain propagators without
increasing search space.

– The analysis is dynamic, that is it can be run at any stage during the search.
Since propagators become simpler as search proceeds this provides more
scope for optimization than a static analysis before search begins.

– We show examples where our analysis detects search space equivalent re-
placements for both static and dynamic uses and show the possible perfor-
mance benefits that arise.

2 Propagation-based Constraint Solving

This section defines our terminology for the basic components of a constraint
propagation engine. In this paper we restrict ourselves to finite domain integer
constraint solving. Almost all the discussion applies to other forms of finite
domain constraint solving such as for sets and multisets.

Domains. A domain D is a complete mapping from a fixed (finite) set of variables
V to finite sets of integers. A false domain D is a domain with D(x) = ∅ for
some x ∈ V. A variable x ∈ V is fixed by a domain D, if |D(x)| = 1. The
intersection of domains D1 and D2, denoted D1 uD2, is defined by the domain
D(x) = D1(x)∩D2(x) for all x ∈ V. By −{x} we denote the variable set V−{x}.

A domain D1 is stronger than a domain D2, written D1 v D2, if D1(x) ⊆
D2(x) for all x ∈ V. A domain D1 is stronger than (equal to) a domain D2 w.r.t.
variables V , denoted D1 vV D2 (resp. D1 =V D2), if D1(x) ⊆ D2(x) (resp.
D1(x) = D2(x)) for all x ∈ V .

A range is a contiguous set of integers, we use range notation [l .. u] to denote
the range {d ∈ Z | l ≤ d ≤ u} when l and u are integers. A domain is a range
domain if D(x) is a range for all x. Let D′ = range(D) be the smallest range
domain containing D, that is, the unique domain D′(x) = [inf D(x) .. supD(x)]
for all x ∈ V. A domain D is bounds equivalent to a domain D′, written D B= D′

iff range(D) = range(D′).

Valuations and constraints. An integer valuation θ is a mapping of variables to
integer values, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation θ to
map expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a
valuation. We define a valuation θ to be an element of a domain D, written
θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

The infimum and supremum of an expression e with respect to a domain D
are defined as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

A constraint c over variables x1, . . . , xn is a set of valuations θ such that
vars(θ) = {x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

Propagators. We will implement a constraint c by a set of propagators prop(c)
that map domains to domains. A propagator f is a monotonically decreasing
function from domains to domains: f(D) v D, and f(D1) v f(D2) whenever
D1 v D2. For the purposes of this paper we also assume that propagators are
idempotent, that is f(f(D)) = f(D) for all domains D. In fact this assumption
is just required for defining the edges in the analysis graph correctly, it is not
important for the actual execution.

A propagator f is correct for a constraint c iff {θ | θ ∈ D} ∩ c = {θ | θ ∈
f(D)} ∩ c for all domains D. This restriction is very weak, for example the
identity propagator is correct for all constraints.

The variables vars(f) of a propagator f are defined as {v ∈ V | ∃D. f(D)(v) 6=
D(v)} ∪ {v ∈ V | ∃D1, D2. D1 =−{v} D2, f(D1) 6=−{v} f(D2)}. The set includes
the variables that can change as a result of applying f , and the variables that
can modify the result of f .

Example 3. For the constraint c ≡ x1 ≤ x2 + 1 the function f1 defined by
f1(D)(x1) = {d ∈ D(x1) | d ≤ supD x2 + 1} and f(D)(v) = D(v), v 6= x1 is a
correct propagator for c. Its variables are x1 whose domain can be modified by f1
(the first case of the definition above) and x2 which can cause the modification
of the domain of x1 (the second case of the definition above). So vars(f1) =
{x1, x2}. Let D1(x1) = {1, 5, 8} and D1(x2) = {1, 5}, then f(D1) = D2 where
D2(x1) = D2(x2) = {1, 5}. The propagator is idempotent. 2

A propagation solver solv(F,D) for a set of propagators F and an initial
domain D finds the greatest mutual fixpoint of all the propagators f ∈ F . In
other words, solv(F,D) returns a new domain defined by

solv(F,D) = gfp(λd. iter(F, d))(D) iter(F,D) = u
f∈F

f(D)

where gfp denotes the greatest fixpoint w.r.t v lifted to functions.

Domain and bounds propagators. A consistency notion C gives a condition
on domains with respect to constraints. A set of propagators F maintains C-
consistency for a constraint c, if for domain D where f(D) = D, f ∈ F is always
C consistent for c. Many propagators in practice are designed to maintain some
form of consistency: usually domain or bounds.

The most successful consistency technique is arc consistency [2], which en-
sures that for each binary constraint, every value in the domain of the first
variable has a supporting value in the domain of the second variable that satis-
fies the constraint. Arc consistency can be naturally extended to constraints of
more than two variables to give domain consistency. A domain D is domain con-
sistent for a constraint c if D is the least domain containing all solutions θ ∈ D
of c, that is, there does not exist D′ @ D such that θ ∈ D ∧ θ ∈ c→ θ ∈ D′.

Define the domain propagator dom(c), for a constraint c as

dom(c)(D)(x) = {θ(x) | θ ∈ D ∧ θ ∈ c} where x ∈ vars(c)
dom(c)(D)(x) = D(x) otherwise

Bounds consistency relaxes the consistency requirement to apply only to the
lower and upper bounds of each variable x. There are a number of different
notions of bounds consistency [3], we give the two most common here.

A domainD is bounds(Z) consistent for a constraint c, vars(c) = {x1, . . . , xn},
if for each variable xi, 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there
exist integers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that
θ = {x1 7→ d1, . . . , xn 7→ dn} is an integer solution of c.

A domainD is bounds(R) consistent for a constraint c , vars(c) = {x1, . . . , xn},
if for each variable xi, 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there ex-
ist real numbers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that
θ = {x1 7→ d1, . . . , xn 7→ dn} is a real solution of c.

A propagator f is a bounds propagator if it only relies on bounds and creates
new bounds

∀D. f(D) = range(f(range(D))) uD

We can define bounds propagators for the two consistency notions above. A
bounds(Z) propagator, zbnd(c) for a constraint c ensures that zbnd(c)(D) is
bounds(Z) consistent with c, while a bounds(R) propagator, rbnd(c) ensures
bounds(R) consistency.

3 An Abstraction of Propagation

The aim of this paper is to find where we can replace a propagator f by a bounds
propagator fB without changing the search space, under the assumption that

∀D. f(range(D))) B= fB(D)

That is, applied to range domains the propagators give the same bounds. Note
that if f = dom(c) and fB = zbnd(c) then this property holds. We will not
attempt to replace domain propagators by bounds(R) propagators since the
property does not hold.

Example 4. Consider the constraint c ≡ x = 3y + 5z, and the range domain
D(x) = [2 .. 7], D(y) = [0 .. 2] and D(z) = [−1 .. 2], then dom(c)(D)(x) =
{3, 5, 6} while rbnd(c)(D)(x) = [2 .. 7]. The bounds are different. 2

In order to detect that we can replace domain propagators by bounds prop-
agators, we build an analysis graph that shows how each propagator reacts to
holes and creates holes in the domain of its variables. The analysis graph is in
some sense an abstraction of the constraint (hyper)graph where an edge is an
abstract propagator. Analysis of the graph corresponds to executing the abstract
propagators to fixpoint, hence is an abstract propagation process.

The nodes of an analysis graph G are labelled by variables v ∈ V, as well
as the special nodes source ⊕ and sink 	. The analysis graph G for a set of
propagators F contains directed edges for each propagator f as follows:

– An edge x
f→ y between two variables x and y labelled by a propagator f

indicates that f can propagate holes in the domain of x to the domain of y.
There is an edge x

f→ y in G, iff there exist domains D,D′ and variables
S ⊆ V with D′ =V−S D, D B= D′, D′(x) 6= D(x), and x ∈ S such that
f(D′)(y) 6= f(D)(y) ∩D′(y). That is, D′ differs from D only because of the
removal of internal values for variables S including x.

– An edge x
f→ 	 between variable x and the sink indicates that by propagat-

ing f , holes in the domain of x can cause bounds changes on other variables.
There is an edge x

f→ 	 in G, iff there exist domains D,D′ and variables
S ⊆ V with D′ =V−S D, D B= D′, D′(x) 6= D(x), and x ∈ S such that
f(D′) 6B= f(D).

– An edge ⊕ f→ x between the source and variable x indicates that the prop-
agator f can create holes in the domain of x from a range domain.
There is an edge ⊕ f→ x in G, iff there exists a range domain D (that is,
D = range(D)) such that f(D)(x) 6={x} range(f(D))(x). That is, applying f
to a range domain D can create a hole in the domain of x.

As an example, let us consider the edges in the analysis graph for some
common domain propagators (a full table is given in Appendix A):

dom(x = y + k) (x, y ∈ V, k ∈ Z): {x f→ y, y
f→ x}. Holes are propagated, but

neither created nor converted to bounds.
dom(x 6= y) (x, y ∈ V): {⊕ f→ x,⊕ f→ y}. Holes are not propagated, but created.

dom(x = k × y) (x, y ∈ V, k ∈ Z): {x f→ y, y
f→ x,⊕ f→ x}. Holes are propagated

and holes for x are created.
dom(x = |y|) (x, y ∈ V): {x f→ y, y

f→ x,⊕ f→ y, y
f→ 	}. Holes are transmitted,

holes for y are created (by bounds of x), and holes in y can change bounds
(for x).

dom(
∑n

i=1 xi ≤ k) (xi ∈ V, k ∈ Z): {}. No holes are created or transmitted.

dom(
∑n

i=1 xi = k) (xi ∈ V, k ∈ Z): {xi
f→ xj | 1 ≤ i 6= j ≤ n}. Holes are

transmitted between each pair.
dom(b⇔ x = y) (b, x, y ∈ V, b Boolean): {x f→ y, y

f→ x,⊕ f→ x,⊕ f→ y, x
f→

	, y f→ 	}. Unsurprisingly the union of x = y and x 6= y, except that holes

⊕

f,g

��
g,h

 A
AA

AA
AA

AA
AA

h

((PPPPPPPPPPPPPPPPPPPP

/.-,()*+x1

f

44 /.-,()*+x2

f
tt

f

��

/.-,()*+x3

h

44 /.-,()*+x4

h
tt

	

Fig. 2. Analysis graph for x1 = |x2|, x2 6= x3, 2x3 + 3x4 = 3, x4 ≥ x1.

in x and y can create bounds changes in b. For example, D(x) = {1, 3, 5}
and D(y) = {2, 4, 6} yields b = 0.

dom(alldifferent(x1, . . . , xn)) (xi ∈ V): {xi
f→ xj | 1 ≤ i 6= j ≤ n} ∪ {⊕ f→

xi, xi
f→ 	 | 1 ≤ i ≤ n}. The propagator can do everything. But we should be

careful, we do have a bounds(Z) propagator that will give the same bounds,
if no other propagator causes holes in the domains.

dom(x = min(y, z)) (x, y, z ∈ Z): {x f→ y, y
f→ x, x

f→ z, z
f→ x, y

f→ 	, z f→ 	}.
There is no direct transmission from y to z, and no changes of ranges from
holes. Notice that for D(x) = {1, 3, 4}, D(y) = {1, 3, 5}, D(z) = {2, 4, 6}
the constraint includes the solutions (1, 1, 2), (3, 3, 4), (4, 5, 4), (3, 3, 6). But
changing D(z) to {2, 6} changes the upper bound of x.

Example 5. The analysis graph for the problem of Example 1 is shown in Fig-
ure 2, where f = dom(x1 = |x2|), g = dom(x2 6= x3), h = dom(2x3 + 3x4 = 3
and dom(x4 ≥ x1) does not generate any edges. The reasoning in Example 1 is

now explicitly viewable. The path from ⊕ g→ x2
f→ 	 shows that holes created

by g can cause bounds to change through f as illustrated in Example 1.
While h can create new holes, the arcs from ⊕ to x3 and x4, these holes can

never change the bounds of a variable (reach). Hence h can be replaced by a
bounds(Z) propagator, without changing propagation. 2

4 Main Result

A path from ⊕ to 	 is evidence of where bounds information can create holes in
domains, and where holes then can change bounds. We must keep track of the
holes in the domains in order to have accurate bounds information.

Theorem 1. Let G be the analysis graph for a set of propagators F . Let B ⊆ F
be the set of propagators such that G contains no paths from ⊕ to 	 labelled with
two or more propagators including f . Then F ′ = {fB | f ∈ B}∪{f | f ∈ F −B}
is such that solv(F,D) B= solv(F ′, D) for all range domains D.

Proof. The proof is by induction. Let f1, f2, . . . , fn be the sequence of propa-
gators applied in calculating solv(F,D). Let

D = D0, f1(D0) = D1, f2(D1) = D2, . . . , fn(Dn−1) = Dn = solv(F,D)

We let gi be the corresponding propagator to fi in F ′, that is gi = fi if fi ∈ F−B
and gi = fB

i if fi ∈ B. Define

D = D′0, g1(D′0) = D′1, g2(D′1) = D′2, . . . , gn(D′n−1) = D′n

be the analogous sequence of propagators in F ′. Note that since ∀D. fi(D) v
gi(D) we have that Di v D′i. We show that Di

B= D′i for 0 ≤ i ≤ n.
We show by induction: for each 0 ≤ i ≤ n that Di

B= D′i, and for each v ∈ V
where Di(v) is not a range then there is a path from ⊕ to v in the analysis graph.

Clearly the induction hypothesis holds for D0 = D′0. Assume the hypothesis
holds for 0 ≤ i < K.

Suppose to the contrary that DK 6
B= D′K . If DK−1 =vars(fK) range(DK−1)

then DK = fK(DK−1) = fK(range(DK−1)) B= gK(DK−1) B= gk(D′K−1) = D′K .
Contradiction. Hence there exists v ∈ vars(fK) such that DK−1(v) is not a range.
By the induction hypothesis, there is a path from ⊕ to v. And by definition
v

fK→ 	 is in the analysis graph G. The witnesses are D′ = DK−1, D = D′K−1,
S = vars(fK) and x = v. Hence all propagators modifying the interior of the
domain of v are either the same propagator fK or are not in B. In the first case,
since fK is idempotent fk(DK−1) = fK(range(DK−1) as no other propagators
have changed the interior of the domains of vars(fK). Thus DK = fK(DK−1) =
fK(range(DK−1)) B= gK(D′K−1) = D′K . Contradiction. In the second case since
all propagators acting on the interior of domains of vars(fK) are in F − B we
have that DK−1 =vars(fK) D

′
K−1, and fK = gK hence DK

B= D′K . Contradiction.

As a result we have that DK
B= D′K .

Suppose that DK(v) is not a range, and DK(v) 6= DK−1(v)

If DK−1 =vars(fK) range(DK−1) then we have an edge ⊕ fK→ v is the analysis
graph G. The witness is D = range(DK−1) and x = v, since D = range(D) and
fK(D)(v) = fK(DK−1)(v) 6= range(fK(D))(v).

Otherwise DK−1 6=vars(fK) range(DK−1), and so there exists u ∈ vars(fK)

where DK−1(u) is not a range. Then we have an edge u
fK→ v in the analysis

graph G. The witnesses are D′ = DK−1 and D = range(DK−1), S = vars(fK),
x = u and y = v. By the induction hypothesis there is a path from ⊕ to u in
the analysis graph, and hence also to v.

As a result of the proof by induction we have that Dn
B= D′n. Then since Dn is

a fixpoint for all fi, and since gi where they differ from fi only depend on bounds,
we have that Dn is a fixpoint for all gi. Now solv(F ′, D) is the greatest fixpoint
of F ′ less than D and Dn is such a fixpoint we have that Dn v solv(F ′, D) v D′n
and hence solv(F,D) = Dn

B= solv(F ′, D).
2

Note that the proof can be applied for non-range domains D, by adding
artificial propagators f that remove the internal values of range(D) to give D.

In effect we add edges ⊕ f→ v for each v where D(v) 6= range(D)(v).
Importantly the theorem is based on propagators rather than constraints,

hence we might have bounds propagators in the original propagators F we are
trying to improve.

Example 6. Consider propagators for the SEND+MORE=MONEY problem:
f = dom(alldifferent(S,E,N,D,M,O,R, Y)), a large linear bounds prop-
agator rbnd(SEND + MORE = MONEY), dom(S > 0), and dom(M > 0).

The only edges are {x f→ y | x, y ∈ {S,E,N,D,M,O,R, Y }, x 6= y} ∪ {⊕ f→
x, x

f→ 	 | x ∈ {S,E,N,D,M,O,R, Y }}. All propagators can be replaced by
bounds propagators. If the long linear constraint used domain propagation the
propagator for the alldifferent constraint could not be improved. 2

In order to replace propagators by equivalent propagators we have to take
into account the constraints that will be added by search. Edges are added
corresponding to the behaviour of the search procedure. If search relies:

– on bounds information to make decisions and only adds bounds constraints,
no edges are added (e.g. standard labelling(x1, . . . , xn));

– on all domain information to make decisions but only add bounds con-
straints, {xi

f→ 	 | 1 ≤ i ≤ n} are added (e.g. labellingff(x1, . . . , xn)
for first-fail labelling);

– on all domain information and may add constraints that add holes to do-
mains, {⊕ f→ xi, xi

f→ 	 | 1 ≤ i ≤ n} are added (e.g. middle out labelling
labellingmid(x1, . . . , xn)).

5 Finding which Propagators to Replace

In order to use Theorem 1 we need to determine which propagators appear on
paths from ⊕ to 	, involving at least two propagators. Rather than track (a
possibly exponential number of) paths explicitly, we mark each variable x by
the propagators on paths from ⊕ to x, and by the propagators on paths from x
to 	. We can check each edge for a propagator f to see whether it causes f to
be on a path from ⊕ to 	, involving at least two propagators.

The algorithm is shown in Figure 3. Assuming that munion(m1,m2) is simply
defined as m1∪m2, the propagators on a path from ⊕ to n are stored in source[n],
while sink[n] holds the propagators on a path from n to 	. The forward marking
starts from all variables adjacent to ⊕ and marks them, and then follows any
edges to continue marking. It checks if the variable has been marked previously
with the current set and if so immediately returns. The backward marking works
analogously. Finally the new propagator set F ′ is constructed by checking each
edge for propagator f , and if it takes part in a path from ⊕ to 	 involving at
least two propagators, adding the original version f to F ′ otherwise adding the
bounds version fB .

munion(m1,m2)
if (|m1 ∪m2| > 1) return F else return m1 ∪m2

forward(x,m)
if (m ⊆ source[x]) return
source[x]← munion(source[x],m)

for (x
g→ y ∈ G)

forward(y,munion(source[x],{g}))

backward(x,m)
if (m ⊆ sink[x]) return
sink[x]← munion(sink[x],m)

for (y
g→ x ∈ G)

backward(y,munion(sink[x],{g}))

domain(f ,G)

return ∃n1
f→ n2 ∈ G. |munion(source[n1], munion({f}, sink[n2]))| > 1

analyse(F)
let G be the analysis graph for F
for (n ∈ V ∪ {⊕,	})

source[n]← sink[n]← ∅
for (⊕ f→ x ∈ G)

forward(x,{f})
for (x

f→ 	 ∈ G)
backward(x,{f})

return {f | f ∈ F ∧ domain(f, G)} ∪ {fB | f ∈ F ∧ ¬domain(f, G)}

Fig. 3. Propagation analysis of the set of propagators F

Theorem 2. Let G be the analysis graph for F . Let B be the set of propagators
f ∈ F such that G contains no paths from ⊕ to 	 labelled with two or more
propagators including f . Then analyse(F) = {fB | f ∈ B} ∪ {f | f ∈ F − B}
and the complexity of analyse(F) is O(G).

Proof. (Sketch) Under the assumption that munion(m1,m2) is simply defined as
m1 ∪m2 it is easy to see that variables source[n] and sink[n] contain the set of
propagators appearing in paths from ⊕ to n and n to 	 respectively. The final
test |source[n1]∪{f}∪ sink[n1]| ≥ 2 correctly determines if f appears on a path
from ⊕ to 	 involving at least two propagators.

Now consider the actual definition of munion(m1,m2). This is in effect an
abstraction of the original algorithm where all sets of cardinality greater than 1
are replaced by F . This does not change the result of the final test. For the test to
fail, source[n1] and sink[n1] are either {f} or ∅, and these results are maintained
by the actual definition of munion(m1,m2). For the test to pass |source[n1]∪{f}∪
sink[n1]| > 1 and hence also |munion(source[n1],munion({f}, sink[n2]))| > 1.
Hence the algorithm is correct.

The complexity result follows since forward can only update source[n] at most
twice, after which source[n] = F and all further calls immediately return. Hence
the complexity of all calls to forward is O(G). The same reasoning applies to
backward, and hence to analyse. 2

The astute reader will have noticed that, while analyse is linear in the size of
the analysis graph, the analysis graph may be quadratically larger in size than the
constraint graph, since some propagators add edges {xi

f→ xj | 1 ≤ i 6= j ≤ n}.
This is fixed by replacing the edges {xi

f→ xj | 1 ≤ i 6= j ≤ n} by the edges

{xi
f→ z, z

f→ xi | 1 ≤ i ≤ n} where z is a new variable. The resulting analysis
graph is linear in the size of the constraint graph, and gives the same results as
the original graph.

Implementation. The algorithm in Figure 3 has been implemented in Gecode,
but the decisions made in the implementation should readily carry over to other
constraint programming systems.

While treatment of variables is generic in the analysis algorithm, the way how
propagators are analysed depends on the particular propagator. Propagators are
implemented as objects in Gecode. Propagators provide methods for propaga-
tion, creation, deletion, and so on. For analysis, we add a analyse method that
can be implemented for each individual propagator: execution of the method
adds the edges for the propagator to the analysis graph.

The values of source[x] and sink[x] are directly stored in the variable x.
Rather than storing a set of propagators F for source[x] and sink[x], it is sufficient
to use a pointer to a propagator f (if F = {f}) and two special marks 〈0〉
(|F | = 0) and 〈2〉 (|F | ≥ 2). Then munion(m1,m2) returns m as follows: if
m1 = m2 then m = m1; if m1 = 〈2〉 or m2 = 〈2〉 then m = 〈2〉; if m1 = 〈0〉 then
m = m2; if m2 = 〈0〉 then m = m1.

6 Experimental Evaluation

All experiments use Gecode, a C++-based constraint programming library [5].
Gecode is one of the fastest constraint programming systems currently available,
benchmarks comparing Gecode to other systems are available from Gecode’s
webpage. The version used here corresponds to Gecode 2.1.1. Gecode has been
compiled with the Microsoft Visual Studio Express Edition 2008 (32 bit).

All examples have been run on a Mac Pro with two 2.8 GHz Quad Core
Xeon 5400 CPUs and 8192 MB main memory running 64 bit Windows Vista.
Runtimes are the average of 25 runs with a coefficient of deviation less than 3%
for all benchmarks.

Static analysis. Table 1 shows the runtime (time, in milliseconds), which per-
centage of the runtime is spent on the analysis in the optimized case, and the
number of nodes during search (as to be expected, the same for both). Examples
with a – as entry have been stopped after a runtime of one hour.

Table 1. Static analysis

original optimized both
Example time runtime analysis nodes

is-20 127.80 0.05 (−100.0%) 15.1% 13

is-40 – 0.16 (−100.0%) 17.5% 28

vc-20 87.68 0.03 (−100.0%) 27.8% 4

vc-40 – 0.08 (−100.0%) 36.9% 6

photo-eq 890.40 429.24 (−51.8%) 0.0% 5 472

photo-lq 714.48 78.80 (−89.0%) 0.0% 10 350

money 0.02 0.02 (−18.0%) 5.6% 4

donald 21.72 21.22 (−2.3%) 0.0% 5 788

magic-5 1 324.88 1 103.92 (−16.7%) 0.0% 89 016

The examples is-n (independent sets) and vc-n (vertex cover) for random
graphs with n nodes are modeled in the natural way using Boolean variables.
The constraints are all inequalities except the objective function which is de-
fined using a large linear equation with unit coefficients (optimized by analysis).
photo-* is a simple placement problem and use reified constraints for expressing
satisfaction of preferences with a Boolean variable. The total satisfaction then is
computed by a large linear equation ranging over these Boolean variables. While
photo-eq uses reified linear equations, photo-lq uses reified linear inequalities
to express preferences. Analysis shows for photo-eq that bounds propagation
can be used on the large linear equation. For photo-lq, bounds propagation can
also used for the single occurring alldifferent constraint. The well-known ex-
amples money (see Example 6), donald (DONALD+GERALD = ROBERT),
and magic square magic-5 use bounds propagation for linear equations with
more than three variables. Analysis shows that bounds propagation can be used
for the single alldifferent constraint in each example.

The analysis is run before evaluating solv for the first time (such that infea-
sible domain propagators could be optimized away). The benefit of the analysis
clearly outweighs its cost (for already medium sized examples the cost is zero).
This is true for the expensive (exponential) and often infeasible domain propaga-
tors for long linear equations (for example, is-n and vc-n) but also for feasible
domain propagators such as alldifferent.

Dynamic analysis and analysis cost. In the following we evaluate a variation of
the analysis in order to assess its cost and benefit. We assume that the feasi-
bility of domain propagation is classified as follows. For a constraint c (or for a
propagator f implementing c) a predicate feasible(c) holds, iff it is feasible (suf-
ficiently efficient) to use a domain propagator for c. For example, one could define
feasible(

∑n
i=1 aixi = d) to hold iff n ≤ 3, and feasible(alldifferent(x1, . . . , xn))

to always hold.
Initially, all constraints are propagated by bounds propagators. During search,

propagators might become feasible (e.g., some xi in
∑n

i=1 aixi = d become fixed).

Table 2. Dynamic analysis and analysis cost

n = 1 n = 5 n = 10 n = 25
Example nodes time nodes time nodes time nodes time

(a) analysis with optimization

alpha −80.7% −40.7% −72.8% −43.0% −68.4% −9.9% −32.6% −4.5%

money-c ±0.0% +45.6% ±0.0% +11.0% ±0.0% +5.9% ±0.0% +3.5%

donald-c −7.5% +117.7% −6.5% +37.9% −2.8% +25.0% −0.9% +12.6%

magic-4 −15.2% +485.3% −6.5% +314.0% −3.4% +209.1% −1.7% +120.5%

(b) only analysis

alpha ±0.0% +91.8% ±0.0% +20.8% ±0.0% +10.7% ±0.0% +5.1%

money-c ±0.0% +43.0% ±0.0% +10.6% ±0.0% +6.0% ±0.0% +2.5%

donald-c ±0.0% +99.8% ±0.0% +22.7% ±0.0% +12.7% ±0.0% +4.7%

magic-4 ±0.0% +94.7% ±0.0% +20.8% ±0.0% +10.9% ±0.0% +5.3%

We are going to use the analysis to replace a bounds propagator by a domain
propagator, if it is feasible and the analysis shows that domain propagation
might be beneficial. Hence, we construct the analysis graph G as follows: if the
propagator is a domain propagator, the edges are entered as before. If the prop-
agator is a feasible bounds propagator for the constraint c, the edges for dom(c)
are entered. After running the analysis phase, domain propagators are replaced
by bounds propagators if possible as before. If domain(f,G) holds for a feasible
bounds propagator f , it is replaced by a corresponding domain propagator.

By this, only bounds propagators that are feasible and can potentially im-
prove propagation are replaced by domain propagators. Just using feasibility
alone would, in all benchmark examples discussed above, immediately replace
the bounds propagator for alldifferent by a domain propagator even though
this is useless. Note that as search proceeds, a bounds propagator for a con-
straint can be replaced by a domain propagator when becoming feasible, and
later be replaced by a bounds propagator when the analysis finds that bounds
propagation is sufficient.

Table 2 shows the runtime and the number of nodes during search relative
to execution of the examples without running any analysis and using bounds
propagators. The analysis is run every n-th time before solv is computed by
the solver, where for (a) bounds and domain propagators are replaced, while for
(b) the analysis results are ignored (measuring analysis cost). It is important
that the analysis is run before solv is evaluated as the replacement of bounds
by domain propagators might require re-evaluation of solv. The examples all use
a alldifferent constraint and some linear equations (money-c and donald-c
use several linear equations for a model using carries in the letter equation).

Clearly, running the analysis before every evaluation of solv is infeasible, how-
ever running it every 10 times reduces the overhead to around 10%: that means
the analysis is efficient enough to be actually run dynamically. It may be that
an incremental version of the analysis could reduce this overhead substantially.
In cases where replacing bounds by domain propagators is useful as the search
space shrinks, the additional cost of domain propagation might still be too high.

There is at least some evidence (alpha) that dynamic analysis can be beneficial,
and we have just scratched the surface of possibilities for automatic selection of
propagation style.

7 Conclusion and Related Work

The original work on analysing when domain propagation could be replaced by
bounds propagation [1] worked in a completely different way. Propagators were
classified as bounds-preserving : meaning that on range domains they always gave
range domains; and endpoint-relevant : meaning that the bounds resulting from
applying the propagator only depended on the bounds it was applied to. Bounds
preserving propagator are propagators with no edges ⊕ f→ x, while endpoint-
relevant propagators are propagators with no edges x

f→ 	. Two analyses were
undertaken to find (Boolean) bounds preservation and endpoint relevant de-
scriptions for the context of each constraint. Each constraint was then given
the appropriate propagator by examining its context. The algorithms used in
the approach are O(nm) where n is the size of the constraint graph and m is
the number of constraints. The analysis is substantially more complicated to
implement than the approach in this paper, and indeed was never implemented.

The approach of this paper is

– considerably simpler, easier to prove, and implemented;
– O(n) where n is the size of the constraint graph; and
– more expressive, although this does not lead to more replacement of do-

main propagators by bounds propagators. An example is the description for
dom(x1 = |x2|) which in the new approach tracks the behaviour of x1 and
x2 more accurately than is possible in the old approach.

As future work we will consider proving and implementing a stronger version
of Theorem 1 where we let B be the set of all propagators where there is no path
from ⊕ to 	 where adjacent edges have to be from different propagators.

Example 7. Consider the propagators f = dom(x1 = x2), g = dom(x2 = |x3|),
and h = dom(x3 = x4), which generate the analysis graph x1

f→ x2, x2
f→ x1,

⊕ g→ x2, x2
g→ x3, x3

g→ x2, x3
g→ 	, x3

h→ x4, x4
h→ x3. The analysis detects

that nothing can be a bounds propagator. But indeed all could be replaced
because any holes generated by g are only fed back to itself, and hence cannot
change bounds. There are no alternating paths from ⊕ to 	. 2

References

1. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the
same search space? ACM Trans. Program. Lang. Syst. 27(3) (May 2005) 388–425

2. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1)
(1977) 99–118

3. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds con-
sistency revisited. In: AI 2006: Advances in Artificial Intelligence. Volume 4304 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany (2006) 49–58

4. Puget, J.F., Leconte, M.: Beyond the glass box: Constraints as objects. In Lloyd, J.,
ed.: Proceedings of the International Symposium on Logic Programming, Portland,
OR, USA, The MIT Press (December 1995) 513–527

5. Gecode Team: Gecode: Generic constraint development environment (2006) Avail-
able from http://www.gecode.org.

A The Analysis Graph

Analysis graph edges for primitive constraints and some labellings. The last
column shows whether a bounds(Z) propagator for the constraint is commonly
available.

Constraint G zbndPn
i=1 aixi ≤ d ∅ 4

x0 = d ∅ 4

a1x1 + a2x2 = d, |ai| = 1 {x1
f→ x2, x2

f→ x1} 4

a1x1 + a2x2 = d {x1
f→ x2, x2

f→ x1, ⊕ f→ x1, ⊕ f→ x2} 4Pn
i=1 aixi = d, n > 2, {⊕ f→, xi, xi

f→ 	 | 1 ≤ i ≤ n} ∪ {xi
f→ xj | 1 ≤ i 6= j ≤ n} 8Pn

i=1 aixi = d, n > 2, |ai| = 1 {xi
f→ xj | 1 ≤ i 6= j ≤ n} 4Pn

i=1 aixi 6= d {⊕ f→ xi | 1 ≤ i ≤ n} 4

x0 ⇔
Pn

i=1 aixi ≤ d ∅ 4

x0 ⇔
Pn

i=1 aixi = d {⊕ f→ xi, xi
f→ 	 | 1 ≤ i ≤ n} ∪ {xi

f→ xj | 1 ≤ i 6= j ≤ n} 8

x1 = ¬x2 ∅ 4

x1 = (x2 && x3) ∅ 4

x1 = (x2 || x3) ∅ 4

x1 = (x2 ⇒ x3) ∅ 4

x1 = (x2 ⇔ x3) ∅ 4

x1 = x2 × x3 {⊕ f→ xi, xi
f→ 	 | 1 ≤ i ≤ 3} ∪ {xi

f→ xj | 1 ≤ i 6= j ≤ 3} 8

x1 = x2 × x2 ∧ x2 ≥ 0 {x1
f→ x2, x2

f→ x1, ⊕ f→ x1 } 4

x1 = x2 × x2 {x1
f→ x2, x2

f→ x1,⊕
f→ x1, x2

f→ 	} 4

x1 = |x2| {x1
f→ x2, x2

f→ x1,⊕
f→ x2, x2

f→ 	} 4

x0 = min({x1, . . . , xn}) {x0
f→ xj , xj

f→ x0 | 1 ≤ j ≤ n} ∪ {xi
f→ 	 | 0 ≤ i ≤ n} 4

alldifferent(x1, . . . , xn) {xi
f→ xj | 1 ≤ i 6= j ≤ n} ∪ {⊕ f→ xi, xi

f→ 	 | 1 ≤ i ≤ n} 4

default(x1, . . . , xn) {⊕ f→ xi, xi
f→ 	 | 1 ≤ i ≤ n} ∪ {xi

f→ xj | 1 ≤ i 6= j ≤ n} 8

labelling(x1, . . . , xn) ∅
labellingff(x1, . . . , xn) {xi

f→ 	 | 1 ≤ i ≤ n}
labellingmid(x1, . . . , xn) {⊕ f→ xi, xi

f→ 	 | 1 ≤ i ≤ n}

