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Abstract. Termination analysis is often performed over the abstract
domains of monotonicity constraints or of size change graphs. First, the
transition relation for a given program is approximated by a set of de-
scriptions. Then, this set is closed under a composition operation. Finally,
termination is determined if all of the idempotent loop descriptions in
this closure have (possibly different) ranking functions. This approach
is complete for size change graphs: An idempotent loop description has
a ranking function if and only if it has one which indicates that some
specific argument decreases in size. In this paper we generalize the size
change criteria for size change graphs which are not idempotent. We
also illustrate that proving termination with monotonicity constraints is
more powerful than with size change graphs and demonstrate that the
size change criteria is incomplete for monotonicity constraints. Finally,
we provide a complete termination test for monotonicity constraints.

1 Introduction

Termination analysis is often performed by approximating the transition relation
induced by a program. For logic programs this is a relation on the calls to
predicates encountered during computation. A transition from call p(t̄) to a
subsequent call q(s̄) in some computation can be represented as a binary clause
of the form p(t̄) ← q(s̄). A semantics which specifies this transition relation
is introduced and shown to make calls observable in [6]. It is shown to make
termination observable in [2]. The TerminWeb termination analyzer for logic
programs [2] is basically, a meta-interpreter for an abstraction of this semantics
with transitions approximated by monotonicity constraints [1].

Size change graphs were introduced in [7] and are similar to monotonicity
constraints. These two domains are used by an increasing number of termination
analyzers for a variety of languages including: TermiLog [9, 8] and TerminWeb [2]
for logic programs, implementations for simple first-order functional languages
[13, 4] and the AProVE analyzer for term rewrite systems [12].

? Research performed at the University of Melbourne
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Monotonicity constraints and size change graphs can be represented as (ab-
stract) binary clauses of the form p(x̄)← µ(x̄, ȳ), q(ȳ) where x̄ and ȳ are tuples
of distinct variables and µ(x̄, ȳ) is a conjunction of binary constraints of the form
u > v,u ≥ v on the sizes of the data before and after a corresponding concrete
transition. For monotonicity constraints u and v are any variables among x̄ and
ȳ. Size change graphs are more restricted with u in x̄ and v in ȳ. When p and
q are the same symbol the (abstract) binary clause is recursive and describes a
loop.

Example 1. Consider the predicate ackerman/3 below (on the left) which com-
putes Ackerman’s function. The size change graphs (on the right) describe the
induced transition relation. In subsequent calls to this predicate, either the first
argument decreases in size or else it does not increase in size and the second
argument decreases in size.

ackerman(0, N, s(N)).
ackerman(s(M), 0, Res)←

ackerman(M, s(0), Res).
ackerman(s(M), s(N), Res)←

ackerman(s(M), N, Res1),
ackerman(M, Res1, Res).

ackermann(x1, x2, x3)←
x1 > y1, ackermann(y1, y2, y3).

ackermann(x1, x2, x3)←
x1 ≥ y1, x2 > y2, ackermann(y1, y2, y3).

This paper is not concerned with how approximations of transition rela-
tions are obtained, but rather with the question of how termination is proven
given such an approximation. Existing analyzers provide the approximations as
a starting point for this paper.

In the classic approach, to prove termination of a program P one should
identify a ranking function f from program states to the elements of a well
founded domain and show that f decreases as execution proceeds through all of
the loops in P . For example, one might show that the function f(u1, u2, u3) =
〈u1, u2〉 decreases with respect to the lexicographic ordering for both of the loop
descriptions in Example 1. This is a global ranking function — it is shown to
decrease for all loop descriptions in the analysis.

An alternative approach is based on the application of local ranking func-
tions. In this approach, under the condition that the set of loop descriptions is
“closed under composition” (resolution of abstract binary clauses), termination
is guaranteed if for each individual loop description a (possibly different) ranking
function is shown to decrease when execution goes through that loop.

The main advantage in applying local ranking functions is that they take a
simpler form than corresponding global ranking functions and are easy to find
automatically. Moreover, it is sufficient to find ranking functions only for those
descriptions which are idempotent (a description is idempotent if it remains
invariant when composed with itself) [7]. There is also a disadvantage: as illus-
trated in [7], for size change graphs, there is a worst case exponential growth
factor (in the number of arguments) associated with the computation of clo-
sure under composition. The following example illustrates the advantage. The
disadvantage is the topic of another paper.
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Example 2. Consider the following three loop descriptions (which are idempo-
tent and closed under composition) 1.

p(x1, x2, x3)← x1 > y2, x2 ≥ y2, x3 > y3, p(y1, y2, y3).
p(x1, x2, x3)← x1 > y1, x2 ≥ y1, p(y1, y2, y3).
p(x1, x2, x3)← x1 > y2, x2 > y2, p(y1, y2, y3).

Local ranking functions are respectively f1(u1, u2, u3) = u3, f2(u1, u2, u3) = u1,
and f3(u1, u2, u3) = u2. The function min(u1, u2) decreases for the third loop
description and does not increase for the first two descriptions. The functions
〈min(u1, u2), u3〉 and 〈min(u1, u2), u1〉 decrease (with respect to the lexicographic
ordering) for the first two and last two loop descriptions respectively. One can
verify that there does not exist any function based on lexicographic ordering of
linear functions (even allowing minimum and maximum functions) that is a
global ranking function for this example.

The correctness of the local approach is first given by Dershowitz et al. [3]
and is based on the application of Ramsey’s Theorem [11]. The approach is also
complete [7] in the sense that an idempotent size change graph has a ranking
function if and only if it has one of the form f(ū) = ui. Hence an algorithm to
decide termination for size change graphs is obtained.

The first contribution of this paper is to generalize the completeness result
for size change graphs which are not necessarily idempotent. Here, if there exists
any ranking function then there exists one of the form f(u1, . . . , un) = Σaiui

with all coefficients ai ∈ {0, 1}. In [8] the authors suggest a termination test
for monotonicity constraints which is the one implemented in TermiLog and
TerminWeb. We show that this test provides a simple decision procedure for the
existence of a ranking function for a size change graph (idempotent or not).

We proceed to illustrate that size change termination is incomplete for mono-
tonicity constraints which are not size change graphs. This fact has been over-
looked until now. Both TermiLog and TerminWeb implement for monotonicity
constraints the test which is complete for size change graphs. The second con-
tribution of this paper is to provide completeness results for monotonicity con-
straints: for an idempotent monotonicity constraint, if there exists any ranking
function then there exists one of the form f(u1, . . . , un) = ui or of the form
f(u1, . . . , un) = ui − uj . For arbitrary monotonicity constraints if there exists a
ranking function then there exists one which is linear.

In [10], the authors present an efficient test for termination for loop descrip-
tions for a domain which is more general than monotonicity constraints. Their
approach is complete with respect to linear ranking functions: if there exists a
linear ranking function then the proposed procedure will succeed (and synthe-
size it). However, if the procedure fails, it could be the case that there exists a
ranking function which is non-linear. Our result implies that the test presented
in [10] is complete for monotonicity constraints.

The remainder of this paper is structured as follows: Section 2 introduces
monotonicity constraints and size change graphs. Section 3 describes the com-
1 This example was suggested by Amir Ben Amram.
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Fig. 1. Size change graphs from Example 2.

pleteness result for idempotent size change graphs and extends it for arbitrary
size change graphs. Section 4 illustrates that size change termination is incom-
plete for monotonicity constraints and provides two completeness results: first
for idempotent descriptions and second for descriptions which are not necessarily
idempotent. Section 5 concludes.

2 Monotonicity Constraints and Size change graphs

Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , yn〉 denote n-tuples of variables taking
non-negative integer values. When clear from the context we let these denote
the corresponding sets of variables. Intuitively, these values correspond to the
sizes of terms in a computation, with respect to a given norm function.

Definition 1 (monotonicity constraint, size change graph). A mono-
tonicity constraint is a binary clause of the form p(x̄) ← µ(x̄, ȳ), q(ȳ) where
µ(x̄, ȳ) is a conjunction of constraints of the form u ≥ v + b, denoted also
u �b v, with u, v ∈ x̄ ∪ ȳ and b ∈ {0, 1}. We write also u > v and u ≥ v
when respectively b = 1 or b = 0 or u � v when not distinguishing between
the two cases. If constraints are restricted so that u ∈ x̄, v ∈ ȳ then µ(x̄, ȳ) is
called a size change graph. When clear from the context we refer to µ(x̄, ȳ) as
the monotonicity constraint (or size change graph).

A monotonicity constraint µ(x̄, ȳ) can be viewed as a directed graph with
nodes x̄∪ ȳ and an edge labeled by b from u to v if and only if µ(x̄, ȳ) |= u �b v.
For size change graphs this view gives a directed bipartite graph. In the examples,
graphs are depicted with solid and dashed arrows representing edges of the form
u > v and u ≥ v respectively. We often omit edges which can be inferred from
those drawn. A monotonicity constraint is satisfiable if and only if its graph
representation has no cycle with a solid edge. Note that a size change graph
is always satisfiable. The size change graphs from Example 2 are depicted in
Figure 1.

Monotonicity constraints induce corresponding transition relations.

Definition 2 (transition relation).
A monotonicity constraint p(x̄)← µ(x̄, ȳ), q(ȳ) induces a transition relation vµ

on labeled vectors of non-negative integers given by p(ā) vµ q(b̄) if and only if
µ(ā, b̄) is valid. When clear from the context we drop the labels p and q.

A derivation for a set of monotonicity constraints is a chain in the correspond-
ing transition relations. For the completeness results of this paper it is sufficient
to consider derivations induced by a single recursive monotonicity constraint.
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Fig. 2. Constraints of Example 3: (a) monotonicity constraint µ(x̄, ȳ), (b) derivation
constraint µ(x̄, z̄, ȳ), and (c) self composition µ2(x̄, ȳ).

Definition 3 (derivation, derivation constraint). Let p(x̄) ← µ(x̄, ȳ), p(ȳ)
be a recursive monotonicity constraint. A derivation of µ(x̄, ȳ) is a chain of non-
negative integer vectors of the form ā0 vµ ā1 vµ · · · vµ āk which may also be
infinite. For a finite derivation, there is a corresponding derivation constraint
µ(x̄0, . . . , x̄k) = µ(x̄0, x̄1)∧ · · · ∧µ(x̄k−1, x̄k). A derivation constraint can also be
viewed as a directed graph.

The composition of monotonicity constraints is defined through renaming of
variables (graph nodes), conjunction and entailment. Derivation constraints and
composition are illustrated in Figure 2.

Definition 4 (composition of monotonicity constraints). The composi-
tion of monotonicity constraints µ1(x̄, ȳ) and µ2(x̄, ȳ) is given by

µ1(x̄, ȳ) ◦ µ2(x̄, ȳ) =
∧ {

u �b v
∣∣u, v ∈ x̄ ∪ ȳ, µ1(x̄, z̄) ∧ µ2(z̄, ȳ) |= u �b v

}
.

We denote by µk(x̄, ȳ) the composition of µ(x̄, ȳ) with itself k times.

Definition 5 (idempotent monotonicity constraints). A monotonicity con-
straint, µ(x̄, ȳ), is idempotent if and only if µ2(x̄, ȳ) = µ(x̄, ȳ).

Example 3. The monotonicity constraint µ(x̄, ȳ) = x1 > y2 ∧ x2 ≥ y1 ∧ x3 >
y1 is depicted as Figure 2(a). The derivation constraint µ(x̄, z̄, ȳ) is shown in
Figure 2(b) and consists of 2 copies of µ(x̄, ȳ). The self composition µ2(x̄, ȳ) is
depicted in Figure 2(c). The constraint of Figure 2(a) is not idempotent but the
constraint of Figure 2(c) is. Note that µ(x̄, z̄, ȳ) |= x3 ≥ y2 + 2 while µ2(x̄, ȳ) |=
x3 ≥ y2 + 1. This illustrates that (projections of) derivation constraints are not
monotonicity constraints.

Definition 6 (closure under composition). Let G be a set of monotonicity
constraints. We denote by G∗ the closure of G under composition. This is the
smallest superset of G such that if µ1(x̄, ȳ) ∈ G∗ and µ2(x̄, ȳ) ∈ G∗ then also
µ1(x̄, ȳ) ◦ µ2(x̄, ȳ) ∈ G∗.

A central notion when proving termination is that of a ranking function. We
focus on ranking functions for individual monotonicity constraints.
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Definition 7 (ranking function). A ranking function for a monotonicity con-
straint µ(x̄, ȳ) is a mapping f from tuples of non-negative integers to a well
founded domain (D,≺D) such that µ(x̄, ȳ) |= f(ȳ) ≺D f(x̄).

In this paper we often choose ranking functions mapping to the domain of
natural numbers (N , <) with the standard ordering.

Example 4. Consider the size change graph µ(x̄, ȳ) from Figure 2(a). The func-
tion f(ū) = u1 + u2 on the natural numbers is a ranking function for µ(x̄, ȳ).

Theorem 1 (correctness [3, 7]). Let G be a finite set of monotonicity con-
straints which approximates the loops in the transition relation of a program
P . If for each of the idempotent monotonicity constraints in G∗ there exists a
(possibly different) ranking function then P terminates.

The proofs in [3] and [7] are for monotonicity constraints and size change
graphs respectively. The proofs are essentially the same and presented as appli-
cations of Ramsey’s Theorem [11].

3 Completeness for Size Change Graphs

In [7] the authors present a completeness result for size change graphs. We
rephrase this result in terms of ranking functions.

Theorem 2 (completeness – idempotent size change graphs). Let µ(x̄, ȳ)
be an idempotent size change graph. If there exists a ranking function for µ(x̄, ȳ)
then there exists one mapping to (N , <) of the form f(u1, . . . , un) = ui.

We present a proof, different from the one in [7]. Following this proof will
help understand its generalizations in the remainder of this paper. The proof
relies on the following two lemmata.

Lemma 1. If µ(x̄, ȳ) is an idempotent monotonicity constraint which implies
xi �b1 yj and xj �b2 yk (or yi �b1 xj and yj �b2 xk) then it implies also
xi �b1∨b2 yk (or yi �b1∨b2 xk).

Proof. By definitions of composition and idempotence.

Lemma 2. If µ(x̄, ȳ) is an idempotent size change graph, then either for some
argument i, µ(x̄, ȳ) |= xi > yi; or µ(x̄, ȳ) ∧ x̄ = ȳ is satisfiable.

Proof. Let µ(x̄, ȳ) be an idempotent size change graph and assume that the second
condition does not hold. Since µ(x̄, ȳ) is a size change graph, µ(x̄, ȳ) must be
satisfiable and there must be an alternating sequence of constraints implied by
µ(x̄, ȳ) and x̄ = ȳ, forming a simple cycle, as depicted in Figure 3 and of the
form: xi1 �b1 yi2 = xi2 �b2 yi3 . . . yik

= xik
�bk yi1 = xi1 with b1 ∨ · · · ∨ bk = 1.

From idempotence using Lemma 1 since the constraints xi1 �b1 yi2 , xi2 �b2 yi3 ,
. . ., xik

�bk yi1 are implied by µ(x̄, ȳ) then so is the constraint xi1 > yi1 . Hence
the first condition must hold.
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Fig. 3. An alternating cycle of inconsistent constraints from µ(x̄, ȳ) and x̄ = ȳ.

For the proof of Theorem 2, we know only that µ(x̄, ȳ) has some ranking
function of an unknown form. This is sufficient to guarantee that the transition
relation induced by µ(x̄, ȳ) has no infinite derivations.

Proof. (of Theorem 2) Assume µ(x̄, ȳ) has a ranking function. So µ(x̄, ȳ)∧ x̄ = ȳ
is not satisfiable. Otherwise there would be a vector ā such that ā vµ ā giving
an infinite derivation. By Lemma 2, µ(x̄, ȳ) |= xi > yi and so f(u1, . . . , un) = ui

is a ranking function.

Theorems 1 and 2 provide the basis for a decision procedure [7]. For a set
of size change graphs G, first compute G∗ and then check for each µ(x̄, ȳ) ∈ G∗
if it is idempotent and if:

∨
1≤i≤n(µ(x̄, ȳ) |= xi > yi). We can strengthen this

statement checking instead for each idempotent size graph the condition:

µ(x̄, ȳ) |=
∨

1≤i≤n

(xi > yi) (1)

This is justified by the following result.

Lemma 3. Let µ(x̄, ȳ) be an idempotent size change graph. Then∨
1≤i≤n

(µ(x̄, ȳ) |= xi > yi) ⇔ µ(x̄, ȳ) |=
∨

1≤i≤n

(xi > yi).

The graph in Figure 2(a) demonstrates that this result does not hold for
non-idempotent size change graphs.

Proof. (of Lemma 3) (⇒) Obvious. (⇐) If µ(x̄, ȳ) |=
∨

i xi > yi then µ(x̄, ȳ) ∧∧
i(xi = yi) is not satisfiable. Hence, by Lemma 2, µ(x̄, ȳ) implies a constraint

of the form xi > yi as required.

It is interesting to note that the condition of Equation (1) is precisely that
implemented in TermiLog and TerminWeb where no test for idempotence is ap-
plied. We proceed to generalize the completeness result of Theorem 2 to apply
for size change graphs which are not necessarily idempotent. We show the con-
dition of Equation (1) is complete for arbitrary size change graphs, idempotent
or not. It means that we need not test for idempotence in an implementation.

Theorem 3 (Completeness – arbitrary size change graphs). Let µ(x̄, ȳ)
be a size change graph (not necessarily idempotent). If there exists any ranking
function for µ(x̄, ȳ) then there exists one mapping to the non-negative integers
of the form f(u1, . . . , un) =

∑
aiui with all coefficients ai ∈ {0, 1}.
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The proof follows from the observation that a set of size change graphs closed
under composition is a finite semigroup with composition as the operator.

Lemma 4 (idempotent self composition). Let µ(x̄, ȳ) be a monotonicity
constraint. Then there exists a positive integer k such that µk(x̄, ȳ) is idempotent.

Proof. A finite non-empty semigroup of the form
{

ak
∣∣k ∈ Z+

}
contains pre-

cisely one idempotent element [5].

Proof. (of Theorem 3) Let f mapping to (D,≺D) be a ranking function for size
change graph µ(x̄, ȳ). By Lemma 4, there exists a positive k such that µk(x̄, ȳ)
is idempotent. By transitivity of ≺D, f is also a ranking function for µk(x̄, ȳ).
By Theorem 2, µk(x̄, ȳ) has a ranking function of the form f ′(u1, . . . , un) = ui

indicating the presence of a corresponding strict down arrow µk(x̄, ȳ) |= xi > yi.
It follows that µ(x̄0, x̄1), . . . , µ(x̄k−1, x̄k) imply respectively constraints forming
a chain of the form x0

i0
�b1 x1

i1
�b2 x2

i2
� · · · � xk−1

ik−1
�bk xk

ik
with i0 = ik =

i such that at least one of b1, . . . , bk is 1 (i.e., strict). It follows that µ(x̄, ȳ)
implies corresponding constraints xi0 �b1 yi1 , xi1 �b2 yi2 , . . ., xik−2 �bk−1 yik−1 ,
xik−1 �bk yik

with i0 = ik = i. Summing these constraints we get xi0 + · · · +
xik−1 > yi0 + · · ·+ yik−1 .

We can assume without loss of generality that there are no repeated in-
dices among i0, . . . , ik−1. Hence we obtain the required result taking coefficients
ai0 , . . . , aik−1 equal to one and all others equal to zero.

If there were a repeated index i` = i`′ = i′ then the sequence would be of the
form x0

i0
� x1

i1
� · · · � x`

i`
� · · · � x`′

i`′
� · · · � xk

ik
. At least one of the shorter

sequences: that starting and ending in argument position i without the segment
from i′ to i′, or that starting and ending in argument position i′ must contain a
strict relation and can be chosen instead.

Theorem 3 does indicate an efficient test for termination and it would seem
to require checking all possible combinations of coefficients ai ∈ {0, 1}. We show
that the, easy to implement, condition of Equation (1) is a complete test for
non-idempotent graphs.

Corollary 1 (detecting ranking functions). A size change graph µ(x̄, ȳ) has
a ranking function if and only if

µ(x̄, ȳ) |=
∨

1≤i≤n

xi > yi.

Proof. (⇒) Assume to the contrary that µ(x̄, ȳ) has a ranking function and
µ(x̄, ȳ) ∧ ¬

∨
i(xi > yi) has a solution. So µ(x̄, ȳ) ∧

∧
i(xi ≤ yi) has a solution

which implies that µ(x̄, ȳ)∧ (Σiaixi ≤ Σiaiyi) has a solution for any coeeficients
ai. This is a contradiction because by Theorem 3, µ(x̄, ȳ) |= Σiaixi > Σiaiyi for
some coefficients ai ∈ {0, 1}. (⇐) If µ(x̄, ȳ) |=

∨
i(xi > yi) then µ(x̄, ȳ) ∧ x̄ = ȳ

is not satisfiable and follow the proof of Theorem 2 up till the point when we
get a simple cycle of constraints of the form depicted in Figure 3 (this part does
not rely on idempotence). Summing these constraints gives a ranking function
of the form f(ū) = Σiaiui with ai ∈ {0, 1}.
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4 Completeness for Monotonicity Constraints

Monotonicity constraints are more expressive than size change graphs. They may
contain relations of the form yi � xj , going “up” in the graph representation,
and also “horizontal” loop invariants of the form xi � xj or of the form yi �
yj . An analyzer based on size change graphs cannot prove termination when
the size of an argument is increasing in a loop towards an upper bound. The
following generic example illustrates that size change termination is incomplete
for monotonicity constraints.

Example 5. Consider a program involving a loop of the form while (a1 < a2)
a1 := a1 + 1. A corresponding loop description involves a monotonicity con-
straint of the form µ(x̄, ȳ) = x1 < x2, x1 < y1, x2 = y2 which is idempotent but
not a size change graph. While the loop clearly terminates, neither f(u1, u2) = u1

nor f(u1, u2) = u2 is a ranking function. There is however a ranking function
of the form f(u1, u2) = u2 − u1.

We provide a completeness result for monotonicity constraints. If µ(x̄, ȳ) is
an idempotent monotonicity constraint and has a ranking function, then it has
a ranking function of the form f(u1, . . . , un) = ui or of the form f(u1, . . . , un) =
ui−uj for 1 ≤ i, j ≤ n. If µ(x̄, ȳ) is not idempotent, then it has a linear ranking
function.

The extra expressiveness of monotonicity constraints introduces several prob-
lems. First, a monotonicity constraint µ(x̄, ȳ) or one of its derivation constraints
may be unsatisfiable and hence have no infinite derivations. For example, µ(x̄, ȳ) =
x1 > x2 ∧ y1 ≤ y2 is satisfiable but µ(x̄, z̄, ȳ) is not. A second problem is il-
lustrated in Figure 4. The constraint in Figure 4(a) is idempotent and has no
infinite derivations because the value in its first argument is strictly decreasing
in any such derivation. However there is no direct down arc in µ(x̄, ȳ). If we re-
strict attention to constraints with balanced invariants we avoid both problems.
This is not a limitation for termination analysis as every postcondition of a loop
is the precondition for the next time around.

Definition 8 (balanced constraint). A monotonicity constraint µ(x̄, ȳ) is
balanced if µ(x̄, ȳ) |= xi �b xj ⇔ µ(x̄, ȳ) |= yi �b yj. The balanced extension
µB(x̄, ȳ) of µ(x̄, ȳ) is the smallest monotonicity constraint which includes µ(x̄, ȳ)
and is balanced. We define bal(µ)(x̄, ȳ)) = µ(x̄, ȳ) ∧ {xi �b xj | µ(x̄, ȳ) |= yi �b

yj} ∧ {yi �b yj | µ(x̄, ȳ) |= xi �b xj}. Clearly µ(x̄, ȳ)B = bal4n(n−1)(µ)(x̄, ȳ))
since there are at most 4n(n−1) constraints that can be added by bal. There are
tighter bounds but that will suffice for our purposes.

The balanced extension of the constraint in Figure 4(a) is shown in Fig-
ure 4(b) and with transitive closure in Figure 4(c). The downwards paths are
now explicit. The balanced extension of a constraint is almost equivalent to the
original, particularly in its powers. Figures 4(d) and (e) illustrate the similarity.
For termination analysis we can restrict our attention to balanced extensions
because of the following two Lemmata.
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Fig. 4. (a) An unbalanced but idempotent constraint µ(x̄, ȳ), (b) its balanced extension
µB(x̄, ȳ), and (c) µB(x̄, ȳ) indicating also transitive paths, (d) derivation constraint
µ(x̄0, x̄1, x̄3, x̄4), and (e) µB(x̄0, x̄1, x̄3, x̄4).

Lemma 5. If monotonicity constraint µ(x̄, ȳ) is balanced, then either the deriva-
tion constraint µ(x̄0, . . . , x̄m) is satisfiable for all m > 0 or µ(x̄, ȳ) is unsatisfi-
able.

Proof. Assume that µ(x̄, ȳ) is balanced and let m > 0 be such that µ(x̄0, . . . , x̄m)
is not satisfiable. Hence for some variable xk

i (at level k in argument i) there
is a strict cycle of constraints implied by µ(x̄0, . . . , x̄m) of the form xk

i � xk′

j �
xk′

j′ � xk
i′ � xk

i such that: (i) if k = k′ then i 6= j, i = i′ and j = j′; or (ii)
k′ = k ± 1. Thus, as µ(x̄, ȳ) is balanced it must also imply a strict cycle of the
form xi � xj � xi (if k = k′) or of the form xi � yj � yj′ � xi′ � xi (if
k′ = k +1) or of the form yi � xj � xj′ � yi′ � yi (if k′ = k− 1). Hence µ(x̄, ȳ)
is not satisfiable.

Lemma 6. Monotonicity constraint µ(x̄, ȳ) has an infinite derivation if and
only if its balanced extension µB(x̄, ȳ) has an infinite derivation.

Proof. (sketch) (⇐) Let b̄0 vµB
b̄1 vµB

b̄2 vµB
· · · be an infinite derivation for

the balanced extension. Since µB(x̄, ȳ) |= µ(x̄, ȳ), the infinite derivation b̄0 vµ

b̄1 vµ b̄2 vµ · · · exists. (⇒) Let ā0 vµ · · · āk vµ āk+1 vµ · · · be an infinite
derivation. One can show by induction that for any k and ` such that 0 ≤ ` ≤ k,
āk vbal`(µ) āk+1. Now given that µB(x̄, ȳ) = bal4n(n−1)(µ(x̄, ȳ)) we have the
infinite derivation ā4n(n−1) vµB

ā4n(n−1)+1 vµB
a4n(n−1)+2 vµB

· · · .

Theorem 4 (Completeness for idempotent monotonicity constraints).
Let µ(x̄, ȳ) be a balanced idempotent monotonicity constraint. If there exists any
ranking function for µ(x̄, ȳ) then there exists one mapping to (N , <) of the form
f(u1, . . . , un) = ui or of the form f(u1, . . . , un) = ui − uj for some 1 ≤ i, j ≤ n.
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Fig. 5. Illustrating the proof of Lemma 7: (a) An alternating path from v1 to v4 with
horizontal relation u2 > u3 (b) The graph is balanced so it contains also v2 > v3 (c)
By transitivity it contains also u1 > u4 giving a shorter alternating path from v1 to v4.

The proof strategy for Theorem 4 is similar to that for Theorem 2. We
will show that if there exists no ranking function for µ(x̄, ȳ) of the prescribed
form then there is an infinite chain in vµ implying that there exists no ranking
function of any form for µ(x̄, ȳ). We will need the following lemma.

Lemma 7. If µ(x̄, ȳ) is a satisfiable balanced idempotent monotonicity con-
straint then either: (a) µ(x̄, ȳ) implies a constraint of the form xi > yi or of
the form yi > xi or (b) µ(x̄, ȳ) ∧ x̄ = ȳ is satisfiable.

Proof. Let µ(x̄, ȳ) be a satisfiable balanced idempotent monotonicity constraint
and assume that condition (b) does not hold. Given that µ(x̄, ȳ) is satisfiable
and since µ(x̄, ȳ) ∧ x̄ = ȳ is not satisfiable, it must be the case that there is
a sequence of constraints from µ(x̄, ȳ) and from x̄ = ȳ giving a contradiction.
Without loss of generality, otherwise applying transitivity, we may assume the
sequence is alternating and hence of the form:

ui1 �b1 vi2 = ui2 �b2 vi3 . . . = uik
�bk vi1 = ui1

with b1∨· · ·∨bk = 1. Given that µ(x̄, ȳ) is balanced, we may also assume without
loss of generality that the sequence does not involve “horizontal” relations as
these could be removed by transitivity. See Figure 5. It follows that all of the
constraints uij �b1 vij+1 are in the same direction (downwards or upwards).
Namely, that for all 1 ≤ j ≤ k either uij

∈ x̄ and vij
∈ ȳ or uij

∈ ȳ and vij
∈ x̄.

From idempotence using Lemma 1 we get that µ(x̄, ȳ) contains a constraint of
the form xi > yi or of the form yi > xi.

Lemma 8. If µ(x̄, ȳ) is a balanced idempotent monotonicity constraint where
for all i µ(x̄, ȳ) 6|= xi � yi, then for all i, j, µ(x̄, ȳ) 6|= xi � yj.

Proof. Assume to the contrary that µ(x̄, ȳ) |= xi � yj . Then since µ(x̄, ȳ) is
idempotent and balanced there must exist two constraints xi � yk1 and xk1 � yj

implied by µ(x̄, ȳ) to ensure that xi � yj is in the self composition. If k1 ∈ {i, j}
we have a contradiction. So k1 6∈ {i, j}. Now consider the constraint xi � yk1

implied by µ(x̄, ȳ). Using the same reasoning there must be constraints xi � yk2

and xk2 � yk1 implied by µ(x̄, ȳ). If k2 = i or k2 = k1 we immediately have a
contradiction. If k2 = j, then we have xj = xk2 � yk1 and xk1 � yj implied by



12 Michael Codish, Vitaly Lagoon, and Peter J. Stuckey,

µ(x̄, ȳ) and hence by Lemma 1 also xj � yj implied by µ(x̄, ȳ). Contradiction.
Hence k2 6∈ {i, j, k1}. We can now consider the constraint xi � yk2 to generate
xi � yk3 and xk3 � yk2 , where k3 6∈ {i, j, k1, k2}. Following the same reasoning
we eventually run out of argument positions. Contradiction.

Lemma 9. For satisfiable, balanced and idempotent monotonicity constraint
µ(x̄, ȳ), if for all 1 ≤ i, j ≤ n, µ(x̄, ȳ) 6|= xi > yi and µ(x̄, ȳ) 6|= xi ≥ yi ∧ xi ≥
xj ∧ yj > xj then there is an infinite derivation using µ(x̄, ȳ).

Proof. (Sketch)
Construction: Let µ be the set of binary relations of the form u � v implied
by µ(x̄, ȳ). Let U ⊆ {1, . . . , n} be the set of arguments j which have a strict
up arrow yj > xj ∈ µ and arguments i such that j ∈ U and ui � vj ∈ µ. Let
E = {1, . . . , n}−U be the rest of the arguments. Let VE = ∪{{xi, yi} | i ∈ E} and
VU = ∪{{xi, yi} | i ∈ U}. We partition µ into three disjoint sets (conjunctions)
of constraints: µU — the restriction of µ to the arguments U , µE — its restriction
to the arguments in E, and µEU — the rest. So, µ(x̄, ȳ) = µU ∧µE ∧µEU . This
partitioning is given by: µE = {u � v ∈ µ | {u, v} ⊆ VE}, µU = {u � v ∈
µ | {u, v} ⊆ VU} and µEU = µ− µE − µU .

The “equals” part: First we show that µE ∧
∧

i∈E xi = yi is satisfiable.
By Lemma 7 either this holds or there exists xi > yi in µ contradicting the
assumption of the Lemma or yi > xi in µ for i ∈ E contradicting the definition
of E. Hence there is a solution āE of µE(x̄, ȳ)∧

∧
i∈E xi = yi and so āE vµE

āE.

The “up” part: Now let us consider µU . From the assumption of the Lemma
there can be no i ∈ U with xi > yi ∈ µU . We show by the construction and the
preconditions that there is no i ∈ U with xi ≥ yi ∈ µU .

First we show that for each i ∈ U either yi > xi or there exists k where
yk > xk and xi � xk or yi � xk. The first case is straightforward from the
definition of U . For the second, suppose i is added to U because j is already
in U . Then either (a) xi � xj (and yi � yj), (b) xi � yj or (c) yi � xj. If
yj > xj then in all three cases we get the result. Otherwise by induction, we
have xj � xk or yj � xk. For case (a) if xj � xk then we have by transitivity
xi � xk or if yj � xk we have yi � xk. For case (b) if xj � xk then by balance
we have that yj � yk and by transitivity (xi � yj , yj � yk, yk > xk) we have
xi � xk, or if yj � xk then by transitivity we have xi � xk. For (c) if xj � xk

then by transitivity we have yi � xk, and if yj � xk we have by idempotence that
yi � xk.

Suppose that xi ≥ yi for some i ∈ U . Then for some j with yj > xj we have
either xi � xj or yi � xj. In the first case this contradicts the preconditions of
the lemma. In the second case since xi ≥ yi and yi � xj by transitivity we have
xi � xj again contradicting the preconditions of the lemma. So we have that there
are no directly down arcs in U . By Lemma 8 we have there are no downwards
arcs (direct or indirect) amongst arguments in U (E cannot be involved since
there are no arcs from arguments in E to arguments in U).

Ordering the “up” part: We now partition U into (disjoint) sets U = U1 ∪
· · · ∪Ul where for each 1 ≤ k ≤ l and {i, j} ⊆ Uk we have µU |= xi = xj and for
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Fig. 6. The monotonicity constraints from Example 6: (a) the monotonicity constraint
µ(x̄, ȳ), (b) the “equals” part µE , and (c) the “up” part µU .

each 1 ≤ k1 < k2 ≤ l, i1 ∈ Uk1 and i2 ∈ Uk2 we do not have µU |= xi1 � xi2 .
This is possible since µ is satisfiable. This provides a total order on equivalence
classes of arguments such that variables in Uk are not constrained from above by
any arguments in E or U1 ∪ · · · ∪ Uk−1.

An infinite derivation: We can now build an infinite derivation for µ. To build
ā0 set each position in E to the value in āE. Then for U1 set all positions j1 ∈ U1

to the least integer satisfying all the constraints with respect to arguments in E.
For k = 2, . . . l set all positions jk to the least integer satisfying all constraints
with respect to arguments in E ∪ U1 ∪ · · · ∪ Uk−1.

To build āk+1 from ak is similar but also taking into account all (lower bound-
ing) constraints with respect to āk.

Example 6. Consider the satisfiable balanced idempotent monotonicity con-
straint depicted in Figure 6(a). Building U = {3, 4, 5}: 3 ∈ U because of the
constraint y3 > x3, 4 ∈ U because of 3 and the constraint y4 ≥ x3 and 5 ∈ U
because of 4 and the constraint x5 ≥ x4. The remaining indices are E = {1, 2}.
Partitioning U : we can take U1 = {3}, U2 = {4} and U3 = {5} (U3 must be
last in the ordering). The constraints µE and µU are depicted as Figures 6(b)
and (c). The constraint µEU = {u > v | u ∈ {x3, x4, x5, y3, y4, y5}, v ∈ {x2, y2}}

We build an infinite derivation as follows. Pick a solution for µE ∧ x1 =
y1 ∧ x2 = y2, say x1 = y1 = 1, x2 = y2 = 0. āE = (1, 0). Create ā0 starting
from āE, and filling in the argument positions in U1, U2, and U3 with the least
value satisfying constraints in filled in positions. Since there are no arcs from
an argument position to an unfilled position this is always possible. We find
ā0 = (1, 0, 1, 1, 1), ā1 = (1, 0, 2, 2, 2), ā2 = (1, 0, 3, 3, 3),. . .

Proof. (of Theorem 4) If µ(x̄, ȳ) is unsatisfiable then any ranking function is
suitable (in particular one the form required by the theorem). Otherwise the
conditions of Lemma 9 hold and since there exists a ranking function there
can be no infinite derivation. Hence either (a) for some i, µ(x̄, ȳ) |= xi > yi

and the function f(ū) = ui is thus a ranking function, or (b) for some i, j,
µ(x̄, ȳ) |= xi ≥ yi ∧ xi ≥ xj ∧ yj > xj from which it follows that f(ū) = ui − uj

is a ranking function.

Theorem 5 (Completeness for arbitrary monotonicity constraints). Let
µ(x̄, ȳ) be a balanced monotonicity constraint (not necessarily idempotent). If
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there exists any ranking function for µ(x̄, ȳ) then there exists a linear ranking
function for µ(x̄, ȳ).

Proof. Assume balanced µ(x̄, ȳ) has a ranking function. Assume µ(x̄, ȳ) is satisfi-
able otherwise the result is trivial. It follows that µk(x̄, ȳ) is satisfiable, balanced
and has a ranking function for any positive k. By Lemma 4 there exists a k such
that µk(x̄, ȳ) is idempotent and hence by Theorem 4, µk(x̄, ȳ) has a ranking
function of the form f(u1, . . . , un) = ui or of the form f(u1, . . . , un) = ui − uj .
If the first case then the proof is identical to that of Theorem 3. If the second
case then µk(x̄, ȳ) |= xi ≥ yi ∧xi ≥ xj ∧ yj > xj and similar to the proof of The-
orem 3 the following two sequences of “down” and “up” constraints are implied
by µ(x̄, ȳ):

xi0 ≥ yi1 , xi1 ≥ yi2 , . . . , xik−2 ≥ yik−1 , xik−1 ≥ yik

yj1 � xj0 , yj2 � xj1 , . . . , yjk−1 � xjk−2 , yjk
� xjk−1

where at least one of the inequalities in the second (“up”) sequence is strict.
Adding these inequalities pairwise we get the sequence:

xi0 − xj0 � yi1 − yj1 , xi1 − xj1 � yi2 − yj2 , . . . , xik−1 − xjk−1 � yik
− yjk

with at least one strict inequality. Summing this sequence and observing that
i0 = ik = i and j0 = jk = j we obtain Σk

`=1(xi`
− xj`

) > Σk
`=1(yi`

− yj`
) which

is of the form Σaixi > Σaiyi with coefficients determined by the number of
repetitions of the constraints in the two sequences. Positive coefficients originate
from “downwards” constraints and negative coefficients from the “upwards”. We
take f(ū) = Σaiui.

We now show that µ(x̄, ȳ) |= f(x̄) ≥ 0. We have µk(x̄, ȳ) |= xi ≥ xj which
implies that µ(x̄, ȳ) |= xi ≥ xj and from balance µ(x̄, ȳ) |= yi ≥ yj . Recalling
that i = ik and j = jk we have µ(x̄, ȳ) |= yik

≥ yjk
and µ(x̄, ȳ) |= xik

≥ xjk
. From

transitivity (with the last constraints in the “down” and “up” sequences) that
µ(x̄, ȳ) |= xik−1 ≥ xjk−1 and from balance µ(x̄, ȳ) |= yik−1 ≥ yjk−1 . In a similar
way we obtain that µ(x̄, ȳ) implies the constraints xi`

≥ xj`
for ` ∈ {1, . . . , k}.

Summing these constraints gives f(x̄) = Σk
`=1(xi`

− xj`
) ≥ 0.

Example 7. Consider the (balanced extension of) monotonicity constraint x1 ≥
y2, x2 ≥ y1, x2 ≥ x3, y3 > x3. The “down” and “up” sequences from the proof
of Theorem 5 are respectively x1 ≥ y2, x2 ≥ y1 and y3 < x3, y3 < x3. Summing
these gives x1 + x2 − 2x3 > y1 + y2 − 2y3. A ranking function of the form
f(ū) = u1 + u2 − 2u3 exists. The constraints x1 ≥ x3 and x2 ≥ x3 imply that
f(x̄) = x1 + x2 − 2x3 ≥ 0.

5 Conclusion

This paper makes two contributions. For size change graphs we establish that the
termination test implemented in analyzers such as TermiLog and TerminWeb is
complete for size change graphs and incomplete for monotonicity constraints. In
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particular there is no loss of precision when not checking for idempotence. For
idempotent monotonicity constraints, we prove that if there exists any ranking
function for a loop description then there exists one of a simple form: a single
argument or the difference between two arguments is decreasing. Moreover, for
loop descriptions which are not idempotent if there exists a ranking function
then there exists one which is linear.
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