
copyrightbox

Optimal Guillotine Layout

Graeme Gange
Dept of CSSE

University of Melbourne
Vic. 3010, Australia

ggange@cs.mu.oz.au

Kim Marriott
Clayton School of IT
Monash University
Vic. 3800, Australia

kim.marriott@monash.edu

Peter Stuckey
Dept of CSSE

University of Melbourne
Vic. 3010, Australia
pjs@cs.mu.oz.au

ABSTRACT
Guillotine-based page layout is a method for document lay-
out commonly used by newspapers and magazines, where
each region of the page either contains a single article, or is
recursively split either vertically or horizontally. Suprisingly
there appears to be little research into algorithms for auto-
matic guillotine-based document layout. In this paper we
give efficient algorithms to find optimal solutions to guillo-
tine layout problems of two forms. Fixed-cut layout is where
the structure of the guillotining is given and we only have
to determine the best configuration for each individual ar-
ticle to give the optimal total configuration. Free layout is
where we also have to search for the optimal structure. We
give bottom-up and top-down dynamic programming algo-
rithms to solve these problems, and propose a novel interac-
tion model for documents on electronic media. Experiments
show that our algorithms are effective for realistic layout
problems.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Format and notation, Photocomposition/typesetting

General Terms
Algorithms

Keywords
guillotine-based document layout, constrained optimization,
dynamic programming, typography

1. INTRODUCTION
Guillotine-based page layout is a method for document

layout, commonly used by newspapers and magazines, where
each region of the page either contains a single article, or
is recursively split either vertically or horizontally. The
newspaper page shown in Figure 1(a) is an example of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’12, September 4–7, 2012, Paris, France.
Copyright 2012 ACM 978-1-4503-1116-8/12/09 ...$15.00.

(a) (b)

Figure 1: (a) Front page of The Boston Globe, together with
(b) the series of cuts used in laying out the page. Note how
the layout uses fixed width columns.

guillotine-based layout where Figure 1(b) shows the series
of cuts used to construct this layout.

Surprisingly, there appears to have been relatively little
research into algorithms for automatic guillotine-based doc-
ument layout. We assume that we are given a sequence of
articles A1, A2, . . . , An to layout. The precise problem de-
pends upon the page layout model [8].

• The first model is vertical scroll layout in which layout
is performed on a single page of fixed width but un-
bounded height: this is the standard model for view-
ing HTML and most web documents. Here the lay-
out problem is to find guillotine layout for the articles
which minimises the height for a fixed width.

• The second model is horizontal scroll layout in which
there is a single page of fixed height but unbounded
width. This model is well suited to multicolumn layout
on electronic media. Here the layout problem is to find
guillotine layout for the articles which minimises the
width for a fixed height.

• The final model is layout for a sequence of articles in
fixed height and width pages. Here the problem is
to find a guillotine layout which maximises the prefix

of the sequence of articles A1, A2, . . . , Ak that fit on
the (first) page (and then subsequently for the second,
third, . . . page).

We are interested in two variants of these problems. The eas-
ier variant is fixed-cut guillotine layout. Here we are given
a guillotining of the page and an assignment of articles to
the rectangular regions on the page. The problem is to de-
termine how to best layout each article so as to minimise
the overall height or width. The much harder variant is free
guillotine layout. In this case we need to determine the guil-
lotining, article assignment and the layout for each article
so as to minimise overall height or width.

The main contribution of this paper is to give polynomial-
time algorithms for optimally solving the fixed-cut guillotine
layout problem and a dynamic programming based algo-
rithm for optimally solving the free guillotine layout. While
our algorithm for free guillotine layout is exponential (which
is probably unavoidable since the free guillotine layout prob-
lem is NP-Hard (see Section 2), it can layout up to 13 articles
in a few seconds (up to 18 if the articles must use columns
of a fixed width).

Our automatic layout algorithms support a novel inter-
action model for viewing documents such as newspapers or
magazines on electronic media. In this model we use free
guillotine layout to determine the initial layout. We can fine
tune this layout using fixed-cut guillotine layout in response
to user interaction such as changing the font size or viewing
window size. Using the same choice of guillotining ensures
the basic relative position of articles remains the same and
so the layout does not change unnecessarily and disorient the
reader. An example of this is shown in Figure 2. However,
if at some point the choice of guillotining leads to a very bad
layout, such as articles that are too wide or narrow or too
much wasted space, then we can find a new guillotining that
is close to the original guillotining, and re-layout using this
new choice.

Guillotine-based constructions have been considered for a
variety of document composition problems. Photo album
composition approaches [3] have a fixed document size, and
must construct an aesthetically pleasing layout while main-
taining the aspect ratio of images to be composed.

A number of heuristics have been developed for automated
newspaper composition [6, 11] which also focus on construct-
ing layouts for a fixed page-width. The first approach [6]
considers only a single one column configuration per article,
and lays out all articles to minimize height in a fixed number
of columns. The second approach [11] breaks the page into a
grid and considers up to 8 configurations on grid boundaries
per article, It focuses on choosing which articles to place in
a fixed page size, using a complex objective based on cover-
age. Both approaches make use of local search and do not
find optimal solutions.

Hurst [7] suggested solving the fixed-cut guillotine layout
problem by solving a sequence of one-dimensional minimisa-
tion problems to determine a good layout recursively. This
approach was fast but not guaranteed to find an optimal
layout. A genetic algorithm was also proposed for guillotine
layout, using a linear approximation for content [?].

A closely related problem to these is the guillotine stock-
cutting problem. Given an initial rectangle, and a (multi-)set
S of smaller rectangles with associated values, the objective
is to find a cutting pattern which gives the set S′ ⊆ S with
maximum value. This in some sense a harder form of the

third model we discuss above. A number of exact [5, 4]
and heuristic [2] methods have been proposed for the guillo-
tine stock-cutting problem. This differs from the guillotine
layout problem in that each leaf region has a single config-
uration, rather than a (possibly large sized) disjoint set of
possible configurations. It does not appear that these ap-
proaches scale to the size of problem we consider.

2. PROBLEM STATEMENT
In the rest of the paper will focus on finding a guillotine

layout which minimises the height for a fixed width. It is
straightforward to modify our algorithms to find a guillotine
layout which minimises the width for a fixed height: we sim-
ply swap height and widths in the input to the algorithms.

We can also use algorithms for minimising height to find
a guillotine layout maximising the number of articles in a
fixed size page. For a particular subsequence A1, .., Ak we
can use the algorithm to compute the minimum height hk

for laying them out in the page width. We simply perform
a linear or binary search to find the maximum k for which
hk is less than the fixed page height. We can use the area of
the articles’ content to provide an initial upper bound on k.

The main decision in the fixed-cut guillotine layout is how
to break the lines of text in each article. Different choices
give rise to different width/height configurations. Each arti-
cle has a number of minimal configurations where a minimal
configuration is a pair (w, h) s.t. the content in the article
can be laid out in a rectangle with width w and height h but
there is no smaller rectangle for which this is true. That is,
for all w′ ≤ w and h′ ≤ h either h = h′ and w = w′, or the
content does not fit in a rectangle with width w′ and height
h′.

Typically we would like the article to be laid out with
multiple columns. One way of doing this is to allow the
configuration to take any width and to compute the num-
ber of columns and their width based on the width of the
configuration. We call this article dependent column layout.
In this case for text with uniform height with W words (or
more exactly, W −1 possible line breaks), there are up to W
minimal configurations, each of which has a different num-
ber of lines. In the case of non-uniform height text, there
can be no more than O(W 2) minimal configurations.

The other way of computing the columns is to compute the
width and number of columns based on the page width and
then each article is laid out in a configuration of one, two,
three etc column widths. This is, for instance, the approach
used in Figure 1. We call this page dependent column layout.
In this case the number of different configurations is much
less and is simply the number of columns on the page.

We assume the minimal configurations for an article A
are given as a discrete list of allowed configurations C(A) =
[(w0, h0), . . . , (wk, hk)], ordered by increasing width (and
decreasing height). In the algorithms described in the fol-
lowing sections, we refer to the ith entry of an ordered list
L with L[i] (adopting the convention that indices start at
0), and concatenate lists with ++. For a configuration c,
we use w(c) to indicate the width, and h(c) for the height.
Note that we can choose to not include configurations that
are too narrow or too wide.

A guillotine cut is represented by a tree of cuts, where each
node has a given height/width configuration. A leaf node
cell(A) in the tree holds an article A. An internal node
is either: vert(X,Y), where X and Y are its child nodes,

(a) (b)

Figure 2: Example of (a) a possible guillotine layout, and
(b) the same layout adapted to a narrower display width.

representing a vertical split with articles in X to the left
and articles in Y to the right; or horiz(X,Y), representing
a horizontal split with articles in X above and articles in Y
below. Given a chosen configuration for each leaf node we
can determine the configuration of each internal nodes as
follows:

If c(X) = (wx, hx) is the chosen configuration for X and
c(Y) = (wy, hy) is the chosen configuration for Y , then de-
fine

vert((wx, hx), (wy, hy)) = (wx + wy,max(hx, hy))

horiz((wx, hx), (wy, hy)) = (max(wx, wy), hx + hy)

and let

c(vert(X,Y)) = vert(c(X), c(Y))

c(horiz(X,Y)) = horiz(c(X), c(Y)).

The fixed-cut guillotine layout problem for fixed width w
is given a fixed tree T , determine the configuration of leaf
nodes (and internal nodes) such that c(T) = (wr, hr) where
wr < w and hr is minimized.

The free guillotine layout problem for fixed width w is
given a set of articles S determine the guillotine cut T for
S and configurations of leaf nodes (and internal nodes) such
that c(T) = (wr, hr) where wr < w and hr is minimized.

We note that the free guillotine layout problem is NP-
hard, by reduction from partition [?]. Consider an instance
{n1, . . . , nk} of partition. We construct a free guillotine
layout instance with w = 2, and leaves L1 . . . Ln with con-
figurations C(Lk) = {(1, nk)}. The partition instance is

satisfiable iff the minimum height is
P

k Lk

2
.

3. FIXED-CUT GUILLOTINE LAYOUT
We will first look at solving the fixed-cut guillotine lay-

out problem. This is a restricted form of guillotine layout,
where the tree of cuts is specified, and the algorithm must
pick a configuration for each article which leads to the min-
imum height layout. Fixed-cut guillotine layout is useful in
circumstances such as online newspapers, where the layout
should remain consistent, but must adapt to changes in dis-
play area. An example of this is given in Figure 2. It might
also be useful in semi-automatic document authoring tools
that support guillotine layout.

3.1 Bottom-up construction
Dynamic programming is a natural approach to tackle

minimum height guillotine layout problems since each sub

problem of the guillotine layout is again a (smaller) mini-
mum height guillotine layout problem. The only real choices
that arise in fixed-cut layout are where to place the vertical
split between X and Y in a vertical cut vert(X,Y) in order
to obtain the minimal height. Rather than searching for a
best vertical cut, we solve this problem in the bottom-up
construction by computing the list of minimal configura-
tions, C(X) for each subtree X of T .

Consider a node vert(X,Y), where C(X) is the list of
minimal configurations for X and C(Y) is the list of mini-
mal configurations for Y . To construct the list of minimal
configurations for vert(X,Y) we iterate across the config-
urations C(X) and C(Y). Given a minimal configuration
vert(C(X)[i], C(Y)[j]), we want to find the next minimal
configuration that is wider (and shorter). If C(X)[i] is taller
than C(Y)[j], we can only construct a shorter configuration
by picking a shorter configuration for X. In fact, the next
minimal configuration is exactly vert(C(X)[i+ 1], C(Y)[j]).
We can use similar reasoning for the cases where C(X)[i] is
shorter than C(Y)[j]. Since vert(C(X)[0], C(Y)[0]) is the
narrowest minimal configuration, we can construct all min-
imal configurations by performing a linear scan over C(X)
and C(Y). Pseudo-code for this is given in Figure 3.

vert configs(CX,CY ,w)
C := ∅
i := 0
j := 0
while (i ≤ |CX| ∧ j ≤ |CY |)

(wx, hx) := CX[i]
(wy, hy) := CY [j]
if(wx + wy > w) break
C := C ++[vert(CX[i], CY [j])]
if(hx > hy) i := i+ 1
else if(hx < hy) j := j + 1
else

i := i+ 1
j := j + 1

return C

Figure 3: Algorithm for constructing minimal configurations
for a vertical split from minimal configurations for the child
nodes.

Example 3.1. Consider a problem with 3 articles {X,Y, Z}
having configurations C(X) = C(Y) = [(1, 2), (2, 1)], C(Z) =
[(1, 3), (2, 2), (3, 1)], and the tree of cuts shown in Figure
4.

Consider finding the optimal layout for w = 3. First
we must construct the minimal configurations for the node

X

Y

Z

V0

H1

X Y

Z

Figure 4: Cut-tree for Example 3.1.

horiz configs(CX,CY ,w)
C := ∅
minW := max(w(CX[0]),w(CY [0]))
i := arg maxi′ w(CX[i′]) s.t. w(CX[i′]) ≤ minW
j := arg maxj′ w(CY [j′]) s.t. w(CY [j′]) ≤ minW
while (i ≤ |CX| ∨ j ≤ |CY |)

C := C ++[horiz(CX[i], CY [j])]
(wx, hx) := CX[i+ 1]
(wy, hy) := CY [j + 1]
if(j + 1 = |CY | ∨ wx > wy) i := i+ 1
else if(i+ 1 = |CX| ∨ wx < wy) j := j + 1
else

i := i+ 1
j := j + 1

return C

Figure 5: Algorithm for producing minimal configurations
for a horizontal split from child configurations. While the
maximum width is included as an argument for consistency,
we don’t need to test any of the generated configurations,
since the width of the node is bounded by the width of the
input configurations.

marked H1. We start by picking the narrowest configura-
tions for X and Y , giving C(H1) = [(1, 4)]. We then need
to select the next narrowest configuration from either X or
Y . Since both have the same width, we then join both (2, 1)
configurations, to give C(H1) = [(1, 4), (2, 2)].

We then construct the configurations for V0. We again
select the narrowest configurations, C(H1)[0] and C(Z)[0],
giving C(V0) = [(2, 4)]. Since C(H1)[0] is taller, we select
the next configuration from H1. Combining C(H1)[1] with
C(Z)[0] gives us C(V0) = [(2, 4), (3, 3)]. Since w = 3, we
can terminate at this point, giving (3, 3) as the minimal con-
figuration. If w were instead 4, we would combine C(H1)[1]
with C(Z)[1], giving the new configuration (4, 2). 2

Constructing the minimal configurations for horiz(X,Y)
is exactly the dual of the vertical case. From a minimal con-
figuration constructed from C(X)[i] and C(Y)[j], we can
construct a new minimal configuration by picking the nar-
rowest of C(X)[i+ 1] and C(Y)[j + 1]. The only additional
complexity is that (a) horiz(C(X)[0], C(Y)[0]) is not guar-
anteed to be a minimal configuration, and (b) we must keep
producing configurations until both children have no more
successors, rather than just one. Pseudo-code for this is
given in Figure 5, and the overall algorithm is in Figure 6.

Consider a cut vert(X,Y) with children X and Y . Given
C(X) and C(Y), the algorithm described in Figures 3 to 6
computes the configurations for C(vert(X,Y)) in O(|C(X)|+
|C(Y)|), yielding at most |C(X)| + |C(Y)| configurations
(and similarly for horiz(X,Y)). Given a set of leaf nodes
S, we construct at most

P
A∈S |C(A)| configurations at any

node. As we perform this step |S| − 1 times, this gives a
worst-case time complexity of O(|S|

P
A∈S |C(A)|) for the

bottom-up construction.
An advantage of the bottom-up construction method is

that, if we record the lists of constructed configurations,
we can update the layout for a new width in O(log |C| +
|T |) time by performing a binary search on configurations of
the root node using the new width, then follow the tree of

layout set(T ,w)
switch (T)

case cell(A):
return C(A)

case vert(T1, T2):
return vert configs(layout set(T1, w),

layout set(T2, w), w))
case horiz(T1, T2):

return horiz configs(layout set(T1, w),
layout set(T2, w), w))

endswitch

Figure 6: Algorithm for constructing the list of minimal
configurations for a fixed set of cuts.

child configurations (or O(|T |) time if we use O(w) space to
construct a lookup table).

3.2 Top-down dynamic programming
We also consider a top-down dynamic programming ap-

proach, where subproblems are expanded only when required
for computing the optimal solution. Consider a subproblem
layout(horiz(X, Y), w). Using a top-down method, we need
only to calculate subproblems layout(X, w) and layout(Y ,w),
rather than all configurations for the current node. The dif-
ficulty is in the case of vertical cuts, as we cannot determine
directly how much of the available width should be allocated
to X or Y . As such, we must compute layout(X, w′) and
layout(Y , w − w′) for the set of possible cut positions w′.

A top down dynamic programming solution is almost a
direct statement of the Bellman equations as a functional
program, with caching to avoid repeated computation. The
main difficulty is the requirement to examine every possible
width when determining the best vertical split. Psuedo-
code is given in Figure 7, where lookup(T,w) looks in the
cache to see if there is an entry (T,w) 7→ c and returns c
is so, or NotFoundif not; and cache(T,w, c) adds an entry
(T,w) 7→ c to the cache.

This algorithm is outlined in Figure 7. Note that for sim-
plicity we ignore the case where there is no layout of tree
T with width ≤ w. This can be easily avoided by adding
an artificial configuration (0,∞) to the start of the list of
configurations for each article A.

While the algorithm finds the optimal solutions quite quickly
for fixed trees, there are a number of improvements to this
basic algorithm which will also be useful for the free layout
problem (Section 4).

3.2.1 Restricting vertical split positions
The algorithm given in Figure 7, on a vertical split, must

iterate over all possible values of w′ to find the optimal cut
position. Let wT

min indicate the narrowest possible configu-
ration for T . Since we are only interested in feasible layouts,
for a node vert(T1, T2) we need only consider cut positions

in [wT1
min, w − wT2

min]. We can improve this by using a bi-
nary cut to eliminate regions that cannot contain the opti-
mal solution, keeping track of the range low..high where the
optimal cut is.

Consider the cut show in Figure 8(a). Let hw′
A = layout(A,w′)

and hw−w′

B = layout(B,w − w′). In this case, hw′
A > hw−w′

B .

As the resulting configuration has height max(hw′
A , hw−w′

B),
the only way we can reduce the overall height is by adopt-

low high

A
B

w′

(a)

low high

A B

ww′
A

w′

(b)

low high

A B

(c)

Figure 9: If the optimal layout for layout(A, w′) has width smaller than w′, then we may lay out B in all the available space,

using w − ww′
A , rather than w − w′. If B is still taller than A, we know the cut must be moved to the left of ww′

A to find a
better solution.

layout(T ,w)
c := lookup(T ,w)
if c 6= NotFound return c
switch (T)
case cell(A):

c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w
case horiz(T1, T2):

c := horiz(layout(T1, w), layout(T2, w))
case vert(T1, T2):

c := (0,∞)
for w′ = 0..w

c′ := vert(layout(T1, w
′), layout(T2, w − w′))

if (h(c′) < h(c)) c := c′

endfor
endswitch
cache(T ,w,c)
return c

Figure 7: Pseudo-code for the basic top-down dynamic pro-
gramming approach, returning the minimal height configu-
ration c = (wr, hr) for tree T such that wr ≤ w.

ing a shorter configuration for A – by moving w′ further to
the right. Normally we would set low = w′ as shown in Fig-

ure 8(b). In fact, we can move low to max(w′, w−ww−w′

B) as
shown in Figure 8(c), since moving w′ right cannot increase
the overall height until B shifts to a narrower configuration.

We can improve this further by observing that, if con-
figurations are sparse, we may end up trying multiple cuts
corresponding to the same configuration. If we construct a
layout for A with cut position w′, but A does not fill all the

available space (so ww′
A < w′), we can use that additional

space to lay out B. If B is still taller than A (as shown in
Figure 9), we know that the cut can be shifted to the left of

ww′
A , rather than just w′.
The case for vert(T1, T2) in Figure 7 can then be replaced

with the following:

c := (0,∞)

low := wT1
min

high := w − wT2
min

while (low ≤ high)

w′ :=
¨

low+high
2

˝
c1 := layout(T1,w′)

low high

A
B

w′

(a)

low high

A
B

(b)

low high

A
B

(c)

Figure 8: Illustration of using a binary chop to improve

search for the optimal cut position. If hw′
A > hw−w′

B as shown
in (a), we cannot improve the solution by moving the cut to
the left. Hence we can update (b) low = w′. Since B will
retain the same configuration until the cut position exceeds

w − ww−w′

B , we can (c) set low = w − ww−w′

B .

c2 := layout(T2,w − w(c1))
c′ := vert(c1, c2)
if (h(c′) < h(c)) c := c′

if (h(c1) ≤ h(c2)) high := w(c1)− 1
if (h(c1) ≥ h(c2)) low := max(w′ + 1, w − w(c2))

Example 3.2. Consider again the problem described in
Example 3.1. The root node is a vertical cut, so we must
pick a cut position. Since wH1

min = wZ
min = 1, the cut must

be in the range [1, 2].
We choose the initial cut as w′ = 1. The sequence of calls

made is as follows:

f(V0, 3)
w′ = 1
f(H1, 1)
f(X, 1)
→ (1, 2)

f(Y, 1)
→ (1, 2)

→ (1, 4)
f(Z, 2)
→ (2, 2)

→ (3, 4)

The best solution found so far is (3, 4). Since the height of
H1 is greater than the height of Z, we know an improved
solution can only be to the right of the current cut. We
update low := 2, and continue:

w′ = 2
f(H1, 2)
f(X, 2)
→ (2, 1)

f(Y, 2)
→ (2, 1)

→ (2, 2)
f(Z, 1)
→ (1, 3)

→ (3, 3)
→ (3, 3)

Finding the optimal solution at w′ = 2, giving configuration
(3, 3). 2

4. FREE GUILLOTINE LAYOUT
In this section we consider the more difficult problem of

free guillotine layout. Given a set of leaves (say, newspaper
articles), we want to construct the optimal tree of cuts such
that all leaves are used, and the overall height is minimized.
Both the top-down and bottom-up construction methods
given in the last section for fixed-cut guillotine layout can
be readily adapted to solving the free layout problem.

The structure of the bottom-up algorithm remains largely
the same. To compute the minimal configurations for a set
S′, we try all binary partitionings of S′ into S′′ and S′ \S′′.
We then generate the configurations for vert(S′ \ S′′, S′′)
and horiz(S′ \ S′′, S′′) as for the fixed problem. However,
we must then eliminate any non-minimal configurations that
have been generated. This is done by merge, which merges
two sets of minimal configurations. Pseudo-code for this
process is given in Figure 10. As we need to generate all
configurations for all 2|S| subsets of S, we construct the re-
sults for subsets in order of increasing size.

layout free bu(S,w)
for(c ∈ {2, . . . , |S|})

for(S′ ⊆ S, |S′| = c)
C(S) := ∅
e := min i ∈ S′
for(S′′ ⊂ S′ \ {e})

C(S′) := merge(C(S′),
horiz configs(C(S′ \ S′′), C(S′′), w))

C(S′) := merge(C(S′),
vert configs(C(S′ \ S′′), C(S′′), w))

return C(S)[|C(S)| − 1]

merge(CX, CY)
C := []
i := 0
j := 0
while (i ≤ |CX| ∧ j ≤ |CY |)

(wx, hx) := CX[i]
(wy, hy) := CY [j]
if(wx < wy)

if(hx > hy)
C := C ++[CX[i]]
i := i+ 1

else j := j + 1
else if(wx > wy)

if(hx < hy)
C := C ++[CY [j]]
j := j + 1

else i := i+ 1
else % wx = wy

if(hx ≤ hy) j := j + 1
else i := i+ 1

while (i ≤ |CX|)
C := C ++[CX[i]]
i := i+ 1

while (j ≤ |CY |)
C := C ++[CY [j]]
j := j + 1

return C

Figure 10: Pseudo-code for a bottom-up construction ap-
proach for the free guillotine-layout problem for articles S.
The configurations C(S′) for S′ ⊆ S are constructed from
those of C(S′ \S′′) and C(S′′) where S′ \S′′ and S′′ are non
empty and the first set is lexicographically smaller than the
second.

layout free(S,w)
c := lookup(S,w)
if c 6= NotFound return c
if (S = {A})

c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w
else

e := min(S)
c := (0,∞)
for S′ ⊂ S \ {e}

L := {e} ∪ S′
R := S \ L
% Try a horizontal split
c′ := horiz(layout free(L,w), layout free(R,w))
if(h(c′) ≤ h(c)) c := c′

% Find the optimal vertical split
low := wL

min

high := w − wR
min

while(low ≤ high)

w′ :=
¨

low+high
2

˝
cl := layout free(L,w′)
cr = layout free(R,w − w(cl))
c′ := vert(cl, cr)
if(h(c′) ≤ h(c)) c := c′

if(h(cl) ≤ h(cr)) high := w(cl)− 1
if(h(cl) ≥ h(cr))

low := max(w′ + 1, w − w(cr))
cache(S,w,c)
return c

Figure 11: Basic top-down dynamic programming for the
free guillotine layout problem.

For the top-down method, at each node we want to find
the optimal layout for a given set S and width w. To con-
struct the solution, we try all binary partitions of S. Con-
sider a partitioning into sets S′ and S′′. As there are a large
number of symmetric partitionings, we enforce that the min-
imal element of S must be in S′. We then try laying out both
vert(S′, S′′) and horiz(S′, S′′), picking the best result.

Pseudo-code for the top-down dynamic programming ap-
proach is given in Figure 11. The structure of the algorithm
is very similar to that for the fixed layout problem, except
it now includes additional branching to choose binary par-
titions of S and try both cut directions. As before, wS

min

indicates narrowest feasible width for laying out S. This is
calculated by taking the the widest minimum configuration
width for any node in S.

4.1 Bounding
The dynamic program as formulated has a very large search

space. We would like to reduce this by avoiding exploring
branches containing strictly inferior solutions. We can im-
prove this if we can calculate a lower bounds lb(S,w) on the
height of any configuration for S in width w. If hmax is the
best height so far and lb(S,w) ≥ hmax, we know the current
state cannot be part of any improved optimal solution, so
we can simply cut-off search early with the current bound.
This is a form of bounded dynamic programming [10].

For the minimum-height guillotine layout problem, we
compute the minimum area used by some configuration of
each leaf. This allows us to determine a lower bound on the
area required for laying out the set of articles S. Since any

valid layout must occupy at least area(S), a layout with a

fixed width of w will have a height of at least
l

area(S)
w

m
.

We can also use the area approximation to reduce the set
of vertical splits that must be explored. If we have a cur-
rent best height hmax, any cut for vert(X,Y) where w′ ≤l

area(X)
hmax

m
or w′ ≥ w−

l
area(Y)
hmax

m
cannot give an improved so-

lution. Pseudo-code for the bounded dynamic programming
approach is given in Figure 12. Note that configurations are
now given as a triple (wi, hi, ei), where ei ∈ {true, false} in-
dicates whether the configuration is exact (ei = true), or a
lower bound (ei = false). We use e(c) to extract the third
component of a configuration.

A final optimization is to note that if we find a configu-
ration c which has height equal to the lower bound (h(c) =l

area(S)
w

m
) we can immediately return this solution.

5. UPDATING LAYOUTS
In the interaction model proposed in the introduction, we

suggested using a fixed-cut layout to relayout an article dur-
ing user interaction, until the current fixed-cut leads to a
very bad layout. Bad layout can be for two reasons. The
first reason is that current choice of guillotining does not
allow a layout for the desired width while a different choice
of guillotining will. The second reason is that the choice of
guillotine leads to quite un-compact layout and so to a page
height that is unnecessarily large. We note that un-compact
layout is typically more of a problem for page dependent
column layout. In the case that the current fixed-cut leads
to bad layout we wish to modify the guillotining to give a
layout close to the current layout.

First, we must determine how bad a layout can be before
we relayout the document.

Given a set of articles S, we can precompute the optimal
layout for a set of given widths W using layout_free_bu or
layout_free. We can then build a piecewise linear approx-
imation approx height(S,w) to the minimal height for free
layout of S for width w for all possible widths. However,
since the optimal layout is generally close to the area bound,
we can use the simpler approximation approx height(S,w) =l

area(S)
w

m
. We use this function to determine when to change

guillotine cuts during user interaction. Assume the current
layout of S is T , then if layout(T,w) > α×approx height(S,w)
we know that the fixed-cut is giving poor layout. We use
α = 1.1.

When we are generating a new guillotine cut for S, we
want to ensure that the new layout is “close” to the current
cut T . Our approach is to try and change the guillotin-
ing only at the bottom of the current cut T . Define the
tree height of a tree T as follows: theight(cell(A)) = 0,
theight(vert(T1, T2)) = max(theight(T1), theight(T1)) + 1,
theight(horiz(T1, T2)) = max(theight(T1), theight(T1)) + 1.
We first try to modify only subtrees with tree height 1 (that
is parents of leaf nodes). If that fails to improve the cur-
rent layout enough we modify subtrees of tree height 2, etc.
Psuedo-code for the interactive layout problem is given in
Figure 13.

6. EXPERIMENTAL RESULTS
To evaluate the methods described in Sections 3 to 4, we

required a set of documents suitable for guillotine layout.

layout free bnd(S,w,hmax)
c := lookup(S,w)
if(c 6= NotFound)

if(e(c) ∨ h(c) ≥ hmax)
return c

% If the bound is greater than
% hmax, we can stop early

if (
l

area(S)
w

m
≥ hmax)

c := (w,
l

area(S)
w

m
, false)

if (S = {A})
i := maximal i′ s.t. w(C(A)[i′]) ≤ w
c := (w(c′), h(c′), h(c′) ≤ hmax) where c′ = C(A)[i]

else
e := min(S)
c := (0,∞)
for S′ ⊂ S \ {e}

L := {e} ∪ S′

R := S \ L
Al := area(L)
Ar := area(R)
% Try a horizontal split

cl := layout free bnd(L, w, hmax −
l

Ar
w

m
)

cr := layout free bnd(R, w, hmax − h(cl))
if(h(cl) + h(cr) ≤ h(c))

c := (max(w(cl), w(cr)), h(cl) + h(cr), e(cl) ∧ e(cr))

if(h(c) =
l

area(S)
w

m
) break

% Ensure a vertical split is feasible
if(wL

min + wR
min > w)

continue

hvert
min := max(

‰
Al

w−wR
min

ı
,

‰
Ar

w−wL
min

ı
)

if(hvert
min > hmax)
if (hvert

min < hc) c := (w, hvert
min, false)

continue
% Find the optimal vertical split

low := max(wL
min,

l
Al

hmax

m
)

high := w −max(wR
min,

l
Ar

hmax

m
) + 1

while(low < high)

w′ :=
j

low+high
2

k
cl := layout free bnd(L, w′, hmax)
if(h(cl) ≥ hmax)

cr := (w − w(cl),
l

Ar
w−w(cl)

m
, false)

else
cr := layout free bnd(R, w − w(cl), hmax)

if(max(h(cl), h(cr)) ≤ h(c))
c := (w(cl) + w(cr),max(h(cl), h(cr)), e(cl) ∧ e(cr))
if(h(c) ≤ hmax) hmax := h(c)

if(h(cl) ≤ h(cr)) high := h(cl)− 1
if(h(cl) ≥ h(cr))

low := max(w′ + 1, w − w(cr))

if(h(c) =
l

area(S)
w

m
) break for

cache(S,w,c)
return c

Figure 12: Pseudo-code for the bounded top-down dynamic
programming approach. Note that while bounding gener-
ally reduces search, if a previously expanded state is called
again with a more relaxed bound, we may end up partially
expanding a state multiple times.

interact(T ,w)
c := layout(T ,w)
S := articles in T
k := 1
while(h(c) > α× approx height(S,w))

c := relayout(T ,w,k)
k := k + 1

return c

relayout(T ,w,k)
c := lookup(T ,w)
if(c 6= NotFound) return c
if(theight(T) ≤ k)

S := set of articles appearing in T
return layout free(S,w)

switch (T)
case cell(A):

c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w
case horiz(T1, T2):

c := horiz(relayout(T1, w, k), relayout(T2, w, k))
case vert(T1, T2):

c := (0,∞)
for w′ = 0..w

c′ := vert(relayout(T1, w
′, k), relayout(T2, w − w′, k))

if (h(c′) < h(c)) c := c′

endfor
endswitch
cache(T ,w,c)
return c

Figure 13: Pseudo-code for the basic top-down dynamic pro-
gramming relayout, where we can change configuration for
subtrees with tree height less than or equal to k.

n td td+b bu
10 < 0.01 < 0.01 < 0.01
20 < 0.01 < 0.01 < 0.01
30 0.02 0.01 < 0.01
40 0.03 0.02 < 0.01
50 0.06 0.05 < 0.01
60 0.13 0.10 < 0.01
70 0.18 0.14 < 0.01
80 0.29 0.22 < 0.01
90 0.41 0.33 < 0.01

Table 1: Results for the fixed-cut minimum-height guillotine
layout problem with w = wmin + 0.1(wmax − wmin).

To construct this data-set, we randomly select a set of n of
articles from the Reuters-21578 news corpus [1], then use
a modified version of the binary search described in [9] to
determine the set of available configurations for each article.
All times are given in seconds, and all experiments are run
with a time limit of 600 seconds. Times given are averages
over 10 instances of each problem size. Bold entries indicate
the best result for each problem size.

For convenience in generating the dataset, we assume the
use of a fixed-width font. While A-series page sizes have
a 1 :

√
2 aspect ratio, fixed-width fonts fit approximately

equal number of lines as characters per line.
All experiments were conducted on a 3.00Ghz Core2 Duo

with 2 Gb of RAM running Ubuntu GNU/Linux 8.10. td
denotes the top-down dynamic programming approach, and
td+b is top-down dynamic programming with bounding. bu
denotes bottom-up construction.

6.1 Fixed-Cut Layout
Instances for fixed-cut guillotine layout were constructed

with a random tree of cuts, selecting horizontal and verti-
cal cuts with equal probability. Initially, we selected the
instance width as a linear combination of the minimum and
maximum width configurations for the instance. Results
given Table 1 are constructed with w = wmin + 0.1(wmax −
wmin), where wmin is the overall width when each arti-
cle takes the narrowest feasible configuration (and similarly
for wmax). Clearly, the top-down methods degrade quite
rapidly compared to the bottom-up method. This appears
to be due more to the rapidly increasing width than the
increasing number of articles; the instances with 90 arti-
cles are laid out on a page that is 3000 to 5000 characters
wide. This is illustrated in Table 2, where we calculated
w = wmin + 300. Although the top-down methods are still
distinctly slower than the bottom-up approach, they now
scale far more gracefully.

6.2 Free Layout
For the free layout problem, we constructed instances for

each size between 4 and 15. The instance width was se-
lected as

lp
(1 + α)area(S)

m
, to approximate a layout on an

A-series style page with α additional space. For these exper-
iments, we selected α = 0.2. Times given in Table 3 denote
the average time for solving the 10 instance of the indicated
size.

As before, td performs significantly worse than the other

n td td+b bu
10 < 0.01 < 0.01 < 0.01
20 < 0.01 < 0.01 < 0.01
30 0.01 < 0.01 < 0.01
40 0.01 < 0.01 < 0.01
50 0.02 0.01 < 0.01
60 0.03 0.01 < 0.01
70 0.03 0.01 < 0.01
80 0.04 0.01 < 0.01
90 0.05 0.02 < 0.01

Table 2: Results for the fixed-cut minimum-height guillotine
layout problem with w = wmin + 300.

n td td+b bu
4 < 0.01 < 0.01 < 0.01
5 < 0.01 < 0.01 < 0.01
6 0.01 < 0.01 < 0.01
7 0.03 < 0.01 0.01
8 0.12 0.01 0.04
9 0.42 0.03 0.15
10 1.62 0.11 0.50
11 5.81 0.41 1.64
12 22.33 1.50 5.02
13 106.46 6.09 17.51
14 413.63 24.43 53.11
15 — 74.84 143.83

Table 3: Results for the free minimum-height guillotine lay-
out problem. Times (in seconds) are averages of 10 randomly
generated instances with n articles.

n td td+b bu
4 < 0.01 < 0.01 < 0.01
5 < 0.01 < 0.01 < 0.01
6 < 0.01 < 0.01 < 0.01
7 < 0.01 < 0.01 < 0.01
8 < 0.01 < 0.01 < 0.01
9 0.01 < 0.01 0.01
10 0.04 < 0.01 0.05
11 0.12 < 0.01 0.16
12 0.39 0.01 0.47
13 1.23 0.04 1.53
14 3.85 0.10 4.38
15 13.10 0.37 15.50
16 41.65 0.50 48.32
17 168.19 1.17 157.96
18 590.76 3.80 442.19

Table 4: Results for the free minimum-height guillotine lay-
out problem using page dependent column-based layout.
Times (in seconds) are averages of 10 randomly generated
instances with n articles.

methods. Unlike the fixed layout problem, these instances
have much narrower page widths, and the search space arises
largely from the selection of binary partitions. As a result,
bounding provides a substantial improvement – td+b is con-
sistently around twice as fast as bu on these instances.

In this first experiment we did not use column-based lay-
out. However, in practice column-based layout is preferable
so as to avoid long text measures. We generated test data
for page dependent column-based layouts in a similar man-
ner to the other guillotine layouts; having selected a column
width, we calculate the number of lines required for the ar-
ticle body, and use this to determine the dimensions given
a varying number of columns. This is combined with the
layout for the article title (calculated as before).

We select a column width of 38 characters, chosen as be-
ing typical of print newspapers. Page width is selected as
before, then rounded up to the nearest number of columns.
Results for this dataset are given in Table 4. The results for
this case differ substantially to those for the non column-
based instances – since the number of possible vertical cuts
is much smaller (even the large instances generally have only
4 columns) fewer subproblems need to be expanded at each
node during the execution of the dynamic programming ap-
proaches. In this case, td actually slightly outperforms bu,
but td+b is substantially faster than both.

6.3 Updating Layouts
In practice, for non page dependent column-based lay-

outs, a fixed optimal cutting remains near-optimal over a
wide range of width values. To illustrate this, we took a
document with 13 articles from the set used in Section 6,
and computed the optimal cutting for w = 200. Figure 14
shows the height given by laying out this fixed cutting using
layout with widths between 40 and 200. We compare this
with the height given by the area bound and the optimal
layout for each width. While the fixed layout is quite close
to the optimal height over a wide range of values, it begins
to deviate as we decrease the viewport width. For widths
40 and 50, this fixed layout is infeasible, and we are forced
to compute a new tree of cuts.

50 100 150 200

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

width

h
e

ig
h

t

LB
Opt
Fix

Figure 14: Layout heights for a 13-article document used in
Section 6. lb the lower bound at the given width, and opt
is the minimum height given by layout free bnd. For fix, we
computed the optimal layout for w = 200, and adjusted the
layout to the desired with using layout.

To test the performance of the relayout algorithm, we
consider again the set of 13-article documents used in the
previous experiment. We computed the optimal layout for
page widths between 40 and 200 characters, in 5 character
intervals. We compared this with adapting the fixed lay-
out computed for w = 40, and progressively used relayout
at each width. relayout was implemented with the bounded
top-down methods for both the fixed and free components.

The average runtime for layout free bnd over the varying
documents and widths was 7.48s. Runtime for layout was less
than 0.01s in all cases, but deviated from the minimal height
by up to 40%. Average runtime for relayout (with α = 1.1)
was 0.02s, and deviated from the minimal height by at most
10%. Results for page dependent column-based layout are
similar. For documents with 16 articles, layout generated
layouts up to 32% taller than the optimum; layout free bnd
took 0.48s on average, compared to less than 0.01 for relayout
(and α = 1.1).

7. CONCLUSION
Guillotine-based layouts are widely used in newspaper and

magazine layout. We have given algorithms to solve two
variants of the automatic guillotine layout problem: the
fixed cut guillotine layout problem in which the choice of
guillotine cuts is fixed and the free guillotine layout prob-
lem in which the algorithm must choose the guillotining.
We have shown that the fixed guillotine layout problem is
solvable in polynomial time while the free guillotine layout
problem is NP-Hard.

We have presented bottom-up and top-down methods for
the minimum-height guillotine layout problem. For fixed-cut
guillotine layout, the bottom-up method is far superior, as
complexity is dependent only on the number of leaf configu-

rations, rather than the page width; the bottom-up method
can optimally layout reasonable sized graphs in real-time.

For the free guillotine layout problem, which has smaller
width and larger search space, the bounded top-down method
was substantially faster than the other methods. On in-
stances with arbitrary cut positions, the bounded top-down
method could solve instances with up to 13 articles in a few
seconds; when restricted to page dependent column-based
layouts, we can quickly produce layouts for at least 18 arti-
cles.

We have also suggested a novel interaction model for view-
ing on-line documents with a guillotine-based layout in which
we solve the free guillotine layout problem to find an initial
layout and then use the fixed cut guillotine layout to adjust
the layout in response to user interaction such as changing
the font size or viewing window size.

Currently our implementation only handles text. Future
work will be to incorporate images.

8. ACKNOWLEDGEMENTS
The authors acknowledge the support of the ARC through

Discovery Project Grant DP0987168.

9. REFERENCES
[1] Reuters-21578, Distribution 1.0.

http://www.daviddlewis.com/resources/

testcollections/reuters21578.

[2] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit. A
tabu search algorithm for large-scale guillotine
(un)constrained two-dimensional cutting problems.
Computers & OR, 29(7):925–947, 2002.

[3] C. B. Atkins. Blocked recursive image composition. In
Proceedings of the 16th International Conference on
Multimedia 2008, pages 821–824, 2008.

[4] N. Christofides and E. Hadjiconstantinou. An exact
algorithm for orthogonal 2-d cutting problems using
guillotine cuts. European Journal of Operational
Research, 83(1):21–38, 1995.

[5] N. Christofides and C. Whitlock. An algorithm for
two-dimensional cutting problems. Operations
Research, pages 30–44, 1977.

[6] J. González, J. Merelo, P. Castillo, V. Rivas, and
G. Romero. Optimizing web newspaper layout using
simulated annealing. In J. Mira and
J. Sanchez-Andres, editors, Engineering Applications
of Bio-Inspired Artificial Neural Networks, volume
1607 of Lecture Notes in Computer Science, pages
759–768. Springer Berlin / Heidelberg, 1999.

[7] N. Hurst. Better Automatic Layout of Documents.
PhD thesis, Monash University, Department of
Computer Science, May 2009.

[8] N. Hurst, W. Li, and K. Marriott. Review of
automatic document formatting. In Proceedings of the
9th ACM symposium on Document engineering, pages
99–108. ACM, 2009.

[9] N. Hurst, K. Marriott, and P. Moulder. Minimum
sized text containment shapes. In DocEng ’06:
Proceedings of the 2006 ACM symposium on
Document engineering, pages 3–12, New York, NY,
USA, 2006. ACM.

[10] J. Puchinger and P. Stuckey. Automating
branch-and-bound for dynamic programs. In R. Glück

and O. de Moor, editors, Proceedings of the ACM
SIGPLAN 2008 Workshop on Partial Evaluation and
Program Manipulation (PEPM ’08), pages 81–89.
ACM, 2008.

[11] T. Strecker and L. Hennig. Automatic layouting of
personalized newspaper pages. In B. Fleischmann,
K.-H. Borgwardt, R. Klein, and A. Tuma, editors,
Operations Research Proceedings 2008, pages 469–474.
Springer Berlin Heidelberg, 2009.

