
Half Reification and Flattening

Thibaut Feydy1, Zoltan Somogyi1, and Peter J. Stuckey1

National ICT Australia and the University of Melbourne, Victoria, Australia
{tfeydy,zs,pjs}@csse.unimelb.edu.au

Abstract. Usually propagation-based constraint solvers construct a con-
straint network as a conjunction of constraints. They provide propaga-
tors for each form of constraint c. In order to increase expressiveness,
systems also usually provide propagators for reified forms of constraints.
A reified constraint b ↔ c associates a truth value b with a constraint
c. With reified propagators, systems can express complex combinations
of constraints using disjunction, implication and negation by flattening.
In this paper we argue that reified constraints should be replaced by
half-reified constraints of the form b→ c. Half-reified constraints do not
impose any extra burden on the implementers of propagators compared
to unreified constraints, they can implement reified propagators without
loss of propagation strength (assuming c is negatable), they extend au-
tomatically to global constraints, they simplify the handling of partial
functions, and can allow flattening to give better propagation behavior.

1 Introduction

Constraint programming propagation solvers solve constraint satisfaction prob-
lems of the form ∃V. ∧c∈C c, that is an existentially quantified conjunction of
primitive constraints c. But constraint programming modeling languages such
as OPL [1], Zinc/MiniZinc [2, 3] and Essence [4] allow much more expressive
problems to be formulated. Modeling languages map the more expressive for-
mulations to existentially quantified conjunction through a combination of loop
unrolling, and flattening using reification.

Example 1. Consider the following “complex constraint” written in Zinc syntax

constraint i <= 4 -> a[i] * x >= 6;

which requires that if i ≤ 4 then the value in the ith position of array a multiplied
by x must be at least 6. This becomes the following existentially quantified
conjunction through flattening and reification:

constraint b1 <-> i <= 4; % b1 holds iff i <= 4

constraint element(i,a,t1); % t1 is the ith element of a

constraint mult(t1,x,t2); % t2 is t1 * x

constraint b2 <-> t2 >= 6; % b2 holds iff t2 >= 6

constraint b1 -> b2 % b1 implies b2

The complex logic (implication) is encoded by “reifying” the arguments and in
effect naming their truth value using new Boolean variables b1 and b2. The term
structure is encoded by “flattening” the terms and converting the functions to
relations, introducing the new integer variables t1 and t2. Note that the newly
introduced variables are existentially quantified. ut

The translation given in the above example is well understood, but poten-
tially flawed, for three reasons. The first is that the flattening may not give the
intuitive meaning when functions are partial.

Example 2. Suppose the array a has index set 1..5, but i takes the value 7. The
constraint element(i, a, t1) will fail and no solution will be found. Intuitively if
i = 7 the constraint should be trivially true. ut

The simple flattening used above treats partial functions in the following
manner. Application of a partial function to a value for which it is not defined
gives value ⊥, and this ⊥ function percolates up through every expression to the
top level conjunction, making the model unsatisfiable. For the example (t1 ≡
) a[7] = ⊥, (t2 ≡) ⊥ × x = ⊥, (b2 ≡) ⊥ ≥ 6 = ⊥, (b1 ≡) 7 ≤ 4 = false,
false → ⊥ = ⊥. This is known as the strict semantics [5] for modeling languages.

The usual choice for modeling partial functions in modeling languages is the
relational semantics [5]. In the relational semantics the value ⊥ percolates up
through the term until it reaches a Boolean subterm where it becomes false.
For the example (t1 ≡) a[7] = ⊥, (t2 ≡) ⊥ × x = ⊥, (b2 ≡) ⊥ ≥ 6 = false,
(b1 ≡) 7 ≤ 4 = false, false → false = true. But in order to implement the
relational semantics, the translation of the original complex constraint needs to
be far more complex.

Example 3. The tool mzn2fzn unrolls, flattens, and reifies MiniZinc models im-
plementing the relational semantics. Assuming i takes values in the set 1..8, and
a has an index set 1..5, its translation of the constraint in Example 1 is

constraint b1 <-> i <= 4; % b1 holds iff i <= 4

constraint element(t3,a,t1);% t1 is the t3’th element of a

constraint mult(t1,x,t2); % t2 is t1 * x

constraint b2 <-> t2 >= 6; % b2 holds iff t2 >= 6

constraint t3 in 1..5 % t3 in index set of a

constraint b3 <-> i = t3; % b3 holds iff i = t3

constraint b3 <-> i <= 5; % b3 holds iff i in index set of a

constraint b4 <-> b2 /\ b3 % b4 holds iff b2 and b3 hold

constraint b1 -> b4 % b1 implies b4

The translation forces the partial function application element to be “safe” since
t3 is constrained to only take values in the index set of a. The reified constraints
defining b3 force t3 to equal i iff i takes a value in the index set of a. ut

A second weakness of reification, independent of the problems with partial
functions, is that each reified version of a constraint requires further implemen-
tation to create, and indeed most solvers do not provide any reified versions of
their global constraints.

Example 4. Consider the complex constraint

constraint i <= 4 -> alldifferent([i,x-i,x]);

The usual flattened form would be

constraint b1 <-> i <= 4; % b1 holds iff i <= 4

constraint minus(x,i,t1); % t1 = x - i

constraint b2 <-> alldifferent([i,t1,x]);

constraint b1 -> b2 % b1 implies b2

but no solver we are aware of implements the third primitive constraint.1 ut

Reified global constraints are not implemented because a reified constraint b↔ c
must also implement a propagator for ¬c (in the case that b = false). While for
some global constraints, e.g. alldifferent, this may be reasonable to imple-
ment, for most, such as cumulative, the task seems to be very difficult.

A third weakness of the full reification is that it may keep track of more
information than is required. In a typical finite domain solver, the first reified
constraint b1 ↔ i ≤ 4 will wake up whenever the lower bound of i changes in
order to check whether it should set b1 to false. But setting b1 to false will never
cause any further propagation. There is no reason to check this.

Flattening with half-reification is an approach to mapping complex con-
straints to existentially quantified conjunctions that improves upon all these
weaknesses of flattening with full reification.

– Flattening with half reification can naturally produce the relational seman-
tics when flattening partial functions in positive contexts.

– Half reified constraints add no burden to the solver writer; if they have a
propagator for constraint c then they can straightforwardly construct a half
reified propagator for b→ c.

– Half reified constraints b→ c can implement fully reified constraints without
any loss of propagation strength (assuming reified constraints are negatable).

– Flattening with half reification can produce more efficient propagation when
flattening complex constraints.

Our conclusion is that propagation solvers only need to provide half reified ver-
sion of all constraints. This does not burden the solver writer at all, yet it
provides more efficient translation of models, and more expressiveness in using
global constraints.

2 Propagation Based Constraint Solving

We consider a typed set of variables V = VI ∪ VB made up of integer variables,
VI , and Boolean variables, Vb. We use lower case letters such as x and y for
integer variables and letters such as b for Booleans. A domain D is a complete
mapping from V to finite sets of integers (for the variables in VI) and to subsets
of {true, false} (for the variables in Vb). We can understand a domain D as a

1 Although there are versions of soft alldifferent, they do not define this form.

formula ∧v∈V(v ∈ D(v)) stating for each variable v that its value is in its domain.
A false domain D is a domain where ∃v ∈ V.D(v) = ∅, and corresponds to an
unsatisfiable formula.

Let D1 and D2 be domains and V ⊆ V. We say that D1 is stronger than
D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2

are equivalent modulo V , written D1 =V D2, if D1(v) = D2(v) for all v ∈ V .
The intersection of D1 and D2, denoted D1 u D2, is defined by the domain
D1(v) ∩ D2(v) for all v ∈ V. We assume an initial domain Dinit such that all
domains D that occur will be stronger i.e. D v Dinit.

A valuation θ is a mapping of integer and Boolean variables to correspond-
ingly typed values, written {x1 7→ d1, . . . , xn 7→ dn, b1 7→ tf1, . . . , bm 7→ tfm}.
We extend the valuation θ to map expressions or constraints involving the vari-
ables in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation, we
define a valuation θ to be an element of a domainD, written θ ∈ D, if θ(v) ∈ D(v)
for all v ∈ vars(θ).

A constraint is a restriction placed on the allowable values for a set of vari-
ables. We define the solutions of a constraint c to be the set of valuations θ that
make that constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (|= θ(c))}

We associate with every constraint c a propagator fc. A propagator fc is a
monotonically decreasing function on domains such that for all domains D v
Dinit: fc(D) v D and {θ ∈ D | θ ∈ solns(c)} = {θ ∈ fc(D) | θ ∈ solns(c)}. This
is a weak restriction since, for example, the identity mapping is a propagator for
any constraint.

A domain D is domain consistent for constraint c if D(v) = {θ(v) | θ ∈
solns(c) ∧ θ ∈ D}, for all v ∈ vars(c). A domain D is bounds(Z) consistent
for constraint c over variables v1, . . . vn if for each i ∈ {1, . . . , n} there exists
θ ∈ solns(c)∩D s.t. θ(vi) = minD(vi) and minD(vj) ≤ θ(vj) ≤ maxD(vj), 1 ≤
j 6= i ≤ n, and similarly exists θ ∈ solns(c) ∩ D s.t. θ(vi) = maxD(vi) and
minD(vj) ≤ θ(vj) ≤ maxD(vj), 1 ≤ j 6= i ≤ n. For Boolean variables v we
assume false < true. A domain D is bounds(R) consistent for constraint c if the
same conditions as for bounds(Z) consistency hold except θ ∈ solns(c′) where c′

is the real relaxation of c. Note that we assume Booleans can only take Boolean
values in the real relaxation.

Note that for the pure Boolean constraints domain, bounds(Z) and bounds(R)
consistency coincide.

A propagator fc is X-consistent if f(D) is always X consistent for c, where
X could be domain, bounds(Z) or bounds(R).

A propagation solver for a set of propagators F and current domain D,
solv(F,D), repeatedly applies all the propagators in F starting from domain D
until there is no further change in the resulting domain. solv(F,D) is the weakest
domainD′ v D which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F . In other words,
solv(F,D) returns a new domain defined by solv(F,D) = gfp(λd.iter(F, d))(D)
where iter(F,D) =uf∈F f(D), where gfp denotes the greatest fixpoint w.r.t v
lifted to functions.

2.1 A Language of Constraints

For simplicity of presentation we restrict ourselves in this paper to the follow-
ing simple grammar of constraints (a subset of MiniZinc), in which the cons
nonterminal defines constraints, and the term nonterminal defines integer terms:

cons −→ true | false | bvar| term relop term
−→ not cons | cons /\ cons | cons \/ cons | cons -> cons | cons <-> cons
−→ pred(term1, . . . , termn)

term −→ int | ivar | term arithop term | array[term] | bool2int(cons)

The grammar uses the symbols bvar for Boolean variables, relop for relational
operators { ==, <=, <, !=, >=, > }, pred for names of builtin predicate constraints,
int for integer constants, ivar for integer variables, arithop for arithmetic opera-
tors { +, -, *, div } and array for array constants. The main missing things are
looping constructs, long linear and Boolean constraints, and local variables.

We assume each integer variable x is separately declared with a finite initial
set of possible values Dinit(x). We assume each array constant is separately
declared as a mapping {i 7→ d | i ∈ idx (a)} where its index set idx (a) is a
finite integer range. Given these initial declarations, we can determine the set
of possible values of any term t in the language as {θ(t) | θ ∈ Dinit}. Note also
while it may be prohibitive to determine the set of possible values for any term
t, we can efficiently determine a superset of these values by building a superset
for each subterm bottom up using approximation.

Given a cons term defining the constraints of the model we can split its cons
subterms as occurring in kinds of places: positive contexts, negative contexts,
and mixed contexts. A Boolean subterm t of constraint c, written c[t], is in a
positive context iff for any solution θ of c then θ is also a solution of c[true], that
is c with subterm t replaced by true. Similarly, a subterm t of constraint c is in
a negative context iff for any solution θ of c then θ is also a solution of c[false].
The remaining Boolean subterms of c are in mixed contexts.

Example 5. Consider the constraint expression c

constraint i <= 4 -> x + bool2int(b) = 5;

then i ≤ 4 is in a negative context, x+ bool2int(b) = 5 is in a positive context,
and b is in a mixed context. If the last equality were x+ bool2int(b) ≥ 5 then
b would be in a positive context. ut

One can classify most contexts as positive or negative using a simple top-
down analysis of the form of the expression. The remaining contexts can be
considered mixed without compromising the correctness of the rest of the paper.

Our small language contains two partial functions: div returns⊥ if the divisor
is zero, while a[i] returns ⊥ if the value of i is outside the domain of a. We can
categorize the safe terms and constraints of the language, as those where no ⊥
can ever arise in any subterm. A term or constraint is safe if all its arguments
are safe, and either the term is not a division or array access, or it is a division
term t1 div t2 and the set of possible values of t2 does not include 0, or it is an
array access term a[t] and the set of possible values of t are included in idx (a).

3 Flattening with Full Reification

Since the constraint solver only deals with a flat conjunction of constraints,
modeling languages that support more complex constraint forms need to flatten
them into a form acceptable to the solver. The usual method for flattening
complex formula of constraints is full reification. Given a constraint c the full
reified form for c is b ↔ c, where b 6∈ vars(c) is a Boolean variable naming the
satisfied state of the constraint c.

The pseudo-code for flatc(b,c) flattens a constraint expression c to be equal to
b, returning a set of constraints implementing b↔ c. We flatten a whole model c
using flatc(true, c). In the pseudo-code the expressions new b and new v create
a new Boolean and integer variable respectively.

The code assumes there are reified versions of the basic relational constraints
r available, as well as reified versions of the Boolean connectives. Flattening of
arbitrary constraint predicates aborts if not at the top level of conjunction. The
code handles unsafe terms by capturing them when they first arrive at a Boolean
context using safen.

flatc(b,c)
switch c
case true: return {b}
case false: return {¬b}
case b′ (bvar): return {b↔ b′}
case t1 r t2 (relop): return safen(b, flatt(new i1, t1) ∪ flatt(new i2, t2)) ∪ {b↔ i1 r i2}
case not c1: return flatc(new b1, c1) ∪ {b↔ ¬b1}
case c1 /\ c2: if (b ≡ true) return flatc(true, c1) ∪ flatc(true, c2)

else return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b↔ (b1 ∧ b2)}
case c1 \/ c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b↔ (b1 ∨ b2)}
case c1 -> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b↔ (b1 → b2)}
case c1 <-> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b↔ (b1 ↔ b2)}
case p (t1, . . . , tn) (pred):

if (b ≡ true) return safen(b,∪n
j=1flatt(new vj , tj)) ∪ {p(v1, . . . , vn)}

else abort

The code flatt(v, t) flattens an integer term t, creating constraints that equate
the term with variable v. It creates new variables to store the values of subterms,
replaces integer operations by their relational versions, and array lookups by
element.

flatt(v,t)
switch t
case i (int): return {v = i}
case v′ (ivar): return {v = v′}
case t1 a t2 (arithop): return flatt(new v1, t1) ∪ flatt(new v2, t2) ∪ {a(v1, v2, v)}
case a [t1]: return flatt(new v1, t1) ∪ {element(v1, a, v)}
case bool2int(c1): return flatc(new b1, c1) ∪ {bool2int(b1, v)})

The procedure safen(b, C) enforces the relational semantics for unsafe ex-
pressions, by ensuring that the unsafe relational versions of partial functions

are made safe. Note that to implement the strict semantics as opposed to the
relational semantics we just need to define safen(b, C) = C. If b ≡ true then the
relational semantics and the strict semantics coincide, so nothing needs to be
done. The same is true if the set of constraints C is safe. For div(x, y, z), the
translation introduces a new variable y′ which cannot be 0, and equates it to y
if y 6= 0. The constraint div(x, y′, z) never reflects a partial function application.
The new variable b′ captures whether the partial function application returns
a non ⊥ value. For element(v, a, x), it introduces a new variable v′ which only
takes values in idx (a) and forces it to equal v if v ∈ idx (a). A partial function
application forces b = false since it is the conjunction of the new variables b′.
The %HALF% comments will be explained later.

safen(b,C)
if (b ≡ true) return C
if (C is a set of safe constraints) return C
B := ∅; S := ∅
foreach c ∈ C

if (c ≡ div(x, y, z) and y can take value 0)
B := B ∪ {new b′}
S := S ∪ {new y′ 6= 0, b′ ↔ y 6= 0, b′ ↔ y = y′, div(x, y′, z)}
%HALF% S := S ∪ {b′ ↔ y 6= 0, b′ → div(x, y, z)}

else if c ≡ element(v, a, x) and v can take a value outside the domain of a)
B := B ∪ {new b′}
S := S ∪ {new v′ ∈ idx (a), b′ ↔ v ∈ idx (a), b′ ↔ v = v′, element(v′, a, x)}
%HALF% S := S ∪ {b′ ↔ v ∈ idx (a), b′ → element(v, a, x)}

else S := S ∪ {c}
return S ∪ {b↔ ∧b′∈Bb

′})

The flattening algorithms above can produce suboptimal results in special
cases, such as input with common subexpressions. Our implementation avoids
generating renamed-apart copies of already-generated constraints, but for sim-
plicity of presentation, we omit the algorithms we use to do this.

4 Half Reification

Given a constraint c, the half-reified version of c is a constraint of the form b→ c
where b 6∈ vars(c) is a Boolean variable.

We can construct a propagator fb→c for the half-reified version of c, b → c,
using the propagator fc for c.

fb→c(D)(b) = {false} ∩D(b) if fc(D) is a false domain
fb→c(D)(b) = D(b) otherwise
fb→c(D)(v) = D(v) if v 6≡ b and false ∈ D(b)
fb→c(D)(v) = fc(D)(v) if v 6≡ b and false 6∈ D(b)

In practice most propagator implementations for c first check whether c is sat-
isfiable, before continuing to propagate. For example,

∑
i aixi ≤ a0 determines

L =
∑

iminD(aixi)− a0 and fails if L > 0 before propagating; Regin’s domain
propagator for alldifferent([x1, . . . , xn]) determines a maximum matching be-
tween variables and values first, if this is not of size n it fails before propagating;
the timetable cumulative constraint determines a profile of necessary resource
usage, and fails if this breaks the resource limit, before considering propagation.
We can implement the propagator for fb→c by only performing the checking part
until D(b) = {true}.

Half reification naturally encodes the relational semantics for partial function
applications in positive contexts. We associate a Boolean variable b with each
Boolean term in an expression, and we ensure that all unsafe constraints are
half-reified using the variable of the nearest enclosing Boolean term.

Example 6. Consider flattening of the constraint of Example 1. First we will
convert it to an equivalent expression with only positive contexts

i > 4 \/ a[i] * x >= 6

There are three Boolean terms: the entire constraint, i > 4 and a[i]×x ≥ 6, which
we name b0, b1 and b2 respectively. The flattened form using half reification is

constraint b1 -> i > 4;

constraint b2 -> element(i,a,t1);

constraint mult(t1,x,t2);

constraint b2 -> t2 >= 6;

constraint b1 \/ b2;

The unsafe element constraint is half reified with the name of its nearest enclos-
ing Boolean term. Note that if i = 7 then the second constraint makes b2 = false.
Given this, the final constraint requires b1 = true, which in turn requires i > 4.
Since this holds, the whole constraint is true with no restrictions on x. ut

Half reification can handle more constraint terms than full reification if we
assume that each global constraint predicate p is available in half-reified form.
Recall that this places no new burden on the solver implementer.

Example 7. Consider the constraint of Example 4. Half reification results in

constraint b1 -> i > 4;

constraint minus(i,x,t1); % t1 = i - x

constraint b2 -> alldifferent([i,t1,x]);

constraint b1 \/ b2 % b1 or b2

We can easily modify any existing propagator for alldifferent to support the
half-reified form, hence this model is executable by our constraint solver. ut

Half reification can lead to more efficient constraint solving, since it does not
propagate unnecessarily.

Example 8. Consider the task decomposition of a cumulative constraint (see
e.g. [6]) which includes constraints of the form

constraint sum(i in Tasks where i != j)

(bool2int(s[i] <= s[j] /\ s[i]+d[i] > s[j]) * r[i]) <= L - r[j];

which requires that at the start time s[j] of task j, the sum of resources r used
by it and by other tasks executing at the same time is less than the limit L.
Flattening with full reification produces constraints like this:

constraint b1[i] <-> s[i] <= s[j];

constraint plus(s[i],d[i],e[i]); % e[i] = s[i] + d[i]

constraint b2[i] <-> e[i] > s[j];

constraint b3[i] <-> b1[i] /\ b2[i];

constraint bool2int(b3[i], a[i]); % a[i] = bool2int(b3[i])

constraint sum(i in Tasks where i != j)(a[i] * r[i]) <= L - r[j];

Whenever the start time of task i is constrained so that it does not overlap time
s[j], then b3[i] is fixed to false and a[i] to 0, and the long linear sum is awoken.
But this is useless, since it cannot cause failure. The Boolean expression appears
in a negative context, and half-reification produces

constraint b1[i] -> s[i] > s[j];

constraint plus(s[i],d[i],e[i]); % e[i] = s[i] + d[i]

constraint b2[i] -> e[i] <= s[j];

constraint b3[i] -> b1[i] \/ b2[i];

constraint b4[i] <-> not b3[i];

constraint bool2int(b4[i], a[i]); % a[i] = bool2int(b4[i])

constraint sum(i in Tasks where i != j)(a[i] * r[i]) <= L - r[j];

which may seem to be more expensive since there are additional variables (the
b4[i]), but since both b4[i] and a[i] are implemented by views [7], there is no
additional runtime overhead. This decomposition will only wake the linear con-
straint when some task i is guaranteed to overlap time s[j]. ut

Half reification can cause propagators to wake up less frequently, since vari-
ables that are fixed to true by full reification will never be fixed by half reification.
This is advantageous, but a corresponding disadvantage is that variables that
are fixed can allow the simplification of the propagator, and hence make its
propagation faster. We can reduce this disadvantage by fully reifying Boolean
connectives (which have low overhead) where possible in the half reification.

Flattening with Half Reification The procedure halfc(b, c) defined below
returns a set of constraints implementing the half-reification b → c. We flatten
a whole model c using halfc(true, c). The half-reification flattening transforma-
tion uses half reification whenever it is in a positive context. If it encounters a
constraint c1 in a negative context, it negates the constraint if it is safe, thus
creating a new positive context. If this is not possible, it defaults to the usual
flattening approach using full reification. Note how for conjunction it does not
need to introduce a new Boolean variable. Negating a constraint expression is
done one operator at a time, and is defined in the obvious way. For example,
negating t1 < t2 yields t1 >= t2, and negating c1 /\ c2 yields not c1 \/ not c2.
Any negations on subexpressions will be processed by recursive invocations of
the algorithm.

halfc(b,c)
switch c
case true: return {}
case false: return {¬b}
case b′ (bvar): return {b→ b′}
case t1 r t2 (relop): return halft(b,new i1, t1) ∪ halft(b,new i2, t2) ∪ {b→ i1 r i2}
case not c1:

if (c1 is safe) return halfc(b, negate(c1))
else return flatc(new b1, not c1) ∪ {b→ b1}

case c1 /\ c2: return halfc(b, c1) ∪ halfc(b, c2)
case c1 \/ c2: return halfc(new b1, c1) ∪ halfc(new b2, c2) ∪ {b→ (b1 ∨ b2)}
case c1 -> c2: return halfc(b, not c1 \/ c2)
case c1 <-> c2: return flatc(new b1, c1) ∪ flatc(new b2, c2) ∪ {b→ (b1 ↔ b2)}
case p (t1, . . . , tn) (pred): return ∪n

j=1halft(b,new vj , tj) ∪ {b→ p(v1, . . . , vn)}

Half reification of terms returns a set of constraints that enforce v = t if the
term t is safe, and b→ v = t otherwise. The most complex case is bool2int(c1),
which half-reifies c1 if it is in a positive context, negates c1 and half-reifies the
result if c1 is safe and in a negative context, and uses full flattening otherwise.

halft(b,v,t)
if (t is safe) return flatt(v, t)
switch t
case i (int): return {b→ v = i} % unreachable
case v′ (ivar): return {b→ v = v′} % unreachable
case t1 a t2 (arithop): halft(b,new v1, t1) ∪ halft(b,new v2, t2) ∪ {b→ a(v1, v2, v)}
case a [t1]: halft(b,new v1, t1) ∪ {b→ element(v1, a, v)}
case bool2int(c1):

if (c1 is in a positive context) return halfc(new b1, c1) ∪ {b→ bool2int(b1, v)})
else if (c1 is safe and in a negative context)

halfc(new b1, negate(c1)) ∪ {b→ bool2int(new b2, v), b2 ↔ ¬b1})
else return flatc(new b1, c1) ∪ {b→ bool2int(b1, v)}

Half reified constraints can also simplify the process of enforcing the relational
semantics for full reification, since we have a half-reified version of the div and
element constraints. The safen operation can be improved by replacing the lines
above those labeled %HALF% by the lines labeled %HALF%.

Full Reification using Half Reification Usually splitting a propagator into
two will reduce the propagation strength. We show that modeling b ↔ c for
primitive constraint c using half-reified propagators as b → c, b ↔ ¬b′, b′ → ¬c
does not do so.

To do so independent of propagation strength, we define the behaviour of the
propagators of the half-reified forms in terms of the full reified propagator.

fb→c(D)(b) = D(b) ∩ ({false} ∪ fb↔c(D)(b))
fb→c(D)(v) = D(v) if v 6≡ b, false ∈ D(b)
fb→c(D)(v) = fb↔c(D)(v) if v 6≡ b, otherwise

and
fb′→¬c(D)(b′) = D(b′) if {false} ∈ fb↔c(D)(b)
fb′→¬c(D)(b′) = D(b′) ∩ {false} otherwise
fb′→¬c(D)(v) = D(v) if v 6≡ b′, false ∈ D(b′)
fb′→¬c(D)(v) = fb↔c(D)(v) if v 6≡ b, otherwise

These definitions are not meant describe implementations, only to define how
the half reified split versions of the propagator should act.

Theorem 1. ∀D. solv({fb↔c, fb′↔¬b})(D) = solv({fb→c, fb′→¬c, fb′↔¬b}, D).

Proof. Let V = vars(c). We only consider domains D at a fixpoint of the prop-
agators fb′↔¬b, i.e. D(b′) = {¬d | d ∈ D(b)}. The proof is by cases of D. (a)
Suppose D(b) = {true, false}. (a-i) If ∃θ ∈ solns(c) where θ ∈ D (c can still be
true) and ∃θ′ ∈ D where vars(θ) = V and θ 6∈ solns(c) (c can still be false).
then fb↔c does not propagate. Clearly neither do either of fb→c or fb′→¬c. (a-ii)
Suppose c cannot still be false (∀θ ∈ D where vars(θ) = V then θ ∈ solns(c))
then fb↔c(D)(b) = {true} and similarly fb′→¬c(D)(b′) = {false} using the sec-
ond case of its definition. The propagator for fb′↔¬b will then make the domain
of b equal {true}. There is no other propagation in any case. (a-iii) Suppose
c cannot still be true (¬(∃θ ∈ D ∩ solns(c))) then fb↔c(D)(b) = {false} and
fb→c(D)(b) = {false} using the first case of its definition. Again there is no
other propagation in any case except making the domain of b′ equal {true}.
(b) If D(b) = {true} then clearly fb↔c and fb→c act identically on variables in
vars(c). (c) If D(b) = {false} then D(b′) = {true} and clearly fb↔c and fb′→¬c

act identically on variables in vars(c). ut

The reason for the generality of the above theorem which defines the half-
reified propagation strength in terms of the full reified propagator is that we
can now show that for the usual notions of consistency, replacing a fully reified
propagator leads to the same propagation. Note that the additional variable b′

can be implemented as a view [7] in the solver and hence adds no overhead.

Corollary 1. A domain (resp. bounds(Z), bounds(R)) consistent propagator for
b↔ c propagates identically to domain (resp. bounds(Z), bounds(R)) consistent
propagators for b→ c, b↔ ¬b′, b′ → ¬c. ut

5 Experiments

We ran our experiments on a PC with a 2.80GHz Intel i7 Q860 CPU and 4Gb of
memory. www.cs.mu.oz.au/~pjs/half has our experimental MiniZinc models
and instances. The first experiment considers “QCP-max” problems which are
defined as quasi-group completion problems where the alldifferent constraints
are soft, and the aim is to satisfy as many of them as possible.

int: n; % size

array[1..n,1..n] of 0..n: s; % 0 = unfixed 1..n = fixed

array[1..n,1..n] of var 1..n: q; % qcp array;

Table 1. QCP-max problems: Average time (in seconds), number of solved instances
(300s timeout).

FD FD + Explanations
Instances full half half-g full half half-g

qcp-10 (x15) 20.1 14 20.0 14 20.0 14 0 15 0 15 0 15

qcp-15 (x15) 204.6 6 179.9 7 174.1 7 2.5 15 1.5 15 1.0 15

qcp-20 (x15) 300.0 0 289.0 1 286.0 1 115.7 11 127.5 10 114.2 10

constraint forall(i,j in 1..n where s[i,j] > 0)(q[i,j] = s[i,j]);

solve maximize

sum(i in 1..n)(bool2int(alldifferent([q[i,j] | j in 1..n]))) +

sum(j in 1..n)(bool2int(alldifferent([q[i,j] | i in 1..n])));

predicate alldifferent(array[int] of var int: x) =

forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

Note that this is not the same as requiring the maximum number of disequality
constraints to be satisfied. The alldifferent constraints, while apparently in a
mixed context, are actually in a positive context, since the maximization in fact
is implemented by inequalities forcing at least some number to be true.

In Table 1 we compare three different resulting programs on QCP-max prob-
lems: full reification of the model above, using the alldifferent decomposi-
tion defined by the predicate shown (full), half reification of the model using
the alldifferent decomposition (half), and half reification using a half-reified
global alldifferent (half-g) implementing arc consistency (thus having the
same propagation strength as the decomposition). We use standard QCP exam-
ples from the literature, and group them by size. We compare both a standard
finite domain solver (FD) and a learning lazy clause generation solver (FD +
Explanations). We use the same fixed search strategy of labeling the matrix in
order left-to-right from highest to lowest value for all approaches to minimize
differences in search.

Half reification of the decomposition is more efficient, principally because it
introduces fewer Boolean variables, and the direct implementation of the half
reified constraint is more efficient still. Note that learning can be drastically
changed by the differences in the model and full solves one more instance in
qcp-20, thus winning in that case. Apart from this instance, the half reified
versions give an almost uniform improvement.

The second experiment shows how half reification can reduce the overhead of
handling partial functions correctly. Consider the following model for determin-
ing a prize collecting path, a simplified form of prize collecting traveling salesman
problem [8], where the aim is define an acyclic path from node 1 along weighted
edges to collect the most weight. Not every node needs to be visited (pos[i] = 0).

int: n; % size

array[1..n,0..n] of int: p; % prize for edge (i,j) Note p[i,0] = 0

Table 2. Prize collecting paths: Average time (in seconds) and number of solved in-
stances with a 300s timeout for various number of nodes.

FD FD + Explanations
Nodes full half extended full half extended

15-3-5 (x 10) 0.31 10 0.25 10 0.26 10 0.21 10 0.17 10 0.17 10

18-3-6 (x 10) 1.79 10 1.37 10 1.52 10 0.70 10 0.51 10 0.58 10

20-4-5 (x 10) 5.30 10 4.04 10 4.51 10 1.28 10 0.97 10 1.17 10

24-4-6 (x 10) 46.03 10 34.00 10 40.06 10 7.28 10 4.91 10 6.37 10

25-5-5 (x 10) 66.41 10 50.70 10 57.51 10 9.75 10 6.58 10 8.28 10

28-4-7 (x 10) 255.06 5 214.24 8 241.10 6 38.54 10 23.27 10 34.83 10

30-5-6 (x 10) 286.48 1 281.00 2 284.34 1 100.54 10 60.65 10 92.19 10

32-4-8 (x 10) 300.00 0 297.12 1 300.00 0 229.86 5 163.73 10 215.16 8

array[1..n] of var 0..n: next; % next posn in tour

array[1..n] of var 0..n: pos; % posn on node i in path, 0 = notin

array[1..n] of var int: prize = [p[i,next[i]] | i in 1..n];

% prize for outgoing edge

constraint forall(i in 1..n)(

(pos[i] = 0 <-> next[i] = 0) /\

(next[i] > 1 -> pos[next[i]] = pos[i] + 1));

constraint alldifferent_except_0(next) /\ pos[1] = 1;

solve minimize sum(i in 1..n)(prize[i]);

It uses the global constraint alldifferent except 0 which constrains each el-
ement in the next array to be different or equal 0. The model has one unsafe
array lookup pos[next[i]]. We compare using full reification (full) and half reifi-
cation (half) to model this problem. Note that if we extend the pos array to have
domain 0..n then the model becomes safe. We also compare against this model
(extended). We use graphs with both positive and negative weights for the tests.
The search strategy fixes the next variables in order of their maximum value.
First we note that extended is slightly better than full because of the simpler
translation, while half is substantially better than extended since most of the
half reified element constraints become redundant. Learning increases the ad-
vantage because the half reified formulation focusses on propagation which leads
to failure which creates more reusable nogoods.

In the final experiment we compare resource constrained project scheduling
problems (RCPSP) where the cumulative constraint is defined by the task de-
composition as in Example 8 above, using both full reification and half-reification.
We use standard benchmark examples from PSPlib [9]. Table 3 compares RCPSP
instances using full reification and half reification. We compare using J30 in-
stances (J30) and instances due to Baptiste and Le Pape (BL). Each line in the
table shows the average run time and number of solved instances. The search
strategy tries to schedule the task with the earliest possible start time. We find
a small and uniform speedup for half over full across the suites, which improves
with learning, again because learning is not confused by propagations that do
not lead to failure.

Table 3. RCPSP: Average time (in seconds) and number of solved instances with a
300s timeout.

FD FD + Explanations
Instances full half full half

BL (x 40) 277.2 5 269.3 5 17.1 39 15.4 39

J30 (x 480) 116.1 300 114.3 304 16.9 463 12.9 468

6 Related Work and Conclusion

Half reification on purely Boolean constraints is well understood, this is the same
as detecting the polarity of a gate, and removing half of the clausal representation
of the circuit (see e.g. [10]). The flattening of functions (partial or total) and the
calculation of polarity for Booleans terms inside bool2int do not arise in pure
Boolean constraints.

Half reified constraints have been used in constraint modeling but are typi-
cally not visible as primitive constraints to users, or produced through flattening.
Indexicals [11] can be used to implement reified constraints by specifying how
to propagate a constraint c, propagate its negation, check disentailment, and
check entailment, and this is implemented in SICstus Prolog [12]. A half reified
propagator simply omits entailment and propagating the negation. Half reified
constraints appear in some constraint systems, for example SCIP [13] supports
half-reified real linear constraints of the form b→

∑
i aixi ≤ a0 exactly because

the negation of the linear constraint
∑

i aixi > a0 is not representable in an LP
solver so full reification is not possible.

While flattening is the standard approach to handle complex formula involv-
ing constraints, there are a number of other approaches which propagate more
strongly. Schulte [14] proposes a generic implementation of b ↔ c propagating
(the flattened form of) c in a separate constraint space which does not affect the
original variables; entailment and disentailment of c fix the b variable appropri-
ately, although when b is made false the implementation does not propagate ¬c.
This can also be implemented using propagator groups [15]. Brand and Yap [16]
define an approach to propagating complex constraint formulae called controlled
propagation which ensures that propagators that cannot affect the satisfiability
are not propagated. They note that for a formula without negation, they could
omit half their control rules, corresponding to the case for half reification of a
positive context. Jefferson et al [17] similarly define an approach to propagat-
ing positive constraint formulae by using watch literal technology to only wake
propagators for reified constraints within the formula when they can affect the
final result. They use half reified propagators, which they call the “reifyimplied”
form of a constraint, in some of their constraint models, though they do not
compare half reified models against full reified models. We can straightforwardly
fit these stronger propagation approaches to parts of a constraint formula into
the flattening approach by treating the whole formula as a predicate, and the
implementation of the stronger propagation as its propagator.

We suggest that all finite domain constraint solvers should move to sup-
porting half-reified versions of all constraints. This imposes no further burden
on solver implementors, it allows more models to be solved, it can be used to
implement full reification, and it can allow translation to more efficient models.

We are currently extending the translator from MiniZinc to FlatZinc, mzn2fzn,
to also support half-reification. This means also extending FlatZinc to include
half-reified versions of constraints.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

1. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press
(1999)

2. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints 13(3) (2008)
229–267

3. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Procs. of CP2007. (2007) 529–543

4. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design
of ESSENCE: A constraint language for specifying combinatorial problems. In:
Procs. of IJCAI-07. (2007)

5. Frisch, A., Stuckey, P.: The proper treatment of undefinedness in constraint lan-
guages. In: Procs. of CP2009. (2009) 367–382

6. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Why cumulative decomposition is
not as bad as it sounds. In: Procs. of CP2009. (2009) 746–761

7. Schulte, C., Tack, G.: Views iterators for generic constraint implementations. In:
Procs. of CP2005. (2005) 817–821

8. Balas, E.: The prize collecting traveling salesman problem. Networks 19 (1989)
621–636

9. PSPlib: Project scheduling problem library http://129.187.106.231/psplib/.
10. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Jour-

nal of Symbolic Computation 2 (1986) 293–304
11. Van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint processins in cc(FD).

Manuscript (1991)
12. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Procs. PLILP97. (1997) 191–206
13. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-

ming: A new approach to integrate CP and MIP. In: Proc. of CPAIOR 2008.
(2008) 6–20

14. Schulte, C.: Programming deep concurrent constraint combinators. In: Procs. of
PADL 2000. (2000) 215–229

15. Lagerkvist, M.Z., Schulte, C.: Propagator groups. In: Procs. of CP2009. Volume
5732 of LNCS., Springer (2009) 524–538

16. Brand, S., Yap, R.: Towards ”Propagation = Logic + Control”. In: Procs. ICLP’06:
22nd International Conference on Logic Programming. (2006) 102–106

17. Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E.: Implementing logical
connectives in constraint programming. Artif. Intell. 174(16-17) (2010) 1407–1429

