
Observable Confluence for Constraint Handling
Rules

Gregory J. Duck1, Peter J. Stuckey1, and Martin Sulzmann2

1 NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

University of Melbourne, 3010, AUSTRALIA
{gjd,pjs}@cs.mu.oz.au

2 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Abstract. Constraint Handling Rules (CHR) are a powerful rule based
language for specifying constraint solvers. Critical for any rule based
language is the notion of confluence, and for terminating CHR programs
there is a decidable test for confluence. But many CHR programs that
are in practice confluent fail this confluence test. The problem is that
the states that illustrate non-confluence are not observable from the ini-
tial goals of interest. In this paper we introduce the notion of observable
confluence, a more general notion of confluence which takes into account
whether states are observable. We devise a test for observable confluence
which allows us to verify observable confluence for a range of CHR pro-
grams dealing with agents, type systems, and the union find algorithm.

1 Introduction

Constraint Handling Rules [4] (CHR) are a powerful rule based language for
specifying constraint solvers. Constraint handling rules operate on a global multi-
set (conjunction) of constraints. A constraint handling rule defines a rewriting
from one multi-set of constraints to another.

A critical issue for any rule based language is the notion of confluence. Con-
fluence enforces that each different possible rewriting sequence leads eventually
to the same result. Confluent programs have a deterministic behaviour in terms
of an input goal. This guarantees that we always reach the same answer goal. For
terminating CHR programs there is a decidable test for confluence [1]. Unfortu-
nately there are many (terminating) programs which are confluent in practice,
but fail to pass the test.

In this paper, we make the following contributions:

– We introduce the notion of observable confluence which generalises the no-
tion of confluence by only considering rewriting steps which are observable
with respect to some invariant (Section 3.3).

– We give a generalised confluence test where we only need to consider join-
ability of critical pairs satisfying the invariant (Section 4).

– We show that the generalised confluence test enables us to verify observable
confluence of CHRs used for the specification of agents, the union-find algo-
rithm, and type systems (Section 5). All of these classes of CHR programs
are non-confluent under the standard notion.

To the best of our knowledge, we are the first to study observable confluence
in the context of a rule-based language. In the workshop papers [3, 6], we reported
some preliminary results. The present work represents a significantly revised and
extended version of [3].

We continue in Section 2 where we consider a number of motivating examples.
Section 3 provides background material on CHRs.

2 Motivating Examples

The following examples fail the standard confluence test, but we can show that
they are observable confluent with respect to some appropriate invariant.

2.1 Blocks World

In our first example, we consider a set of CHRs used for agent-oriented program-
ming [6]. The following CHR program fragment describes the behaviour of an
agent in a blocks world:3

g1 @ get(X), empty <=> hold(X).
g2 @ get(X), hold(Y) <=> hold(X), clear(Y).

The constraint hold(X) denotes that the agent holds some element X whereas
empty denotes that the agent holds nothing. The constraint clear(Y) simply
represents the fact that Y is not held. The constraint get(X) represents an action,
to get some element X. The atoms preceding the ‘@’ symbols are the rule names,
thus the rules are named g1 and g2 respectively. Both rules are simplification
rules, rewriting constraints matching the left-hand side to the right-hand side.
The first rule rewrites the constraints get(X) ∧ empty to hold(X). The second
rule rewrites get(X) ∧ hold(Y) to hold(X) ∧ clear(Y).

It is clear that the rules are non-confluent. Consider the critical state get(X)
∧ hold(Y) ∧ empty formed by combining the heads of rules g1 and g2. This
critical state can be rewritten to either hold(Y) ∧ hold(X) by applying rule
g1, or to hold(X) ∧ clear(Y) ∧ empty by applying rule g2. These two derived
states are a critical pair between the two rules. The confluence test for CHR [1]
states that a terminating program is confluent iff all critical pairs are joinable, i.e.
can be rewritten to the same result. Since no rewriting steps can join hold(Y)
∧ hold(X) and hold(X) ∧ clear(Y) ∧ empty, the blocks world program is
non-confluent.

Let us consider the non-confluent state get(X) ∧ hold(Y) ∧ empty more
closely: it represents the agent holding nothing (empty) whilst simultaneously
holding an object Y (hold(Y)). Clearly, such a state is nonsense, so we would

3 CHRs follow Prolog like notation, where identifiers starting with a lower case letter
indicate predicates and function symbols, and identifiers starting with upper case
letters indicate variables.

2

like to exclude it from consideration. To do this we need a weaker notion of con-
fluence, i.e. confluence with respect to valid states. We refer to this as observable
confluence.

Specifically, we can informally define valid states as follows:

“Either the agent holds some element X or holds nothing.”

Notice that the above program maintains this condition as an invariant. In this
paper, we show that all non-confluent states violate our invariant, thus isolated
get operations in the blocks world program are observable confluent.

A similar form of observable confluence under some invariant arises in our
next example.

2.2 Union Find

Consider the following program which is part4 of the simple union-find code
from [10, 9].

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).
findNode @ X ∼> PX \ find(X,R) <=> find(PX, R).
findRoot @ root(X) \ find(X,R) <=> R = X.
linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> Y ∼> X, root(X).

All rules except findNode and findRoot are simplification rules. Both findNode
and findRoot are simpagation rules, which are similar to simplification rules,
except constraints on the LHS of the ‘\’ symbol are not rewritten. This program
defines an environment where the root(X) and X ∼> Y constraints define trees,
and union(X,Y) links trees so that they have the same root.

The union-find program is non-confluent, since there are eight non-joinable
critical pairs. However, the authors of [9] classify the critical pairs as either
avoidable (as in they should not arise in practice) and unavoidable (as inher-
ent non-confluence in the union-find algorithm). For example, the critical state
between the linkEq and link is link(X,X) ∧ root(X) ∧ root(X), with two
root(X) constraints.5 The critical pair is root(X) ∧ root(X) and X ∼> X ∧
root(X), which is non-joinable. However, in [9] it is argued that this critical pair
is avoidable, since the presence of two root(X) in the state violates the definition
of a tree (i.e. X can only be the root of one tree). This kind of reasoning can be
understood in terms of invariants and observable confluence.

As in the blocks world example, we define the invariants that describe what
are valid states. Firstly, we informally define validTrees, as follows:

“For all X there is at most one root(X) or X ∼> Y, and there are no
cycles X ∼> Y1, ..., Yn ∼> X”

We are also interested in the confluence of a single union(X,Y) operation exe-
cuted in isolation on valid trees. Therefore certain combinations of operations
are not valid, thus we define validOps as follows:
4 We have removed the make rule to simplify the invariant.
5 CHR uses a multi-set semantics, thus here we consider X ∧X to be distinct from X.

3

“There is at most one union(,) or link(,), and if there is a union(,)
there is no find(,).”

This condition makes sense for confluence: since the order in which these oper-
ations are executed can affect the final result. For example, executing a find
before or after a union may produce different results, since the union may up-
date the trees.

To ensure observable confluence, there is one final case to consider: that is a
concurrent link and find operation. In this case, we can not simply make these
operations mutually exclusive, since link and find do interact in the body of the
union rule. However, the second argument to a find constraint must always be
associated to one of the arguments of the link constraint. Therefore, we define
validF ind as follows:

“If there is a find(X,Y) then there is no root(Y) or Y ∼> , and there
is either a link(Y,) or link(,Y) but no link(Y,Y)”

Define U = validTrees ∧ validOps ∧ validF ind, then we verify that U is
preserved by rule application, and thus is an invariant. Furthermore, none of the
non-joinable critical pairs, or any states extended from these critical pairs, satisfy
U .6 Therefore the union-find program P is observable confluent with respect to
U . Or in other words, P is U-confluent.

This shows that the union operation, executed in isolation on valid trees, is
confluent, even though the program itself is not confluent.

2.3 Type Class Functional Dependencies

The invariants we have seen so far, rule out (critical) states by observing the con-
straints in the store. But in CHR, a second reason for a state to be not observable
is the order and kind of rules that have fired. This is due to CHR propagation
rules which only add new constraints but do not delete existing constraints. To
avoid trivial non-termination, the CHR semantics maintains propagation his-
tories to avoid re-application of the same rule on the same constraints. The
short story is that certain states are not observable because of their propagation
histories. Our next example illustrates this point.

We consider CHRs which arise from the translation of type class constraints
in Haskell [8] involving functional dependencies [5]. We directly give the CHRs
and omit the type class program.

r1 @ f(int,bool,float) <=> true.
r2 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r3 @ f(int,B,C) ==> B = bool.

The first rule is a simplification rule. The second and third rule are propagation
rules. Propagation rules do not delete the constraints matching the head, thus
propagation rules are used to add constraints. For example, the second rule adds
the constraint B1 = B2 whenever we see f(A,B1,C) ∧ f(A,B2,D). To avoid
6 In the original paper [9], one of the critical pairs, namely link + findRoot, was “un-

avoidable” under the author’s conditions. However, we have sufficiently strengthened
the conditions to make the “unavoidable” critical pair avoidable.

4

trivial non-termination, propagation rules maintain a history of applications,
and avoid applying the same propagation rule more than once on the same set
of constraints.

When testing for confluence, we examine critical states, which are minimal
states where two different rule firings are possible. In order to be minimal states,
the propagation history is assumed to be as strong as possible, that is it disallows
any propagation rules, that could possible fire except the two rules used to
generate the critical state itself.

Rules r1 and r2 give rise to the critical state f(int,bool,float)∧f(int,B2,D)
from which we can derive two different states as shown by the following rewriting
steps f(int,bool,float) ∧ f(int,B2,D) �r1 f(int,B2,D) and

f(int,bool,float) ∧ f(int,B2,D)
�r2 f(int,bool,float) ∧ f(int,bool,D) ∧ B2 = bool
�r1 f(int,bool,D) ∧ B2 = bool

Note that we cannot apply the rule r3 to the state f(int,B2,D) because the
propagation history in the critical state must be as strong as possible (to qualify
as a minimal state). Therefore, the critical state leads to two different non-
joinable states. Hence, the above CHRs are non-confluent.

But in practice the critical state f(int,bool,float) ∧ f(int,B2,D) where
the propagation history prevents rule r3 from firing on the second constraint can-
not arise. The initial state always begins with an empty (weakest) propagation
history. Hence, rule r3 must have fired already on the second constraint. If this
were the case, then the constraint B2 = bool should appear in the critical state,
but B2 = bool does not occur. Therefore, the critical state is not reachable from
any initial goal. Further details are given in Section 5.1, where we show that this
program is in fact observable confluent with repsect to the reachability invariant.

Next, we review background material on CHR before introducing the notion
of observable confluence and the observable confluence test.

3 Preliminaries

A CHR simpagation rule is of the form (r @ H ′
1 \ H ′

2 ⇐⇒ g | C) where
we propagate H ′

1 and simplify H ′
2 by C if the guard g is satisfied. We call r

a propagation rule if H ′
2 is empty and a simplification rule if H ′

1 empty. As
seen in Section 2, (r @ H ′

2 ⇐⇒ g | C) is shorthand for the simplification
rule (r @ ∅ \ H ′

2 ⇐⇒ g | C), and (r @ H ′
1 =⇒ g | C) is shorthand for the

propagation rule (r @ H ′
1 \ ∅ ⇐⇒ g | C).

In CHR there are two distinct types of constraints: user constraints and built-
in constraints. Built-in constraints are provided by an external solver, whereas
user constraints are defined by the rules themselves. Only user constraints may
appear in a rule head (H ′

1 and H ′
2), and only built-in constraints in the guard

g, but the body C may contain both kinds of constraints.
Formally, CHR is a reduction system 〈�, Σ〉 where � is the CHR rewrite

relation and Σ is the set of all CHR states.

Definition 1 (CHR State). A state is a tuple of the form

〈G, S,B, T ,V〉

5

where goal G is a multi-set of constraints (both user and built-in), user store S
is a multi-set of user constraints, built-in store B is a conjunction of built-in
constraints, token store T is a set of tokens, and variables of interest V is the
set of variables present in the initial goal. Throughout this paper we use symbol
‘σ’ to represent a state, and Σ to represent the set of all states. ut

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about
the internal representation of B, we treat it as a conjunction of constraints. We
assume D denotes the theory for the built-in constraints B.

The token store7 T is a set of tokens of the from (r@C), where r is a rule
name, and C is a sequence of user constraints. A CHR propagation rule r may
only be applied to C if the token (r@C) exists in the token store. This is nec-
essary to prevent trivial non-termination for propagation rules. Finally, the set
V contains all variables that appeared in the initial goal. Whenever a new con-
straint is added to the user store, the token set of that constraint is added to
the token store.

Definition 2 (Token Set). Let P be a CHR program, C be a set of user con-
straints, and S a user-store, then

T(C,S) = {r@H ′ | (r@H =⇒ g | B) ∈ P,H ′ ⊆ C] S, C ⊆ H ′,H ′ unifies with H}

to be the token set of C with respect to S. ut
In the above, we write] for multi-set union. Later, we will also use multi-set
intersection C.

We define vars(o) as the free variables in some object o: e.g. term, formula,
constraint. We define an initial state as follows.

Definition 3 (Initial State). Given a multi-set of constraints G (i.e. the goal)
the initial state with respect to G is 〈G, ∅, true, ∅, vars(G)〉. ut

The operational semantics of CHR8 is based on the following three transitions
which map states to states:

Definition 4 (Operational Semantics).
1. Solve 〈{c}]G, S,B, T ,V〉 � 〈G, S, c ∧B, T ,V〉
where c is a built-in constraint.
2. Introduce 〈{c}]G, S,B, T ,V〉 � 〈G, {c}] S, B, T({c},S)] T ,V〉
where c is a user constraint.
3. Apply 〈G, H1]H2] S, B, T] T ,V〉 � 〈C]G, H1] S, θ ∧B, T ,V〉
where there exists a (renamed apart) rule (r @ H ′

1 \ H ′
2 ⇐⇒ g | C) in P , and

T = {(r@H1,H2)} if H ′
2 = ∅, otherwise T = ∅. The matching substitution θ is

such that H1 = θ(H ′
1)

H2 = θ(H ′
2)

D |= B → ∃ā(θ ∧ g)

7 The token store is also known as the propagation history.
8 There are many different versions of the operational semantics of CHR. In this paper

we use a version that is close to the original operational semantics described in [1].
This version is the most suitable for the study of confluence.

6

where ā = vars(g)− vars(H ′
1,H

′
2) and D denotes the built-in theory. ut

A derivation is a sequence of states connected by transitions. We use notation
σ0 �∗ σ1 to represent a derivation from σ0 to σ1.

3.1 Confluence
Confluence depends on the notion of equivalence between CHR states. The equiv-
alence relation for CHR states is known as variance:
Definition 5 (Variance). Two states

σ1 = 〈G1, S1, B1, T1,V〉 and σ2 = 〈G2, S2, B2, T2,V〉

are variants (written σ1 ≈ σ2) if there exists a unifier ρ of S1 and S2, G1 and
G2, (T1 C T(S1,∅)) and (T2 C T(S2,∅)) such that

1. D |= ∃̄V1B1 → ∃̄V1ρ ∧B2

2. D |= ∃̄V2B2 → ∃̄V2ρ ∧B1

where V1 = V∪vars(G1)∪vars(S1)∪vars(T1) and V2 = V∪vars(G2)∪vars(S2)∪
vars(T2). Otherwise the two states are variants if D |= ¬∃̄∅B1 and D |= ¬∃̄∅B2

(i.e. both states are false). ut
Confluence relies on whether two states can derive the same state. This property
is known as joinability.
Definition 6 (Joinable). Two states σ1 and σ2 are joinable if there exists
states σ′1 and σ′2 such that σ1 �∗ σ′1 and σ2 �∗ σ′2 and σ′1 ≈ σ′2. We use the
notation (σ1 ↓ σ2) to indicate that σ1 and σ2 are joinable. ut
Finally, we can define confluence as follows:
Definition 7 (Confluence). A CHR program P is confluent if the following
holds for all states σ0, σ1 and σ2: If σ0 �∗ σ1 and σ0 �∗ σ2 then σ1 and σ2

are joinable. ut

3.2 Confluence Test
In [1] it was shown that confluence is decidable for terminating CHR programs.
The confluence test for CHR depends on calculating all critical pairs between
rules in the program. First we define the notion of a critical ancestor state.
Definition 8 (Critical Ancestor States). Given two (renamed apart) rule
instances: (r1 @ H1\H2 ⇐⇒ g1 | B1) and (r2 @ H3\H4 ⇐⇒ g2 | B2), then the
set of all critical ancestor states (or simply ancestor states) ΣCP between r1 and
r2 is:
〈∅,H

a

r1]H
a

r2]H∩
r1,

H∩
r1 = H∩

r2 ∧ g1 ∧ g2, TCP ,VCP〉

∣∣∣∣∣∣∣∣∣∣∣∣

Hr1 = H1]H2

Hr2 = H3]H4

Hr1 = H∩
r1]H

a

r1

Hr2 = H∩
r2]H

a

r2
VCP =

vars(H1 ∧H2 ∧H3 ∧H4 ∧ g1 ∧ g2)

where, given e1 = (r1@H1,H2) and e2 = (r2@H3,H4), then TCP = {ei | i ∈
{1, 2}, riis a propagation rule}.

7

Basically, a critical ancestor state is a minimal state applicable to both rules.
The sets H∩

r1 and H∩
r2 represent some potential overlap between the two rules.

If the rules heads Hr1 and Hr2 do not overlap, then H∩
r1 = H∩

r2 = ∅ gives the
only non-false ancestor state.

We can define a critical pair in terms of an ancestor state.

Definition 9 (Critical Pair). Given the rules r1, r2 and the set ΣCP from
Definition 8, for σCP ∈ ΣCP where

σCP = 〈∅,H
a

r1]H
a

r2]H∩
r1,H

∩
r1 = H∩

r2 ∧ g1 ∧ g2, TCP ,VCP〉

then the critical pair (σA, σB) for σCP is

(〈B1, (H
a

r1]H
a

r2]H∩
r1)−H2,H

∩
r1 = H∩

r2 ∧ g1 ∧ g2, TA,VCP〉,

〈B2, (H
a

r1]H
a

r2]H∩
r1)−H4,H

∩
r1 = H∩

r2 ∧ g1 ∧ g2, TB ,VCP〉)

where TA = TCP − {e1} and TB = TCP − {e2} If they arent propagationpjs
rules they dont appear in TCP anyway! where e1 and e2 are defined as in
Definition 8. ut

Informally, Definition 9 simply states that (σA, σB) is the result of respectively
firing r1 and r2 on σCP , whilst being careful to specify exactly how the rules
were applied (e.g. how the constraints were matched against the rule head).

For the rest of the paper, we use σCP to denote the ancestor state of a critical
pair CP.

Confluence can be proven by showing that all critical pairs are joinable.

Theorem 1 (Confluence Test). [1] Given a terminating CHR program P , if
all critical pairs between all rules in P are joinable, then P is confluent.

This is known as the confluence test for terminating CHR programs.

3.3 I-Confluence

In this section we formally define I-confluence (i.e. observable confluence)9 with
respect to an invariant I.

Definition 10 (Invariant). An invariant I(σ) is a property such that for all
σ0 and σ1, we have that if σ0 � σ1 (or σ0 ≈ σ1) and I(σ0) then I(σ1). ut

Example 1 (Blocks World Invariant). First we define exists(σ,M), which de-
cides if the multi-set of user constraints M exists in σ:

exists(〈G,S, B, T ,V〉,M) ⇔
∃S′ ⊆ user(G)] S ∧ D |= builtin(G) ∧B → ∃vars(M)(M = S′)

where user(G) and builtin(G) returns all user/built-in constraints in G respec-
tively.
9 The terminology “I-confluence” and “observable confluence” are largely inter-

changable. The latter is useful when refering to a specific invariant I.

8

The invariant for the blocks world example from Section 2.1 is formally rep-
resented as B(σ) where

B(σ) ⇔¬exists(σ, {empty, empty}) ∧ ¬exists(σ, {empty, holds()})∧
¬exists(σ, {holds(), holds()) ∧ ¬exists(σ, {get(), get())

The first three conditions state that the agent either holds something or holds
nothing. The outcome is determined by the order in which get operations are
executed. Therefore, we impose the fourth condition which guarantees that we
only consider isolated get operations. It is straightforward to verify that the
Blocks-world program maintains B as an invariant. ut

Given an invariant I, we define confluence with respect to I as follows:

Definition 11 (Observable Confluence). A CHR program P is I-confluent
with respect to invariant I if the following holds for all states σ0, σ1 and σ2

where I(σ0) holds: If σ0 �∗ σ1 and σ0 �∗ σ2 then σ1 and σ2 are joinable. ut
Alternatively, a CHR program P is I-confluent with respect to invariant I iff the
reduction system R = 〈{σ ∈ Σ|I(σ)},�〉 is confluent. Likewise, P is I-local-
confluent iff R is local-confluent and P is I-terminating iff R is terminating.

Observable confluence is a weaker form of confluence,10 thus the standard
confluence test (see Theorem 1) is too strong. We desire a more general test for
observable confluence.

4 Observable Confluence
4.1 Extensions
To help reduce the level of verbosity, we introduce the notion of a state extension.

Definition 12 (Extension). A state σ = 〈G, S,B, T ,V〉 can be extended by
another state σe = 〈Ge, Se, Be, Te,Ve〉 as follows

σ ⊕ σe = 〈G]Ge, S] Se, B ∧Be, T] Te,Ve〉

We say that σe is an extension of σ. ut
An extension σe adds some “extra” information to an existing state σ. Notice
that the variables of interest V in the original state σ are simply replaced by
variables of interest Ve from state σe. We also assume that ≈ (see Definition 5)
is the equivalence relation for extensions.

Example 2. The following equations are of the form σ⊕ σe = σ′ where σ and σ′

are states, and σe is an extension.

〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, {q(X)}, true, ∅, ∅〉 = 〈∅, {p(X), q(X)}, true, ∅, ∅〉
〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, ∅, X = 0, ∅, ∅〉 = 〈∅, {p(X)}, X = 0, ∅, ∅〉
〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, ∅, true, ∅, {X}〉 = 〈∅, {p(X)}, true, ∅, {X}〉

The first adds a user constraint q(X) to the user store, the second adds a built-in
constraint X = 0 to the built-in store, and the third replaces the variables of
interest with the set {X}. ut
10 Observable confluence is only strictly weaker if I 6= true.

9

One crucial property of extensions is that they do not affect the applicability
of the CHR rewrite relation �.

Lemma 1. For all states σ and σ1 such that σ �∗ σ1, and for all extensions
σe have that σ ⊕ σe �∗ σ1 ⊕ σe.

The notions of variance and joinability depend on the variables of interest
V. Therefore we must refine the definition of extension to ensure joinability is
preserved.

Definition 13 (Valid Extension). A valid extension σe = 〈Ge, Se, Be, Te,Ve〉
of a state σ = 〈G, S,B, T ,V〉 is an extension such that

v ∈ vars(G, S,B, T) ∧ v 6∈ V ⇒ v 6∈ vars(Ge, Se, Be, Te,Ve)

Example 3. Consider the state σ = 〈∅, {leq(X, Y)}, X = Y, ∅, {X}〉. Then σe =
〈{leq(X, Z)}, ∅, true, ∅, {X}〉 is a valid extension of σ. However, the extension
σ′e = 〈{leq(Y, Z)}, ∅, true, ∅, {X}〉 is invalid since local variable Y is mentioned
in the extension. ut

For valid extensions, joinability is preserved.

Lemma 2. For all states σ = 〈G, S,B, T ,V〉, σ1, and σ2 such that

σ �∗ σ1 and σ �∗ σ2

If σ1 ↓ σ2, then for all valid extensions σe we have that σ1 ⊕ σe ↓ σ2 ⊕ σe.

4.2 I-Confluence

If all variables in a state σ = 〈G, S,B, T ,V〉 are in V, i.e. vars(G, S,B, T) ⊆ V,
then all extensions are valid for σ. The ancestor state of a critical pair has
this property, thus proving I-confluence is equivalent to showing that for all
critical pairs (σA, σB) with ancestor state σCP , and all extensions σe such that
I(σCP ⊕σe) holds, then (σA⊕σe, σB ⊕σe) are joinable. The problem is that the
set of all extensions is infinite, so we need some way of reducing the number of
extensions that we must test.

Our strategy is to define a partial order11 �σ over valid extensions that
satisfy the invariant with respect to some state σ.

Definition 14 (Partial Order). Given a state σ = 〈G, S,B, T ,V〉, and valid
extensions σe1 and σe2 of σ, then we define σe1 �σ σe2 to hold if

1. there exists a valid extension σe3 of (σ⊕σe1) such that (σ⊕σe1)⊕σe3 ≈ σ⊕σe2

2. V − Ve1 ⊆ V − Ve2 holds. ut

We find that if σe1 �σ σe2, σ � σ1, and σ � σ2, then (σ1 ⊕ σe1 ↓ σ2 ⊕ σe1)
implies (σ1 ⊕ σe2 ↓ σ2 ⊕ σe2). The means that the �σ order respects joinability,
and thus reduces the number of states that must be tested in order to prove
confluence.

We define the following for notational convenience.
11 Although we believe that relation �σ is a partial order, we omit a formal discussion

since none of our theoretical results require it to be.

10

Definition 15. Let Σe(σ) be the set of all valid extensions of some state σ,
and let ΣI

e (σ) = {σe|σe ∈ Σe(σ) ∧ I(σ ⊕ σe)} be the set of all valid extensions
satisfying the invariant I. Finally, let MI

e (σ) be the ≺σ-minimal elements of
ΣI

e (σ). ut

We define the following property, which we show to be equivalent to I-local-
confluence.

Definition 16. For all critical pairs CP = (σ1, σ2) with ancestor state σCP , and
for all σe ∈MI

e (σCP), we have that (σ1 ⊕ σe, σ2 ⊕ σe) is joinable.

Lemma 3. Given that ≺σCP is well-founded for all critical pairs CP, then: P is
I-local-confluent iff P satisfies Definition 16.

For terminating programs, we invoke Newman’s Lemma [7] to show that I-local-
confluence implies I-confluence.

Theorem 2. For all I-terminating programs P , given that ≺σCP is well-founded
for all critical pairs CP, then: P is I-confluent iff P satisfies Definition 16.

4.3 I-Confluence Test

The standard confluence test for terminating CHR programs relies on showing
that all critical pairs are joinable. Based on Theorem 2 and Definition 16, we
can define a similar test for the more general notion of I-confluence. Instead of
testing critical pairs, we test critical pairs CP extended by a set of extensions –
i.e. critical pairs CP extended by the respective MI

e (σCP) extension set.
For Theorem 2 to be used in practice, there are two issues that must be

resolved: (1) the order ≺σCP must be well-founded, and (2) for each critical pair
CP, the set of extensions MI

e (σCP) must be computable.

Well-foundedness. Ordering ≺σCP is essentially a product order over the fields
in the CHR state. Thus for the G, S, T fields of a state, ≺σCP is simply well-
founded subset ordering with the minimal element G = S = T = ∅. The set of
variables of interest V is ordered differently. In this case, extensions are ordered
based on the difference between V and some given reference set V0. Again, this
is (a variant of) subset ordering with the minimal element V = V0.

Where well-foundedness may be broken is the built-in store B. Indeed, for
some constraint domains, the set of extensions is not well-founded.

Example 4. Consider the constraint domain D of (in)equalities over the integers.
Consider the following sequence of extensions: σi

e = 〈∅, ∅, X < i, ∅, {X}〉. Since
for all j, k such that k > j we have that D |= X < j ↔ (X < k ∧ X < j) we
have that σj

e ≺σ σk
e holds. Since the sequence is infinite, the relation ≺σ is not

well-founded. ut

There are also important examples of constraint domains that do preserve well-
foundedness:

Proposition 1. The order ≺σ is well-founded if D is equations over the Her-
brand domain.

11

Proposition 2. The order ≺σ is well-founded if D is a finite domain.

We can use Proposition 2 to find a practical solution to Example 4. Instead of
considering all possible integers, we can restrict ourselves to some finite range
of integers (e.g. those representable on a 32-bit CPU). The example is now well
founded, with the minimal element 〈∅, ∅, X < 232, ∅, {X}〉.

Computability. Depending on the invariant I, the set MI
e (σCP) may be either

undecidable or be infinite. Even if MI
e (σCP) is decidable and finite, an algorithm

to compute it is dependent on the nature of the invariant I. The computation
of MI

e (σCP) is therefore instance-dependent.
Despite this, in Section 5 we look at several instances for I and compute the

MI
e (σCP) for each critical pair.

5 Examples

We use Theorem 2 to verify observable confluence under the invariants we have
seen earlier in Section 2. In addition, we verify ground confluence.

5.1 Reachable Confluence

A naive definition of confluence states that: a program P is confluent if for all
input I, there is only one possible O such that I �∗ O. However, in [3] it was
shown that there exist non-confluent CHR programs that satisfy this alternative
definition. In this section, we reformulate the main theorem from [3] in terms of
our observable confluence results.

The key issue is the difference between reachable and unreachable states. A
reachable state is one that can be derived from some initial state (i.e. from some
initial goal).

Definition 17 (Reachability). We define the property that a state is reach-
able R(σ) as follows:

– For all initial states σi = 〈G, ∅, true, ∅, vars(G)〉 R(σi) holds; and
– If σ1 � σ2 (or σ1 ≈ σ2) and R(σ1) holds, then R(σ2) holds. ut

By definition, R(σ) is an invariant.
The naive definition of confluence is more precisely defined as R-confluence,

i.e. confluent with respect to the reachability invariant. In some systems, e.g.
in term rewriting, all states (terms) are potential initial states, and thus R-
confluence and confluence are equivalent. However, as was show in Section 2.3,
the same is not true for CHR. Our main counter-example is the following class
of CHR programs, which arise from the study of multi-parameter typeclasses
with functional dependencies [11].

Definition 18 (FD-CHR). A CHR program P is said to be in the FD-CHR
class of programs if it is of the form

r1 @ p(X1, ..., Xd, Xd+1, ..., Xr, ...), p(X1, ..., Xd, Yd+1, ..., Yr, ...) ==>
Xd+1 = Yd+1, ..., Xr = Yr.

r2 @ p(f1, ..., fn) <=> B.
r3 @ p(f1, ..., fd, Y1, ..., Yr, ...) ==> Y1 = fd+1, ..., Yr = fr.

12

where B is an arbitrary conjunction of built-in and user constraints, and fi are
arbitrary terms such that vars(fd+1, ..., fr) ⊆ vars(f1, ..., fd) We also require
P to be terminating. Here the indices 1..d represent the domain and indices
(d + 1)..r represent the range of the functional dependency. Also note that r is
allowed to be less than n. ut
In [3] it was shown that the FD-CHR class of programs are R-confluent, however
many instances of Definition 18 are not confluent.
Example 5 (FD-CHR). Consider the following instance of Definition 18:12

r1 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r2 @ f(int,bool,float) <=> true.
r3 @ f(int,B,C) ==> B = bool.

Consider the critical pair (σ1, σ2) between rules r1 and r2:

σCP = 〈∅, {f(int, bool, f loat), f(int, B2, D)}, true, {t}, {B2, D}〉
σ1 = 〈{bool = B2}, {f(int, bool, f loat), f(int, B2, D)}, true, ∅, {B2, D}〉
σ2 = 〈∅, {f(int, B2, D)}, true, {t}, {B2, D}〉

where t is the token (r1@f(int, bool, f loat), f(int, B2, D)). The final states de-
rived from σ1 and σ2 are:

σ1 �∗ 〈∅, {f(int, bool,D)}, B2 = bool, ∅, {B2, D}〉
σ2 �∗ 〈∅, {f(int, B2, D)}, true, {t}, {B2, D}〉

These states are not variants, since in the final state for σ1, the variable B2 is
constrained to bool, but this is not the case for the final state for σ2. Since these
are the only final states for σ1 and σ2, the critical pair is not joinable, and thus
the program is not confluent. ut

State σCP is not reachable since the lack of a token (r3@f(int, B2, D)) sug-
gests rule r3 has already fired on constraint f(int, B,C). If that rule did fire,
then we would expect the built-in store to entail B2 = bool, which is not the
case.

Thus, we consider the minimal set of extensions that make σCP reachable.
This set is:

MR
e (σCP) ={〈∅, ∅, true, {(r3@f(int, B2, D))},V〉, 〈{B2 = bool}, ∅, true, ∅,V〉,

〈∅, ∅, B2 = bool, ∅,V〉}

It is easy to verify that for all σe ∈MR
e (σCP) we have that σ1⊕σe ↓ σ2⊕σe. We

can verify similar results for all other critical pairs in P , and thus, by Theorem 2,
program P is R-confluent.

We can generalise this basic approach, and restate the main theorem from [3].
Corollary 1. All programs P ∈FD-CHR are R-confluent.

An alternative (and considerably longer) proof for Corollary 1 was presented
in [3]. The version in [3] relied on showing that all programs P ∈FD-CHR were
related to a class of confluent programs, and that the relation was sufficient to
show R-confluence. In this paper, the proof relies on Theorem 2, and thus is a
far more direct proof of R-confluence.
12 An informal version of this example was seen in Section 2.3.

13

5.2 Simple Confluence
It is common for programmers to implement non-confluent CHR programs that
are well behaved for some certain input. For example, the union-find program [9]
(also see Section 2.2) is non-confluent, however it is well behaved provided the
initial goal satisfies some certain conditions.

Let I be an invariant that simply excludes non-joinable critical pairs from
consideration, then P is always I-confluent. We define this as simple confluence.
Corollary 2 (Simple Confluence). Given a terminating program P over well-
founded D, and an invariant I, if for all critical pairs σCP , either:
1. I(σCP) holds, and σA ↓ σB; or
2. For all extensions σe we have that I(σCP ⊕ σe) does not hold;

then P is I-confluent.
Via the above corollary and the blocks world invariant B from Example 1,

we can straightforwardly verify B-confluence of the blocks world program in
Section 2.1. Similarly, we can verify observable confluence of the union-find al-
gorithm in Section 2.2. Due to space limitations, further details are given in
Appendix B.

5.3 Ground Confluence
A state σ is ground, i.e. G(σ) holds, if all variables in vars(σ) are constrained to
be one value by the built-in store B of σ. Groundness is an invariant for range
restricted13 CHR programs. Typically, the critical pair between two rules is not
ground. However we can invoke Theorem 2 to show G-confluence.
Corollary 3 (Ground Confluence). A terminating, range restricted, CHR
program P over well-founded D is G-confluent if for all critical pairs CP in P
we have that (σ1 ⊕ σe) ↓ (σ2 ⊕ σe) for all extensions σe ∈M(σCP) where:

M(σCP) = {〈∅, ∅, X0 = d0 ∧ ... ∧Xn = dm, ∅,VCP〉 |
{X0, ..., Xn} = vars(σCP), di ∈ D}

If D is an finite set, then M(σCP) can be computed.
Example 6. Consider the following CHR program over the Boolean domain.
p(X,Y) <=> not(X,Y). xor(0,0,Z) <=> Z = 0.
p(X,Y) <=> xor(0,X,Y). xor(0,1,Z) <=> Z = 1.
not(0,Y) <=> Y = 1. xor(1,0,Z) <=> Z = 1.
not(1,Y) <=> Y = 0. xor(1,1,Z) <=> Z = 0.

This program is non-confluent thanks to the critical pair σCP = 〈∅, {p(X, Y)}, true, ∅, {X, Y }〉
between the two rules for p/2 being non-joinable. Clearly G(σCP) does not hold,
thus we evaluate M(σCP):

M(σCP) = {〈∅, ∅, X = 0 ∧ Y = 0, ∅, {X, Y }〉, 〈∅, ∅, X = 0 ∧ Y = 1, ∅, {X, Y }〉,
〈∅, ∅, X = 1 ∧ Y = 0, ∅, {X, Y }〉, 〈∅, ∅, X = 1 ∧ Y = 1, ∅, {X, Y }〉}

For each of these extensions, the critical pair is joinable, and thus P is G-
confluent. ut
13 A CHR program is range restricted if vars(H1\H2 ⇐⇒ G|B) = vars(H1\H2) for

all rules.

14

6 Conclusion

We have shown that many non-confluent CHR programs are in fact observably
confluent in practice, and have presented a method for proving the observable
confluence of programs with respect to invariants. Furthermore, we have spe-
cialised our results for some common cases, such as simple confluence and ground
confluence.

To the best of our knowledge, we are the first to study observable confluence
in the context of a rule-based language. However, the notion of observable con-
fluence could easily be extended to other areas, such as term rewriting, which is
something we intend to investigate in the future.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Proc. of CP’97, LNCS, pages 252–266. Springer-Verlag, 1997.

2. S. Abdennadher. Analyse von regelbasierten Constraintlösern. PhD thesis, Ludwig-
Maximilians-Universität München, May 1998.

3. G. J. Duck, P. J. Stuckey, and M. Sulzmann. Observable Confluence for Constraint
Handling Rules. Technical Report CW 452, Katholieke Universteit Leuven, 2006.
Proc. of CHR 2006, Third Workshop on Constraint Handling Rules.

4. T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and
Trends, LNCS. Springer-Verlag, 1995.

5. M. P. Jones. Type classes with functional dependencies. In Proc. of ESOP’00,
volume 1782 of LNCS. Springer-Verlag, 2000.

6. E. S. L. Lam and M. Sulzmann. Towards agent programming in CHR. Technical
Report CW 452, Katholieke Universteit Leuven, 2006. Proc. of CHR 2006, Third
Workshop on Constraint Handling Rules.

7. M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223–243, 1942.

8. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

9. Tom Schrijvers and Thom W. Frühwirth. Analysing the CHR Implementation
of Union-Find. In Armin Wolf, Thom W. Frühwirth, and Marc Meister, editors,
W(C)LP, volume 2005-01 of Ulmer Informatik-Berichte, pages 135–146. Univer-
sität Ulm, Germany, 2005.

10. Tom Schrijvers and Thom W. Frühwirth. Optimal union-find in Constraint Han-
dling Rules. TPLP, 6(1-2):213–224, 2006.

11. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding
Functional Dependencies via Constraint Handling Rules. Journal of Functional
Programming, 17(1):83–129, 2007.

15

A Proofs

Lemma 4. For all states σ = 〈G, S,B, T ,V〉, σ1, and σ2 such that

σ �∗ σ1 and σ �∗ σ2

If σ1 ↓ σ2, then for all valid extensions σe
14 we have that σ1 ⊕ σe ↓ σ2 ⊕ σe.

Proof. Since σ1 ↓ σ2, there exists states σ′1 and σ′2 such that σ′1 ≈ σ′2 and

σ �∗ σ1 �∗ σ′1

σ �∗ σ2 �∗ σ′2

By Lemma 1 we that that for all extensions σe of σ

σ ⊕ σe �∗ σ1 ⊕ σe �∗ σ′1 ⊕ σe

σ ⊕ σe �∗ σ2 ⊕ σe �∗ σ′2 ⊕ σe

It suffices to show that σ′1 ⊕ σe ≈ σ′2 ⊕ σe.
Let σe = 〈Ge, Se, Be, Te,Ve〉. Consider

σ′1 ⊕ σe = 〈G′
1]Ge, S

′
1] Se, B

′
1 ∧Be, T ′

1] Te,Ve〉
σ′2 ⊕ σe = 〈G′

2]Ge, S
′
2] Se, B

′
2 ∧Be, T ′

2] Te,Ve〉

Since σ′1 ≈ σ′2, there exists a unifier ρ that satisfies the conditions of Definition 5.
We observe that ρ is also a unifier of: S′

1]Se and S′
2]Se, G′

1]Ge and G′
2]Ge,

and, (T1 C T(S1]Se,∅))] Te and (T2 C T(S2]Se,∅))] Te. Let V1 = V ∪ vars(G′
1) ∪

vars(S′
1)∪ vars(T ′

1) and V1
e = Ve∪ vars(G′

1)∪ vars(S′
1)∪ vars(T ′

1)∪ vars(Ge)∪
vars(Se) ∪ vars(Te). Now, consider the statements:

D |= ∃̄V1B
′
1 → ∃̄V1ρ ∧B′

2 (1)

D |= ∃̄V1
e
B′

1 ∧Be → ∃̄V1
e
ρ ∧B′

2 ∧Be (2)

If (1) implies (2) then we are done. Therefore, by contradiction, assume that (1)
holds but (2) does not. We can simplify (2) to:

D |= ∃̄V1
e
B′

1 → ∃̄V1
e
ρ ∧B′

2 (3)

Thus (3) is in the same form as (1) except for the variable quantification. There-
fore there must exist an existential variable v ∈ vars(B′

1) ∪ vars(B′
2) ∪ vars(ρ)

in (1) that is not existential in (3), i.e. v 6∈ V1 and v ∈ V1
e . Since v ∈ V1

e we have
that either:
14 For simplicity, and w.l.o.g., we implicitly assume that all future derivations can only

introduce fresh variables not mentioned in σe. Thus validity is preserved throughout
a derivation.

16

1. v ∈ Ve ∪ vars(Ge) ∪ vars(Se) ∪ vars(Te); or
2. v ∈ vars(G′

1) ∪ vars(S′
1) ∪ vars(T ′

1)

Case (2) can be excluded, since it implies v ∈ V1. Since, by assumption, σe is a
valid extension, case (1) implies v 6∈ vars(G′

1)∪ vars(S′
1)∪ vars(B′

1)∪ vars(T ′
1)

or v ∈ V. We can instantly exclude v ∈ V, otherwise v ∈ V1. Furthermore, we
can apply the symmetric case to derive: v 6∈ vars(G′

2) ∪ vars(S′
2) ∪ vars(B′

2) ∪
vars(T ′

2). Therefore we can conclude from case (1) that v 6∈ vars(B′
1)∪vars(B′

2)∪
vars(ρ). This contradicts the assumption that v is in (1). Therefore, (1) implies
(2). Furthermore, we can apply the same argument to the symmetric case:

D |= ∃̄V2
e
B′

2 ∧Be → ∃̄V2
e
ρ ∧B′

1 ∧Be

Thus we conclude that σ′1 ⊕ σe ≈ σ′2 ⊕ σe. Therefore σ1 ⊕ σe ↓ σ2 ⊕ σe.
ut

Lemma 5. Given that ≺σCP is well-founded for all critical pairs CP, then: For
all critical pairs CP = (σ1, σ2), for all ≺σCP -minimal elements σe of ΣI

e (σ),
(σ1 ⊕ σe, σ2 ⊕ σe) is joinable iff P is I-local-confluent.

Proof.
“⇒” - direction: By contradiction. Assume that P is not I-local-confluent, i.e.
there exists a state σ such that

– I(σ) holds; and
– there exists states σA and σB such that

σ � σA ∧ σ � σB (4)

and σA and σB are not joinable.

We consider all possible transitions σ � σA and σ � σB . The only non-
trivial case is Apply + Apply. For the other cases, i.e. Introduce + Intro-
duce, Introduce + Solve, Introduce + Apply, Solve + Solve, and Solve
+ Apply, we refer the reader to [2].

Let the two (renamed apart) rule instances used by each Apply be

r1 @ H1\H2 ⇐⇒ g1 | B1

r2 @ H3\H4 ⇐⇒ g2 | B2

Given (4), state σ must be of the form (up to variance):

σ = 〈G, H
a

r1]H
a

r2]H∩
r1] S, H∩

r1 = H∩
r2 ∧ g1 ∧ g2 ∧B, TCP ∪ T ,V〉 (5)

for some G, S, B, T and V, and where Hr1 = H1] H2, Hr2 = H3] H4,
Hr1 = H∩

r1] H
a

r1 and Hr2 = H∩
r2] H

a

r2, and TCP is defined by Definition 8.
Furthermore, states σA and σB are:

σA = 〈B1]G, H
a

r1]H
a

r2]H∩
r1 −H2] S, H∩

r1 = H∩
r2 ∧ g1 ∧ g2 ∧B,

(TCP − {e1})] T ,V〉

σB = 〈B2]G, H
a

r1]H
a

r2]H∩
r1 −H4] S, H∩

r1 = H∩
r2 ∧ g1 ∧ g2 ∧B,

(TCP − {e2})] T ,V〉

17

I.e. σ applied to r1 and r2 respectively.
By inspection, there exists a ancestor state σCP ∈ ΣCP and an extension σ′e

such that σ = σCP ⊕ σ′e, and

σCP = 〈∅,H
a

r1]H
a

r2]H∩
r1,H

∩
r1 = H∩

r2 ∧ g1 ∧ g2, TCP ,VCP〉
VCP = vars(H1,H2,H3,H4, g1, g2)

σA = σ1 ⊕ σ′e

σB = σ2 ⊕ σ′e

σ′e = 〈G, S,B, T ,V〉

Note that the naming of variables has been specifically chosen to make the
correspondence with Definition 8 more clear.

Next, we define the property J (σe) that holds if the critical pair (σ1⊕σe, σ2⊕
σe) is joinable. We have that

1. by assumption, J (σe) holds for all ≺σCP -minimal extensions σe ∈ ΣI
e (σCP);

and
2. for all σe1, σe2 ∈ ΣI

e (σCP) such that σe1 ≺σCP σe2 and J (σe1) holds, we have
that, by Definition 14 and Lemma 2, J (σe2) also holds.

Thus by the principle of well-founded induction, J holds for all elements of
ΣI

e (σCP), including σ′e. This contradicts the assumption that (σ1⊕σ′e, σ2⊕σ′e) =
(σA, σB) is not joinable. Therefore, P must be I-local-confluent.
“⇐” - direction: For critical pairs CP, consider all ≺σCP -minimal extensions σe

of the set ΣI
e (σCP). We have that, by definition, I(σCP ⊕ σe) holds. Therefore

given

σCP ⊕ σe → σ1 ⊕ σe ∧ σCP ⊕ σe → σ2 ⊕ σe

and since P is I-local-confluent, we have that σ1 ⊕ σe and σ2 ⊕ σe must be
joinable. ut

Theorem 3. For all I-terminating programs P , given that ≺σCP is well-founded
for all critical pairs CP, then: For all critical pairs CP = (σ1, σ2), for all ≺σCP -
minimal elements σe of ΣI

e (σ), (σ1⊕σe, σ2⊕σe) is joinable iff P is I-confluent.

Proof. “⇒” - direction: By Lemma 3, P is I-local-confluent. By Newman’s
Lemma [7], P is I-confluent.
“⇐” - direction: Same as in the proof of Lemma 3, with the condition “I-local-
confluent” replaced by the stronger condition “I-confluent”. ut

Corollary 4. All programs P ∈FD-CHR are R-confluent.

Proof. All critical pairs from P are joinable and trivially reachable except for
the critical pair(s) between rules r1 and r2 as follows:

σCP = 〈∅, {f(f1, ..., fn), f(f1, ..., fd, Yd+1, ..., Yr, ...)}, true, {t},V〉
σ1 = 〈{fd+1 = Yd+1, ..., fr = Yr}, {f(f1, ..., fn), f(f1, ..., fd, Yd+1, ..., Yr, ...)}, true, ∅,V〉
σ2 = 〈B, {f(f1, ..., fd, Yd+1, ..., Yr, ...)}, true, {t},V〉

18

where t = (r1@f(f1, ..., fn), f(f1, ..., fd, Yd+1, ..., Yr, ...)) and V are all variables
in σCP . There is also the symmetric case, where the head of rule r2 is unified
with the other head of r1.

Given σCP , we define condition C as follows:

C(〈Ge, Se, Be, Te,Ve〉) ⇔
((r3@f(f1, ..., fd, Yd+1, ..., Yr, ...)) ∈ Te) ∨
(D |= builtin(Ge) ∧Be → Yd+1 = fd+1 ∧ ... ∧ Yr = fr)

Furthermore, we claim that if σCP extended by σe is reachable, then σe satisfies
C, i.e.

R(σCP ⊕ σe) ⇒ C(σe) (6)

By contradiction assume that (6) does not hold, i.e.

R(σCP ⊕ σe) 6⇒ C(σe)

Thus there exists an extensions σe such that

R(σCP ⊕ σe)∧
((r3@f(f1, ..., fd, Yd+1, ..., Yr, ...)) 6∈ Te)∧
(D |= builtin(Ge) ∧Be 6→ Yd+1 = fd+1 ∧ ... ∧ Yr = fr)

Since σCP ⊕ σe is reachable, there exists a derivation D from some initial state
σ0:

σ0 � σ1 � ... � σCP ⊕ σe (7)

Define C = f(f1, ..., fd, Yd+1, ..., Yr, ...). We observe that C ∈ SCP(]Se), and thus
there must be an Introduce transition adding C to the user store in derivation
(7). This also adds (r3@C) to the token store. Since, by assumption, (r3@C) 6∈
TCP ∪ Te, there must be an Apply transition for r3 on C in (7). If this is the
case, then the built-in constraints

Yd+1 = fd+1 ∧ ... ∧ Yr = fr

will be added to the goal. These constraints may be Solved, or remain in the
goal. In either case, built-in constraints are monotonic (i.e. never deleted), thus

D |= builtin(GCP ∧Ge) ∧ (BCP ∧Be) → Yd+1 = fd+1 ∧ ... ∧ Yr = fr

Since builtin(GCP) = BCP = true, we conclude:

D |= builtin(Ge) ∧ (Be) → Yd+1 = fd+1 ∧ ... ∧ Yr = fr

This is a contradiction, thus (6) holds.
Consider the following set of extensions that satisfy C:

{〈∅, ∅, true, {(r3@f(f1, ..., fd, Yd+1, ..., Yr, ...))},V〉} ∪
{〈G, ∅, B, ∅,V〉 | G ∧B ≡ (Yd+1 = fd+1 ∧ ... ∧ Yr = fr)}

19

It is trivial to verify that these extensions are the �σCP -minimal elements of
ΣC

e (σCP), thus this set is MC
e (σCP). Furthermore, it can be easily verified that

for all such σe ∈ MC
e (σCP), we have that (σ1 ⊕ σe) ↓ (σ2 ⊕ σe). Therefore, by

Theorem 2, P is C-confluent.
Finally we prove R-confluence by contradiction. Assume that P is not R-

confluent. Since σCP is the only non-joinable critical pair, we have that there
exists an extension σe of σCP such that R(σCP ⊕ σe) holds, and σ1 ⊕ σe and
σ2⊕ σe are not joinable. Since R implies C we have that C(σCP ⊕ σe) also holds,
thus P is not C-confluent, which is a contradiction. ut

Corollary 5 (Simple Confluence). Given a terminating program P over well-
founded D, and an invariant I, if for all critical pairs σCP , either:

1. I(σCP) holds, and σ1 ↓ σ2; or
2. For all extensions σe we have that I(σCP ⊕ σe) does not hold;

then P is I-confluent.

Proof. Direct proof. It is simply a matter of checking that the conditions for
our main theorem are satisfied. By assumption P is terminating and I is an
invariant. Thus given a critical pair CP, there are two cases to consider:

1. If I(σCP) holds, then the set of≺σCP -minimal elements is simply {〈∅, ∅, true, ∅,VCP〉}
(i.e. only the empty extension). Let σe be the empty extension, then (σ1 ⊕
σe) ↓ (σ2 ⊕ σe) = σ1 ↓ σ2 is joinable.

2. If I(σCP ⊕ σe) does not hold for all extensions σe, then the set of ≺σCP -
minimal elements is the empty set. Therefore, this case is trivial.

The conditions for Theorem 2 are satisfied, and therefore P is I-confluent. ut

Corollary 6 (Ground Confluence). A terminating, range restricted, CHR
program P over well-founded D is G-confluent if for all critical pairs CP in P
we have that (σ1 ⊕ σe) ↓ (σ2 ⊕ σe) for all extensions σe ∈M(σCP) where:

M(σCP) = {〈∅, ∅, X0 = d0 ∧ ... ∧Xn = dm, ∅,VCP〉 | {X0, ..., Xn} = vars(σCP), di ∈ D}

Proof. Direct proof. Since P is range restricted, G is an invariant. For all critical
pairs CP, the extensions in the set M(σCP) are the ≺σCP -minimal extensions
that satisfy G, thus MG

e (σCP) = M(σCP). Since, by assumption, for all σe ∈
MG

e (σCP) we have that (σ1 ⊕ σe) ↓ (σ2 ⊕ σe), then by Theorem 2, we have that
P is G-confluent. ut

B Example: Union-find

We formally define the union find invariant.
We define:

exists(〈G,S, B, T ,V〉,M) ⇔
∃S′ ⊆ user(G)] S ∧
D |= builtin(G) ∧B → ∃vars(M)(M = S′)

20

We define the set of valid trees as follows:

validTrees(σ) ⇔
not exists(σ, {root(X), root(X)})

∧ not exists(σ, {root(X), X ~> Y })
∧ not exists(σ, {X ~> Y ,X ~> Z})
∧ ¬(∃X.X ~> X ∈ closure(M (σ)))

where M(σ) = {X ~> Y | exists(σ, {X ~> Y }) and closure(·) builds the tran-
sitive closure of the relation ~> for a given set.

The union-find program is inherently non-confluent, since CHR does not
specify which operations, i.e. union, find, or link, are applied in which order.
Thus we restrict ourselves to considering a single union (or link) operation in
isolation. Thus we define a condition describing valid operations:

validOps(σ) ⇔
not exists(σ, {link(,), link(,)})

∧ not exists(σ, {union(,), link(,)})
∧ not exists(σ, {union(,), find(,)})
∧ not exists(σ, {union(,), union(,)})

Finally, given there exists a find(X,Y) in the store, the argument Y is
restricted such that (1) there is no root(Y) or Y ~> Z in the store, and (2)
there exists a link(Y ,) or link(,Y) in the store, but not a link(Y ,Y).

validF ind(σ) ⇔
not exists(σ, {find(X,Y), root(Y)})

∧ not exists(σ, {find(X,Y), Y ~> Z})
∧ (exists(σ, {find(X,Y)}) ⇒

(exists(σ, {link(Y ,)}∨
exists(σ, {link(,Y)})∧
not exists(σ, {link(Y ,Y)}))

In effect, every find operation must be associated with a link operation, as is
the case for a union.

We define our global invariant:

U(σ) = validTrees(σ) ∧ validOps(σ) ∧ validF ind(σ)

It is possible to verify U is an invariant by considering all possible rule applica-
tions.

Furthermore, U excludes all non-joinable critical pairs. For example, consider
the critical state

σCP = 〈∅, {root(X), find(Y ,R), link(X,Y), root(Y)}, true, ∅, {X, Y,R}〉

between the rules:

21

findRoot @ root(X) \ find(X,R) <=> R = X.
link @ link(X,Y), root(X), root(Y) <=> Y ~> X, root(X).

We consider the U invariant. Since there is a find(Y ,R), in order to satisfy
validF ind, there must be a link(R,) or link(,R). Furthermore, to sat-
isfy validOps, we can only have one link constraint, thus either R = Y or
R = X. However, if either or these were the case, then the validF ind condition
not exists(σ, {find(Y,R), root(R)}) would not be satisfied, since we already
have a root(X) and a root(Y). Therefore, this critical pair, and all extensions
of it, are not observable.

We can draw the same conclusion for the other non-joinable critical states of
the union find program. Via Corollary 2 we can thus conclude that the union-
find program is U-confluent. This verifies the ad hoc confluence arguments of
the original paper [9].

22

