
Fast Node Overlap Removal

Tim Dwyer1, Kim Marriott1, and Peter J. Stuckey2

1 School of Comp. Science & Soft. Eng., Monash University, Australia
{tdwyer,marriott}@mail.csse.monash.edu.au

2 NICTA Victoria Laboratory
Dept. of Comp. Science & Soft. Eng., University of Melbourne, Australia

pjs@cs.mu.oz.au

Abstract. Most graph layout algorithms treat nodes as points. The
problem of node overlap removal is to adjust the layout generated by
such methods so that nodes of non-zero width and height do not over-
lap, yet are as close as possible to their original positions. We give an
O(n log n) algorithm for achieving this assuming that that the number
of nodes overlapping any single node is bounded by some constant. This
method has two parts, a constraint generation algorithm which generates
a linear number of “separation” constraints and an algorithm for finding
a solution to these constraints “close” to the original node placement
values. We also extend our constraint solving algorithm to give an active
set based algorithm which is guaranteed to find the optimal solution but
which has considerably worse theoretical complexity. We compare our
method with convex quadratic optimization and force scan approaches
and find that it is faster than either, gives results of better quality than
force scan methods and similar quality to the quadratic optimisation
approach.

Keywords: graph layout, constrained optimization, separation constraints

1 Introduction

Graph drawing has been extensively studied over the last twenty years [2]. How-
ever, most research has dealt with abstract graph layout in which nodes are
treated as points. Unfortunately, this is inadequate in many applications since
nodes frequently have labels or icons and a layout for the abstract graph may
lead to overlapping nodes when these are added.

For this reason, a number of papers, e.g. [9, 8, 5, 6, 4, 7], have described algo-
rithms for performing layout adjustment in which an initial graph layout is mod-
ified so that node overlapping is removed. The underlying assumption is that
the initial graph layout is good so that this layout should be preserved when re-
moving the node overlap. Lyons et. al [7] offered a technique based on iteratively
moving nodes to the centre of their Voronoi cells until crossings are removed.
Misue et. al [9] proposed several models for a user’s “mental map” based on or-
thogonal ordering, proximity relations and topology and define a simple heuristic

Force Scan algorithm (FSA) for node-overlap removal that preserves orthogonal
ordering. Hayashi et. al [5] propose a variant algorithm (FSA’) that produces
more compact drawings while still preserving orthogonal ordering. They also
showed that this problem is NP-complete. More recently, Marriott et. al [8] inves-
tigated a quadratic programming (QP) approach which minimises displacement
of nodes while satisfying non-overlap constraints. Their results demonstrate that
the technique offers results that are preferable to FSA in a number of respects,
but require significantly more processing time. In this paper we address the last
issue.

Our contribution consists of two parts: first we detail a new algorithm for
computing the linear constraints to ensure non-overlap in a single dimension.
This has worst case complexity O(n log n) where n is the number of vertices
and generates O(n) non-overlap constraints.3 Previous approaches have had
quadratic or cubic complexity and as far as we are aware it has not been previ-
ously realized that only a linear number of non-overlap constraints are required.

Each non-overlap constraint has the form u + d ≤ v where u and v are vari-
ables and d ≥ 0 is a constant. Such constraints are called separation constraints.
Our second contribution is to give a simple algorithm for solving quadratic pro-
gramming problems of the form: minimize

∑
i=1 wi × (vi − di)2 subject to a

conjunction of separation constraints over variables v1, . . . , vn where di is the
desired value of variable vi and wi ≥ 0 the relative importance.

We give two versions of the algorithm. The first version has O(v + c log c)
worst case complexity where c is the number of constraints and v the number
of variables. It is not guaranteed to find an optimal solution but in practice it
works very well. The second version of the algorithm is guaranteed to find an
optimal solution but its worst case complexity may be exponential. However in
practice it is reasonably fast. Importantly these algorithms do not require the
use of a complex mathematical programming software.

Together these two algorithms give us an O(n log n) algorithm to remove
overlap between n nodes. We provide an empirical evaluation of our approach and
compare it to the original QP approach and to FSA’ and the Voronoi approach
of [7]. We find that it is considerably faster than the original QP approach and in
practice has speed better than FSA’. However, it still produces layout of quality
comparable to the QP approach and considerably better than that of FSA’.

2 Background

We assume that we are given a graph G with nodes V = {1, . . . , n}, a width,
wv, and height, hv, for each node v ∈ V ,4 and an initial layout for the graph G,
in which each node v ∈ V is placed at (x0

v, y0
v). We assume that no two nodes

3 Assuming that the number of nodes overlapping a single node is bounded by some
constant k.

4 These include any extra padding required to ensure a minimal separation between
nodes

2

quadratic-opt
compute Cno

x

x := minimize φx subject to Cno
x

x0 := x
compute Cno

y

y := minimize φy subject to Cno
y

Fig. 1. Quadratic programming approach to layout adjustment

are placed at exactly the same initial position (unlikely given a sensible layout).
If this is not the case we perturb one position slightly.

We are concerned with layout adjustment: we wish to preserve the initial
graph layout as much as possible while removing all node label overlapping. A
natural heuristic to use for preserving the initial layout is to require that nodes
are moved as little as possible. This corresponds to the Proximity Relations
mental map model of Misue et. al [9].

Following [8] we define the layout adjustment problem to be the constrained
optimization problem: minimize φchange subject to Cno where the variables of
the layout adjustment problem are the x and y coordinates of each node v ∈ V ,
xv and yv, respectively, the objective function is to minimize node movement
φchange =

∑
v∈V (xv − x0

v)2 + (yv − y0
v)2, and the constraints Cno ensure that

there is no node overlapping: For all u, v ∈ V , u 6= v implies

xv − xu ≥ 1
2 (wv + wu) (v right of u) ∨ xu − xv ≥ 1

2 (wv + wu) (u right of v)
∨ yv − yu ≥ 1

2 (hv + hu) (v above v) ∨ yu − yv ≥ 1
2 (hv + hu) (u above v)

A variant of this problem is when we additionally require that the new layout
preserves the orthogonal ordering of nodes in the original graph, i.e. their rela-
tive ordering in the x and y directions. This is a heuristic to preserve more of the
original graph’s structure. Define Coo

x =
∧
{xv ≥ xu | x0

v ≥ x0
u} and Coo

y equiva-
lently for y. The orthogonal ordering problem adds Coo

x ∧Coo
y to the constraints

to solve.
Our approach to solving the layout adjustment problem is based on [8] who

use quadratic programming to solve a linear approximation of the layout adjust-
ment problem. The basic algorithm is given in Figure 1.

There are two main ideas behind the quadratic programming approach. The
first is to approximate each non-overlap constraint in Cno by one of its disjuncts.
The second is to split it into two separate optimization problems, one for the x
dimension and one for the y dimension, by breaking the optimization function
into two parts and the constraint into two parts. Separating the problem in this
way improves efficiency by reducing the number of constraints considered in each
problem and if say we solve for the x direction first, it allows us to delay the
computation of Cno

y to take into account the node overlapping which has been
removed by the optimization in the x direction. Thus separation allows us to
find a better solution.

3

3 Generating Non-Overlap Constraints

It is relatively simple to generate the non-overlap constraints in each dimension
in O(|V |·log |V |) time. First consider generation of the horizontal constraints. We
use a vertical sweep through the nodes, keeping a horizontal “scan line” of open
nodes with each node having references to its closest left and right neighbors
(or more exactly the neighbors with which it is currently necessary to generate
a non-overlap constraint). When the scan line reaches the top of a new node,
this is added to the scan line and its neighbors computed, when the bottom of
a node is reached the the separation constraints for the node are generated and
the node is removed from the scan line. The detailed algorithm is shown on the
left of Figure 2.

It uses a vertically sorted list of events to guide the movement of the scan
line scan line. An event is a record with three fields, kind which is either open
or close respectively indicating whether the top or bottom of the node has been
reached, node which is the node name, and posn which is the vertical position
at which this happens, i.e. the top or bottom of the node.

The scan line stores the currently open nodes. We use a red-black tree to
provide O(log |V |) insert, remove, next left and next right operations. An empty
scan line is constructed with new and the functions insert and remove respec-
tively add and remove a node from the scan line, returning the resulting scan
line. The functions next left(scan line, v) and next right(scan line, v) return the
closest neighbor to the left and, respectively, the right of node v in the scan line.

The functions get left nbours(scan line, v) and get right nbours(scan line, v)
respectively detect the neighbours to the left and the right with which node v
should have non-overlap constraints. These are heuristics. It seems reasonable to
set up a non-overlap constraint with the closest non-overlapping node on each
side and a subset of the overlapping nodes. One choice for get left nbours is
shown in Figure 2. This makes use of the functions

olapx(u, v) = (wu + wv)/2− |x0
u − x0

v|
olapy(u, v) = (hu + hv)/2− |y0

u − y0
v |

which respectively measure the horizontal and vertical overlap between nodes
u and v. The main loop iteratively searches left until the first non-overlapping
node to the left is found or else there are no more nodes. Each overlapping node
u found on the way is collected in leftv if the horizontal overlap between u and
v is less than the vertical overlap.

The arrays left and right respectively detail for each open node v the nodes
to the left and to the right for which non-overlap constraints should be generated.
These are appropriately updated whenever a new node v is added. The only
subtlety is that redundant constraints are removed, i.e. if there is currently a
non-overlap constraint between any u ∈ leftv and u′ ∈ rightv then it can be
removed since it will be implied by the two new non-overlap constraints between
u and v and v and u′.

4

procedure generate Cno
x (V)

events := { event(open, v, yv − hv/2),
event(close, v, yv + hv/2) | v ∈ V }

[e1, . . . , e2n] := events sorted by posn
scan line := new()
for each e1, . . . , e2n do

v := ei.node
if ei.kind = open then

scan line := insert(scan line, v)
leftv := get left nbours(scan line, v)
rightv := get right nbours(scan line, v)
left[v] := leftv
for each u ∈ leftv do

right[u] := (right[u] ∪ {v}) \ rightv
right[v] := rightv
for each u ∈ rightv do

left[u] := (left[u] ∪ {v}) \ leftv
else /* ei.kind = close */

for each u ∈ left[v] do
generate u + (wu + wv)/2 ≤ v
right[u] := right[u] \ {v}

for each u ∈ right[v] do
generate v + (wu + wv)/2 ≤ u
left[u] := left[u] \ {v}

scan line := remove(scan line, v)
return

function get left nbours(scan line, v)
u := next left(scan line, v)
while u 6= NULL do

if olapx(u, v) ≤ 0 then
leftv := leftv ∪ {u}
return leftv

if olapx(u, v) ≤ olapy(u, v) then
leftv := leftv ∪ {u}

u := next left(scan line, u)
return leftv

procedure satisfy VPSC(V ,C)
[v1, . . . , vn] := total order(V ,C)
for i:= 1, . . . , n do

merge left(block(vi))
return [v1 7→ posn(v1), . . . , vn 7→ posn(vn)]

procedure merge left(b)
while violation(top(b.in)) > 0 do

c := top(b.in)
b.in := remove(c)
bl := block[left(c)]
distbltob := offset [left(c)] + gap(c)

−offset [right(c)]
if b.nvars > bl.nvars then

merge block(b, c, bl,−distbltob)
else

merge block(bl, c, b, distbltob)
b := bl

return

procedure block(v)
let b be a new block s.t.

b.vars := {v}
b.nvars := 1
b.posn := v.des
b.wposn := v.weight × v.des
b.weight := v.weight
b.active := ∅
b.in := add(new(), in(v))

block [v] := b
offset [v] := 0
return b

procedure merge block(p, c, b, distptob)
p.wposn := p.wposn + b.wposn−

distptob × b.weight
p.weight := p.weight + b.weight
p.posn := p.wposn/p.weight
p.active := p.active ∪ b.active ∪ {c}
for v ∈ b.vars do

block [v] := p
offset [v] := distptob + offset[v]

p.in := merge(p.in, b.in)
p.vars := p.vars ∪ b.vars
p.nvars := p.nvars + b.nvars
return

Fig. 2. Algorithm generate Cno
x (V) to generate horizontal non-overlap constraints be-

tween vertices in V , and algorithm satisfy VPSC(V, C) to satisfy the Variable Place-
ment with Separation Constraints (VPSC) problem

5

Theorem 1. The procedure generate Cno
x (V) has worst-case complexity O(|V | ·

k(log |V | + k) where k is the maximum number of nodes overlapping a single
node with appropriate choice of heap data structure. Furthermore, it will generate
O(k · |V |) constraints.

Assuming k is bounded, the worst case complexity is O(|V | log |V |).

Theorem 2. The procedure generate Cno
x (V) generates separation constraints

C that ensure that if two nodes do not overlap horizontally in the initial layout
then they will not overlap in any solution to C.

The code for generate Cno
y , the procedure to generate vertical non-overlap

constraints is essentially dual to that of generate Cno
x . The only difference is that

any remaining overlap must be removed vertically. This means that we need
only find and return the single closest node in the analogue of the functions
get left nbours and get right nbours since any other nodes in the scan line will
be constrained to be above or below these. This means that the number of left
and right neighbours is always 1 or less.

Theorem 3. The procedure generate Cno
y (V) has worst-case complexity O(|V | ·

log |V |). Furthermore, it will generate no more than 2 · |V | constraints.

Theorem 4. The procedure generate Cno
y (V) generates separation constraints

C that ensure that no nodes will overlap in any solution to C.

4 Solving Separation Constraints

Non-overlap constraints have the form u+a ≤ v where u, v are variables and a ≥
0 is the minimum gap between them. We use the notation left(c), right(c) and
gap(c) to refer to u, v and a respectively. Such constraints are called separation
constraints. We must solve the following constrained optimization problem for
each dimension:

Variable placement with separation constraints (VPSC) problem. Given
n variables v1, . . . , vn, a weight wi ≥ 0 and a desired value di for each
variable and a set of separation constraints C over these variables find an
assignment to the variables which minimizes

∑n
i=1 wi×(vi−di)2 subject

to C.

We can treat a set of separation constraints C over variables V as a weighted
directed graph with a node for each v ∈ V and an edge for each c ∈ C from
left(c) to right(c) with weight gap(c). We call this the constraint graph. We
define out(v) = {c ∈ C | left(c) = v} and in(v) = {c ∈ C | right(c) = v}. Note
that edges in this graph are not the edges in the original graph.

We restrict attention to VPSC problems in which the constraint graph is
acyclic and for which there is at most one edge between any pair of variables. It
is possible to transform an arbitrary satisfiable VPSC problem into a problem

6

of this form and our generation algorithm will generate constraints with this
property.

Since the constraint graph is acyclic it imposes a partial order on the vari-
ables: we define u �C v iff there is a (directed) path from u to v using the
edges in separation constraint set C. We will make use of the function to-
tal order(V ,C) which returns a total ordering for the variables in V , i.e. it returns
a list [v1, . . . , vn] s.t. for all j > i, vj 6�C vi.

We first give a fast algorithm for finding a solution to the VPSC algorithm
which satisfies the separation constraints and which is “close” to optimal. The
algorithm works by merging variables into larger and larger “blocks” of con-
tiguous variables connected by a spanning tree of active constraints, where a
separation constraint u + a ≤ v is active if for the current position for u and v,
u + a = v.

The generic algorithm is shown in the right of Figure 2. It takes as input a
set of separation constraints C and a set of variables V . Each variable v ∈ V is
represented by a record with the fields des which is the desired location for that
variable, and weight which is the associated weight.

We represent a block b using a record with the following fields: vars, the set
of variables in the block; nvars, the number of variables in the block; active,
the set of constraints between variables in the block which form the spanning
tree of active constraints; in, which (essentially) contains the set of constraints
{c ∈ C | right(c) ∈ b.vars and left(c) 6∈ b.vars}; posn, the position of the block’s
“reference point”; wposn, the sum of the weighted desired locations of variables
in the block; and weight, the sum of the weights of the variables in the block.

In addition, the algorithm uses two arrays blocks and offset indexed by vari-
ables where block [v] gives the block of variable v and offset [v] gives the dis-
tance from v to its block’s reference point. Using these we define the function
posn(v) = block(v).posn + offset [v] which gives the current position of variable
v.

The constraints in the field b.in for each block b are stored in a priority
queue such that the top constraint in the queue is always the most violated
where violation(c) = left(c) + gap(c) − right(c). We use four queue functions:
new() which returns a new queue, add(q, C) which inserts the constraints in the
set C into the queue q and returns the result, top(q) which returns the constraint
in q with maximal violation, remove(q) which deletes the top constraint from
q, and merge(q1, q2) which returns the queue resulting from merging queues q1

and q2. The only slight catch is that some of the constraints in b.in may be
internal constraints, i.e. constraints which are between variables in the same
block. Such internal constraints are treated as if having infinite violation, moved
to the top of the queue and silently deleted. The other slight catch is that when
a block is moved violation changes value. However, the ordering induced by
violation(c) does not change since all variables in the block will be moved by
the same amount and so violation(c) will be changed by the same amount for
all non-internal constraints. This consistent ordering allows us to implement

7

the priority queues as pairing heaps [10] with efficient support for the above
operations.

The main procedure, satisfy VPSC, processes the variables from smallest to
greatest based on a total order reflecting the constraint graph. At each stage the
invariant is that we have found an assignment to v1, .., vi−1 which satisfies the
separation constraints. We process vertex vi as follows. First we assign vi to its
own block, created using the function block and placing it at vi.des. Of course
the problem is that some of the “in” constraints may be violated. We check
for this and find the most violated constraint c. We then merge the two blocks
connected by c using the function merge block. This merges the two blocks into
a new block with c as the active connecting constraint. We repeat this until the
block no longer overlaps the preceding block, in which case we have found a
solution to v1, .., vi.

At each step we place the reference point x for each block at its optimum
position. This is the weighted average of the desired positions:∑k

i=1 vi.weight× (offset [vi]− vi.des)∑k
i=1 vi.weight

In order to efficiently compute the weighted arithmetic mean when merging two
blocks we use the fields wposn, the sum of the weighted desired locations of
variables in the block and weight the sum of the weights of the variables in the
block.

Example 1. Consider the example of laying out the boxes A,B,C,D shown in
Figure 3(a) each shown at their desired position 1.5, 3, 3.5, and 5 respectively and
assuming the weights on the boxes are 1,1,2 and 2 respectively. The constraints
generated by generate Cno

x are c1 ≡ vA + 2.5 ≤ vB , c2 ≡ vB + 2 ≤ vC and
c3 ≡ vB + 2 ≤ vD. Assume the algorithm chooses the total order A,B,C,D. First
we add block A, it is placed at its desired position as shown in Figure 3(a).
Next we consider block B, b.in = {c1} and the violation of this constraint is
1. We retrieve bl as the block containing A. and calculate distbltob as 2.5. We
now merge block B into the block containing A. The new block position is 1 as
shown in Figure 3(b), and c1 is added to the active constraints. Next we consider
block C, we find it must merge with block AB. The new positions are shown
in Figure 3(c). Since there is no violation with the block D, the final position
leaves it where it is. The result is optimal

Theorem 5. The assignment to the variables V returned by satisfy VPSC(V,C)
satisfies the separation constraints C.

Theorem 6. The procedure satisfy VPSC(V,C) has worst-case complexity O(|V |+
|C| log |C|) with appropriate choice of priority queue data structure.

Since each block is placed at its optimal position one might hope that the
solution returned by satisfy VPSC is also optimal. This was true for the example
above. Unfortunately, as the following example shows it is not always true.

8

A
 B

C

D

0 1 2 3 4 5 6

A
 B

C

D

0 1 2 3 4 5 6

A
 B

C

D

0 1 2 3 4 5 6

(a) (b) (c)

A
 B

C

D

0 1 2 3 4 5 6

A
 B

C

D

0 1 2 3 4 5 6

(d) (e)

Fig. 3. Example of (non-optimal) algorithm for VPSC problem giving optimal (c) or
non-optimal (e) answer

Example 2. Consider the same blocks as in Example 1 but with the total order
A,B,D,C. The algorithm works identically to the stage shown in Figure 3(b). But
now we consider block D, which overlaps with block AB. We merge the blocks to
create block ABD which is placed at 0.75, as shown in Figure 3(d). Now block
ABD overlaps with block C so we merge the two to the final position 0.166 as
shown in Figure 3(e). The result is not optimal.

The solution will be non-optimal if we can improve the solution by splitting
a block. This may happen if a merge becomes “invalidated” by a later merge.
It is relatively straight-forward to check if a solution is optimal by computing
the Lagrange multipliers for the constraints. We must split a block at an active
constraint c if its corresponding Lagrange multiplier λc is negative. Because
of the simple nature of the separation constraints it is possible to compute λc

(more exactly λc/2) for the active constraints in each block in linear time. We
simply perform a depth-first traversal of the constraints in b.active summing
v.weight×(posn(v)−v.des) for the variables below this variable in the tree. The
algorithm is detailed in Figure 4. It assumes the data structures in satisfy VPSC
and stores λc/2 in the lm[c] for each c ∈ C. For space reasons we leave the
justification of this to the appendix.

Using this it is relatively simple to extend satisfy VPSC so that it computes
an optimal solution. The algorithm is given in Figure 4. This uses satisfy VPSC
to find an initial solution to the separation constraints and calls compute lm to
compute the Lagrange multipliers. The main while loop checks if the current
solution is optimal, i.e. if for all c ∈ C, λc ≥ 0. If this is true the algorithm
terminates since the optimal solution has been found. Otherwise one of the
constraints c ∈ C with a negative Lagrange multiplier is chosen (in our actual

9

procedure solve VPSC(V ,C)
satisfy VPSC(V ,C)
compute lm()
while exists c ∈ C s.t. lm[c] < 0 do

choose c ∈ C s.t. lm[c] < 0
b := block [left(c)]
lb := restrict block(b, left(b, c))
rb := restrict block(b, right(b, c))
rb.posn := b.posn
rb.wposn := rb.posn× rb.weight
merge left(lb)
/* original rb may have been merged */
rb := block[right(c)]
rb.wposn :=

P
v∈rb v.weight × (v.des− offset [v])

rb.posn := rb.wposn/rb.weight
merge right(rb)
compute lm()

endwhile
return [v1 7→ posn(v1), . . . , vn 7→ posn(vn)]

procedure compute lm()
for each c ∈ C do lm[c] := 0 endfor
for each block b do

choose v ∈ b.vars
comp dfdv(v, b.active, NULL)

function comp dfdv(v, AC, u)
dfdv := v.weight× (posn(v)− v.des)
for each c ∈ AC s.t. v = left(c)

and u 6= right(c) do
lm[c] := comp dfdv(right(c), AC, v)
dfdv := dfdv + lm[c]

for each c ∈ AC s.t. v = right(c)
and u 6= left(c) do

lm[c] := − comp dfdv(left(c), AC, v)
dfdv := dfdv − lm[c]

return dfdv

Fig. 4. Algorithm to find an optimal solution to a VPSC problem with variables V
and separation constraints C.

implementation we choose the constraint with the most negative multiplier) and
the block b containing that constraint is split into two new blocks, lb which
contains the variables in left(b, c) and rb which contains those in right(b, c). We
define left(b, c) to be the vertices in b.vars connected by a path of constraints
from b.active \ {c} to left(c), i.e. the variables which are in the left sub-block
of b if b is split by removing c. Symmetrically, we define right(b, c) to be the
variables which are in the right sub-block of b if b is split by removing c. The
split is done by calling the procedure restrict block(b, V) which takes a block b
and returns a new block restricted to the variables V ⊆ b.vars. For space reasons
we do not include the (straight-forward) code for this.

Now the new blocks lb and rb are placed in their new positions using the
procedures merge left and merge right. First we place lb. Since lm[c] < 0, lb
wishes to move left and rb wishes to move right. We temporarily place rb at the
former position of b and try and place lb at its optimal position. Of course the
problem is that some of the “in” constraints may be violated (since lb wishes to
move left the “out” constraints cannot be violated). We remedy this with a call
to merge left(lb). The placement of rb is totally symmetric, although we must
first allow for the possibility that rb has been merged so we must update it’s ref-
erence to the (possibly new) container of right(c) and place it back at its desired
position. The code for merge right has not been included since it is symmetric
to that of merge left. We have also omitted references to the “out” constraint

10

priority queues used by merge right. These are managed in an identical fashion
to “in” constraints.

Example 3. Consider the case of Example 2. The result of satisfy VPSC is shown
in Figure 3(d). The Lagrange multipliers calculated for c1, c2, c3 are 1.333, 2.333,
and -0.333 respectively. We should split on constraint c3. We break block ABCD
into ABC and D, and placing them at their optimal positions leads to positions
shown in Figure 3(c). Since there is no overlap the algorithm terminates.

Theorem 7. Let θ be the assignment to the variables V returned by solve VPSC(V,C).
Then θ is an optimal solution to the VPSC Problem with variables V and con-
straints C

Termination of solve VPSC is a little more problematic. solve VPSC is an
example of an active-set approach to constrained optimization [3]. In practice
such methods are fast and lend themselves to incremental re-computation but
unfortunately, they may have theoretical exponential worst case behavior and
at least in theory may not terminate if the original problem contains constraints
that are redundant in the sense that the set of equality constraints corresponding
to the separation constraints C, namely {u + a = v | (u + a ≤ v) ∈ C}, contains
redundant constraints. Unfortunately, our algorithm for constraint generation
may generate equality-redundant constraints. We could remove such redundant
separation constraints in a pre-processing step by adding εi to the gap for the ith

separation constraint or else use a variant of lexico-graphic ordering to resolve
which constraint to make active in the case of equal violation. We can then show
that cycling cannot occur. In practice however we have never found a case of
cycling and simply terminate the algorithm after a maximum number of splits.

5 Results

We have compare our method SAT = satisfy VPSC and SOL = solve VPSC
versus FSA, the improved Push-Force Scan algorithm [5] and QP quadratic
programming optimization using the Mosek solver [1]. For SAT, SOL and QP
we compare with (OO) and without orthogonal ordering constraints. We did
not compare empirically versus the Voronoi centering algorithm [7] since it gives
very poor results.

Figure 5 gives running times and relative displacement from original position
for the different methods on randomly generated sets of overlapping rectangles.
We varied the number of rectangles generated but adjusted the size of the rect-
angles to keep k (the average number of overlaps per rectangle) appoximately
constant (k ≈ 10).

We can see that FSA produces the worst displacements, and that SAT pro-
duces very good displacements almost as good as the optimal produced by SOL
and QP. We can see that SAT (with or without orthogonal ordering constraints)
scales better than FSA. While both SOL and QP are much slower, SOL is faster
than QP. Adding orthogonal ordering constraints seems to simplify the problem

11

Size 100 200 300 400

SAT

SAT_OO

QP = SOL

QP_OO

= SOL_OO

FSA

500

R
e
la

ti
v
e
 D

is
p
la

c
e
m

e
n
t

0.01

0.1

1

10

100

size
200

400
600

800
1000

1200
1400

1600
1800

SAT

SOL

SAT_OO

SOL_OO

QP_OO

QP

FSA

2000

R
u
n
n
in

g
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

(a) (b)

Fig. 5. Comparative (a) total displacement from original positions and (b) times

somewhat and require less splitting in SOL. Therefore SOL OO is significantly
faster than QP OO and SAT OO returns a solution very near to the optimal
while remaining extremely fast. Overall these results show us that SAT is the
fastest of all algorithms and gives very close to optimal results.

6 Example layouts

Figure 6 shows the initial layout, and the results of the various node adjustment
algorithms for one of the examples. There is little difference between the SAT and
SOL results. We include a SOL result with the orthogonal ordering (SOL OO)
constraints which attacks the same problem as FSA. Clearly FSA produces much
more spreadout layout. Lastly the Voronoi diagram approach loses most of the
structure of the original layout.

References

1. Mosek ApS. Mosek optimisation toolkit v3.2. www.mosek.com.

2. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

3. R. Fletcher. Practical Methods of Optimization. Chichester: John Wiley & Sons,
Inc., 1987.

4. Emden R. Gansner and Stephen C. North. Improved force-directed layouts. In
GD ’98: Proceedings of the 6th International Symposium on Graph Drawing, pages
364–373, London, UK, 1998. Springer-Verlag.

5. Kunihiko Hayashi, Michiko Inoue, Toshimitsu Masuzawa, and Hideo Fujiwara. A
layout adjustment problem for disjoint rectangles preserving orthogonal order. In
GD ’98: Proceedings of the 6th International Symposium on Graph Drawing, pages
183–197, London, UK, 1998. Springer-Verlag.

12

(a) Original
layout

(b) SAT (c) SOL=QP (d)
SOL OO=QP OO

(e) FSA (f) Voronoi

Fig. 6. An example graph layout adjusted using various techniques.

6. Wei Lai and Peter Eades. Removing edge-node intersections in drawings of graphs.
Inf. Process. Lett., 81(2):105–110, 2002.

7. Kelly A. Lyons. Cluster busting in anchored graph drawing. In CASCON ’92: Pro-
ceedings of the 1992 conference of the Centre for Advanced Studies on Collaborative
research, pages 327–337. IBM Press, 1992.

13

8. Kim Marriott, Peter Stuckey, Vincent Tam, and Weiqing He. Removing node
overlapping in graph layout using constrained optimization. Constraints, 8:143–
171, 2003.

9. Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages and Computing, 6(2):183–210, 1995.

10. Mark Allen Weiss. Data Structures and Algorithm Analysis in Java. Addison
Wesley Longman, 1999.

A Lagrange multipliers and Optimal solutions

Recall that if we are minimizing a function F with a set of convex equalities
C over variables X, then we can associate a variable λc called the Lagrange
multiplier with each c ∈ C. Given a solution x? to C we have that this is a locally
minimal solution iff there exist values for the Lagrange multipliers satisfying

dF

dx
(x?) =

∑
c∈C

λc
dc

dx
(x?) (1)

for each variable x ∈ X [3]. Furthermore, if we also allow inequalities then the
above statement continues to hold as long as λc ≥ 0 for all inequalities c of form
t ≥ 0. By definition an inequality c which is not active has λc = 0.

In our context we are minimizing F =
∑n

i=1 vi.weight × (vi − vi.des)2 and
so dF

δvi
= 2× vi.weight× (vi − vi.des) for all 1 ≤ i ≤ n. A constraint c has form

v − u− a ≥ 0, and so δc
δv = 1 and δc

δu = −1.
Thus Equation (1) reduces to the following requirement on each variable vi,

δF

δvi
=

∑
c∈in(vi)

λc −
∑

c∈out(vi)

λc (2)

Because of the simple nature of the separation constraints it is possible to
compute the Lagrange multipliers efficiently and simply.

Lemma 1. If constraint c is an active constraint in some block b then

λc = −
∑

v∈left(b,c)

δF

δv
=

∑
v∈right(b,c)

δF

δv

If c is not active then λc = 0.

This formula allows us to compute λc (more exactly λc/2) for the active
constraints in each block in linear time. We simply perform a depth-first traversal
of the constraints in b.active summing v.weight × (posn(v) − v.des) for the
variables below this variable in the tree.

14

