
Incremental Connector Routing

Michael Wybrow1, Kim Marriott1, and Peter J. Stuckey2

1 Clayton School of Information Technology,
Monash University, Clayton, Victoria 3800, Australia,

{mwybrow,marriott}@csse.monash.edu.au
2 NICTA Victoria Laboratory,

Dept. of Comp. Science & Soft. Eng.,
University of Melbourne, Victoria 3010, Australia,

pjs@cs.mu.oz.au

Abstract. Most diagram editors and graph construction tools provide
some form of automatic connector routing, typically providing orthogo-
nal or poly-line connectors. Usually the editor provides an initial auto-
matic route when the connector is created and then modifies this when
the connector end-points are moved. None that we know of ensure that
the route is of minimal length while avoiding other objects in the dia-
gram. We study the problem of incrementally computing minimal length
object-avoiding poly-line connector routings. Our algorithms are surpris-
ingly fast and allow us to recalculate optimal connector routings fast
enough to reroute connectors even during direct manipulation of an ob-
ject’s position, thus giving instant feedback to the diagram author.

1 Introduction

Most diagram editors and graph construction tools provide some form of auto-
matic connector routing. They typically provide orthogonal and some form of
poly-line or curved connectors. Usually the editor provides an initial automatic
route when the connector is created and again each time the connector end-
points (or attached shapes) are moved. The automatic routing is usually chosen
by an ad hoc heuristic.

Editors such as OmniGraffle [1] and Dia [2] provide connector routing when
attached objects are moved, though these routes may overlap other objects in the
diagram. Both Microsoft Visio [3] and ConceptDraw [4] provide object-avoiding
connector routing. In both applications the routes are updated only after object
movement has been completed, rather than as the action is happening. In the
case of ConceptDraw, its orthogonal object-avoiding connectors are updated
as attached objects are dragged, though not if an object is moved or dropped
onto an existing connector’s path. The method used for routing does not use a
predictable heuristic and often creates surprising paths. Visio offers orthogonal
connectors, as well as curved connectors that follow roughly orthogonal routes.
Visio’s connectors are updated both when the attached shapes are moved and
when objects are placed over their paths, but only in response to either of these



events. Again, these connectors do not follow a predictable heuristic, such as
minimizing distance or number of segments. Visio does update these connectors
dynamically as objects are resized or rotated, though if there are too many
objects for this to be responsive Visio reverts to calculating paths only when
the operation finishes. The Graph layout library yFiles [5] and demonstration
editor yEd offers both orthogonal and “organic” edge routing—a curved force
directed layout where nodes repel edges. Both of these are layout options that
can be applied to a diagram, but are not maintained throughout further editing.
We know of no editor which ensures that the connectors are optimally routed in
any meaningful sense.

Automatic connector routing in diagram editors is, of course, essentially the
same problem as edge routing in graph layout, especially when edge routing is a
separate phase in graph layout performed after nodes have been positioned. Like
connector routing it is the problem of routing a poly-line or orthogonal poly-line
or spline between two nodes and finding a route which does not overlap other
nodes and which is aesthetically pleasing, i.e., short, with few bends and minimal
edge crossings. The main difference is that edge routing is typically performed for
a once-off static layout of graphs while automatic connector routing is dynamic
and needs to be performed whenever the diagram is modified.

One well-known library for edge routing in graph layout is the Spline-o-matic
library developed for GraphViz [6]. This supports poly-line and Bezier curve edge
routing and has two stages. The first stage is to compute a visibility graph for the
diagram. The visibility graph contains a node for each vertex of each object in the
diagram. There is an edge between two nodes iff they are mutually visible, i.e.,
there is no intervening object. In the second stage connectors are routed using
Dijkstra’s shortest path algorithm to compute the minimal length paths in the
visibility graph between two points. A third stage, actually the responsibility
of the diagram editor, is to compute the visual representation of the connector
This might include adding rounded corners, ensuring connectors don’t overlap
unnecessarily when going around the same object vertex, etc.

Here we describe how this three stage approach to edge routing can be modi-
fied to support incremental shortest path poly-line connector routing in diagram
editors. We support the following user interactions:

– Object addition: This makes existing connector routes invalid if they overlap
the new object and requires the visibility graph to be updated.

– Connector addition: This simply requires routing the new connector.
– Object removal: This makes existing connector routes sub-optimal if there is

a better route through the region previously occupied by the deleted object.
It also requires the visibility graph to be updated.

– Connector removal: This is simple–just delete the connector.
– Direct manipulation of object placement: This is the most difficult since it is

essentially object removal followed by addition.

To be useful in a diagram or graph editor we need these operations to be fast
enough for reasonable size diagrams or graphs with up to say 100 nodes. The
performance requirement for direct manipulation is especially stringent if we

2



wish to update the connector routing during direct manipulation, i.e., to reroute
the connectors during the movement of the object, rather than re-routing only
after the final placement. This requires visibility graph updating and connector
re-routing to be performed in milliseconds.

Somewhat surprisingly our incremental algorithms are fast enough to support
this. Two key innovations allowing this are: an “invisibility graph” which asso-
ciates each object with a set of visibility edges that it obscures (this speeds up
visibility graph update for object removal and direct manipulation); and a sim-
ple pruning function which significantly reduces the number of connectors that
must be considered for re-routing after object removal. In addition we investi-
gate the use of an A? algorithm rather than Dijkstra’s shortest path algorithm
to compute optimal paths.

There has been considerable work on finding shortest poly-line paths and
shortest orthogonal poly-line paths between two objects in part because of the
importance of these problems in path-planning for robots and VLSI circuit de-
sign. Most of this has focused on finding paths given a fixed object layout and
has not considered the problem of dynamically changing objects and the need to
incrementally update an underlying visibility structure. The most closely related
work is that of Miriyala et. al. [7]. They have given an efficient A? algorithm for
computing orthogonal connector paths. Like us they are interested in doing this
incrementally and rely on a rectangulation of the graph and previously drawn
edges which is essentially a visibility graph. The main difference to this paper is
that they only consider orthogonal paths. Other differences are that their algo-
rithm is heuristic and routes are not guaranteed to be optimal even if minimizing
edge crossings is ignored (see e.g. Figure 9 of [7]). They do not discuss object
removal and how to maintain optimality of connectors.

There are several well known algorithms for constructing visibility graphs
that run in less than the naive O(n3) approach. In [8] Lee provided an O(n2 log n)
solution with a rotational sweep. Later, Welzl presented an O(n2) duality-based
arrangements approach [9]. Asano, et. al., presented two more arrangement based
solutions in [10] both running in O(n2) time. Another O(n2) approach was given
by Overmars and Welzl using rotational trees in [11]. Ghosh and Mount showed
an output sensitive solution to the problem in [12] which uses plane sweep tri-
angulation and funnel splits. It runs in O(m + n log n) time, where m is the
number of visibility edges. Only Lee’s algorithm and Asano’s algorithm support
incremental update of a visibility graph.

Given a visibility graph with m edges and n nodes the standard implementa-
tion of Dijkstra’s shortest path algorithm is O(n2). Fredman and Tarjan [13] give
an O(m+n log n) implementation using Fibonacci heaps. The A? algorithm has
similar worst case complexity but in practice we have found it to be faster and
believe it has O(n log n) average case complexity. There are techniques based on
the continuous Dijkstra method to compute a single shortest path in O(n log n)
time which do not require computation of a visibility graph [14]. These methods
are more complex and so we chose to use a visibility graph-based approach. In

3



Incoming visibility edge

Region to 
consider for out-
going visibility 

edge

Object

Hidden region A

Hidden region B

v

Fig. 1. Hidden regions which can be ignored when constructing the visibility graph
and when finding the shortest path

practice we conjecture that they will lead to similar complexity assuming O(n2)
connectors.

2 Algorithms

2.1 Basic data structures

We assume that we have objects which have an associated list of vertices and
connector points. For simplicity we restrict ourselves to convex objects and for
the purposes of complexity analysis we assume the number of vertices is a fixed
constant, i.e. say four, since the bounding box can just be used for many objects.
The algorithms themselves work for arbitrary convex polygons, so circles can be
approximated by a dodecagon for example.

We also have connectors, these are connected to a particular connection point
on an object and have a current routing which consists of a list of edges in the
visibility graph. Of course, connectors are not always connected to objects, and
may have end-points which are neither object vertices or connection points. In
this case an extra node is added to the visibility and invisibility graphs for this
end-point.

The most important data structure is the visibility graph. Edges in this graph
are stored in a distributed sparse fashion. Each object has a list of vertices, and
each of these vertices has a list of vertices that are visible from it. We treat the
connection points on objects as if they are vertices. They behave like standard
vertices in the visibility graph, but, of course, must occur at the start or end of
a path, not in the middle. They have connectors associated with them.

Actually, not all visibility edges are placed in the visibility graph. As noted
in [15] in any shortest path the path will bend around vertices, making an angle
of less than 180o around each object. This means that we do not need to include
edges to vertices which are visible in the sector opposite to the object. Consider
the vertex v with incoming visibility edge shown in Figure 1. Clearly in any
shortest path the outgoing visibility edge must be to a vertex in the region
indicated. And so, in general, we need not include edges in the visibility graph

4



that are between v and vertices in either of the two “hidden” regions. Note that
this generalizes straightforwardly for any convex object.

The other important data structure is the “invisibility graph.” This is a new
data structure we have introduced to support incremental recomputation of the
visibility graph when an object is deleted. It associates each non-visible edge
with a blocking object. This should not be confused with the invisibility graph
of [?] which simply represents the visibility graph negatively.

The invisibility graph consists of all edges between object vertices which
could be in the visibility graph except that there is an object intersecting the
edge and so obscuring visibility. Edges in the invisibility graph are associated
with the obscuring object and with the objects they connect. Thus each object
has a list of visibility edges that it obscures. If the edge intersects more than one
object the edge is associated with only one of the intersecting objects.

2.2 Connector Addition and Deletion

Connector deletion is simple, all we need to do is to remove the connector and
references to the connector from its component edges in the visibility graph.

Connector addition requires us to determine the optimal route for the con-
nector. The simplest approach is use a shortest path algorithm such as Dijk-
stra’s [16]. Dijkstra’s method has O(n2) worst case complexity while a priority
queue based approach has worst case complexity O(m log n) where m is the num-
ber of edges in the visibility graph and n the number of objects in the diagram.

A (hopefully) better approach is to use an A∗ algorithm which uses the
Euclidean distance between the current vertex on the path as a lower bound on
the total remaining cost [14]. The idea is to modify the priority queue based
approach so that the priority for each frontier node x is the cost of reaching
x plus ||(x, v)|| where v is the endpoint of the connector. In practice we would
hope that this is faster than Dijkstra’s shortest path algorithm since the search
is directed towards the goal vertex v rather than exploring all directions from
the start vertex in a breadth-first fashion.

2.3 Object Addition

When we add an object we must first incrementally update the visibility and
invisibility graphs, then recompute the route for any connectors whose current
route has been invalidated by the addition. The precise steps when an object o
is added are

1. Find the set of edges Eo in the visibility graph that intersect o.
2. Find the set of connectors Co that use an edge from Eo.
3. Remove the edges in Eo from the visibility graph and place them in the

invisibility graph, associating them with o.
4. For each vertex (and connection point) v of o and for each vertex (and

connection point) u of each other object in the diagram o′ determine if there
is another object o′′ which intersects the segment (v, u). If there is add (v, u)

5



to the invisibility graph and associate it with o′′. If not add (v, u) to the
visibility graph.

5. For each connector c ∈ Co find its new route.

The two steps with greatest expected complexity are Step 1, computing the
visibility edges Eo obscured by o, and Step 4, computing the visible and obscured
vertices for each vertex v of o.

The simplest implementation of Step 1 has O(m) complexity since we must
examine all edges in the visibility graph to see if they intersect o. We could
reduce this to an average case O(log m) using a spatial data structure such as a
PMR quad-tree [17].

Naive computation of the visible and obscured vertices from a single vertex
has O(n2) complexity. However more sophisticated algorithms for computation
of the visibility graph have been developed.

One reasonably simple approach which appears to work well in practice Lee’s
rotational sweep algorithm [8] in which the vertices of all objects are sorted w.r.t.
the angle they make with the original vertex v of o and then these are processed
in sorted order. At each stage the algorithm keeps a heap of the object edges
that are currently open ordered by their distance from v. Only the closest edge
is visible since the others are obscured by it. This has O(n log n) complexity.

One complication with Lee’s Sweep Algorithm is that it does not handle
intersecting objects since these give rise to “implicit” vertices in which object
edges cross. Thus the algorithm requires that when an object is added that we
identify any objects that it intersects with and insert the implicit vertices.

2.4 Object Deletion

Perhaps surprisingly, object deletion is potentially considerably more expensive
than object creation. The first stage is to incrementally update the visibility
graph.

Assume initially that we do not have an invisibility graph. We first need
to remove all edges in the visibility graph that are connected to the object
being deleted, o. Then when need to add edges to the visibility graph that were
previously obscured by o. For each vertex (and connection point) v of each object
and for each vertex (and connection point) u of some other object in the diagram
we must check that (u, v) is not in the visibility graph and that it intersects o.
If so we need to check whether there is any other object which intersects the
segment (u, v). If there is not then it must be added to the visibility graph.

Identifying these previously obscured edges is potentially very expensive:
O(n2) to compute the candidate new edges and then an O(n) test for non-overlap
for each edge of which there may be O(n2). Thus the worst case complexity of
this method is O(n3).3

In order to reduce the expected (but not the worst case) cost we have intro-
duced the invisibility graph. By recording the reason for not including an edge
3 Based on this one might consider recomputing the entire visibility graph using the

Sweep Algorithm since this has O(n2 log n) complexity.

6



u

v

b

x

c

a

y A

s t

A
C

B

D

(a) (b)

Fig. 2. (a) Computing the closest point y ∈ A to the segment (u, v). (b) Example
recomputation of connectors after deleting object A. Connectors are shown as solid
lines and lower-bound connector paths through A are shown as dotted lines. The re-
exploration to try and find a better path from B to C is shown as dashed lines.

between two vertices in the visibility graph we know almost exactly which edges
we need to retest for visibility. More exactly when we remove o we take the set
of edges Io associated with o in the invisibility graph and then test for each of
these whether they intersect any other objects. Note that Io can be expected
to be considerably smaller than the candidate edges identified above since an
edge (u, v) is only in Io if it intersects o and o was the object first discovered to
intersect (u, v).

Thus, although the invisibility graph does not reduce the worst case cost, we
can expect it to substantially reduce the average cost of updating the visibility
graph. Furthermore, construction of the invisibility graph does not introduce
substantial overhead in any of the other operations, the only overhead is the
space required to store the edges. Note that when we remove an object we also
need to remove edges to it that are in the invisibility graph.

The second stage in object deletion is to recompute the connector routes.
This is potentially very expensive since removing an object means that we could
have to recompute the best route for all connectors since there may be a better
route that was previously blocked by the object just removed.

However, we can use a simple strategy to limit the number of connectors
reconsidered. Let A be the region of the object removed and let u and v be the
two ends of the connector C. We need only reconsider the current route for C
if ∃y ∈ A s.t. ||(u, y)|| + ||(y, v)|| is less than the cost of the current route since
otherwise any route going through A will be at least as expensive as the current
one.

Thus we need to compute miny∈A ||(x, y)||+ ||(y, v)||. Assuming A is convex
we can compute this relatively easily. If the line segment (u, v) intersects A
then the lower bound is ||(u, v)|| and we must reroute C. Otherwise we find for
each line segment (s, t) on the boundary of A the closest point y to A on that
segment. The closest point in A is simply the closest of these. Now consider the

7



line segment (s, t). We first compute the closest point x on the line st. If x is in
the segment (s, t) it is the closest point, otherwise we set y to s or t whichever is
closest to x. W.lo.g. we can assume that (s, t) is horizontal. Let b and c be the
vertical distance from st to u and v respectively and a the horizontal distance
between u and v, as shown in Figure 2(a). We are finding the value for x which
minimizes

√
x2 + b2 +

√
(x− a)2 + c2. There are two solutions: x = ab

b+c when
b · c ≥ 0 and x = ab

b−c when b · c ≤ 0. In the case b = c = 0, x is any value in
[0, a].

Now consider the case when we have determined that there may be a better
path for the connector because of the removal. Instead of investigating all pos-
sible paths for the connector we need only investigate those that pass through
the deleted object. Let A be the region of the object removed and let u and v
be the two ends of the connector C and assume that the current length of the
connector is c. Requiring the path to go through A means that we can use the
above idea to provide a better lower-bound when computing a lower bound on
the remaining length of the connector. The priority for each frontier node x is
the cost of reaching x plus miny∈A ||(x, y)|| + ||(y, v)|| if the path has not yet
gone through A. Furthermore we can remove any node whose priority is ≥ c
since this cannot lead to a better route than the current one.

For example consider deleting object A from the diagram in Figure 2(b).The
connector from B to D does not need to be reconsidered since the shortest path
from the connection points (dotted) is clearly longer than the current path.
But the connector from B to C needs to be reconsidered (even though in this
case it will not move). The A∗ algorithm will compute the dashed paths whose
endpoints fail the lower bound test.

2.5 Direct manipulation of object placement

The standard approach in diagram and graph editors for updating connectors
during direct manipulation is to only reroute the connectors once the object
has been moved to its final position. The obvious disadvantage is that the user
does not have any visual feedback about what the new routes will be and may
well be (unpleasantly) surprised by the result. One of the main ideas behind
direct manipulation [18] is that the user should be given visual feedback about
the consequences of the manipulation as they perform it rather than waiting for
the manipulation to be completed. Thus it seems better for diagram and graph
editors to reroute connectors during direct manipulation.

We have identified two possible approaches. In the complete feedback ap-
proach all connectors are rerouted at each mouse move during the direct manip-
ulation. The advantage is that the user knows exactly what would happen if they
left the object at its current position. The disadvantage is that this is very ex-
pensive. Another possible disadvantage is that it might be distracting to reroute
connectors under the object being moved during the direct manipulation—for
positions between the first and final position of the object the user knows that
the object will not be placed there and so it is distracting to see the effect on

8



connectors that are only temporarily under the object being manipulated. For
these reasons we have also investigated a partial feedback approach in which for
intermediate positions we only update the routes for connectors attached to the
object being manipulated and leave other connectors alone.

The simplest way of implementing complete connector-routing feedback is to
regard each move as an object deletion followed by object addition. Assume that
we move object o from region Rold to Rnew. Then we

1. Find the set of edges Io associated with o in the invisibility graph which do
not intersect Rnew and remove them from the invisibility graph.

2. For each edge (u, v) ∈ Io determine if there is another object o′ ∈ O which
intersects the segment (u, v). If there is add (v, u) to the invisibility graph
and associate it with o′. If not add (v, u) to the visibility graph.

3. Find the set of edges Eo in the visibility graph that intersect Rnew \ Rold

but are not from o.
4. Find the set of connectors Co that use an edge from Eo.
5. Remove the edges in Eo from the visibility graph and place them in the

invisibility graph, associating them with o.
6. For each vertex (and connection point) u of o and edge (u, v) in the invisi-

bility graph check that the object o′ associated with the edge still intersects
it. If it does not, temporarily add the edge to the visibility graph.

7. For each vertex (and connection point) u of o and edge (u, v) in the visibility
graph check if there is another object o′ ∈ O which intersects the segment
(u, v). If there is add (u, v) to the invisibility graph and associate it with o′.
If not, keep (u, v) in the visibility graph.

8. For each connector c ∈ Co find its new route.
9. For every connector not in Co determine if there is a better route through

Rold \Rnew.

Note that in the above we can conservatively approximate the regions Rnew\Rold

or Rold \Rnew by any enclosing region such as their bounding box.
The simplest way of implementing partial connector-routing feedback is per-

form object deletion once the object o has moved and then at each step

1. Compute the vertex and connector points which are visible from a vertex of
o and temporarily add these to the visibility graph

2. Recompute shortest routes for all connectors to/from o

Once the move has finished we perform object addition for o. Clearly this is
substantially less work than required for complete feedback.

3 Evaluation

We have implemented our incremental connector algorithms in the Dunnart
diagram editor and have conducted an experiment to evaluate our algorithms.4

4 Dunnart including this feature is downloadable from
http://www.csse.monash.edu.au/~mwybrow/dunnart/

9



Dunnart is written in C++ and compiled with gcc 3.2.2 at -O3. We ran Dunnart
on a Linux machine (glibc 2.3.3) with 512MB memory and Pentium 4, 2.4GHz
processor.

In our experiment we compared the Spline-o-matic (SoM) connector routing
library of Graph Viz (which is non-incremental) with a static version (Static) of
our algorithm in which the visibility graph and connector routes are recomputed
from scratch after each editor action, and the incremental algorithm (Inc) given
here with various options.

The experiment used various sized grid arrangement of boxes, where each
outside box is connected to the diagonally opposite box by a connector and each
box except those on the right and bottom edge is connected to the box directly
down and right. Figure 3(a) show an example layout for a 6x6 grid. For an n×n
grid we have n2 objects and 2(n − 1) + (n − 1)2 connectors. We also used a
smallish but more realistic diagram bayes from [19] (a Bayesian network with
35 objects and 61 connectors) shown in Figure 3(b). The experiments were: for
each object to delete it from the grid and the add it back in. We measured
the time for each deletion and each addition giving the average under the Add
and Delete rows. We have separated the time into that for manipulating the
visibility graph (Vis) and that for performing all connector (re)routing (Paths).
We also measured the average time taken to compute the new layout for each
mouse position when moving the marked corner box through and around the grid
as shown in Figure 3(a). The move of bayes is similar using the top leftmost
box. This results are is given in the Move rows.

Both our static (Static) and incremental (Inc) version use the A? algorithm to
compute connector paths and give complete feedback. The incremental version
computes the invisibility graph while the static one does not since this is not
needed. We also give times for versions of the incremental algorithm which do not
construct the invisibility graph (Inc-noInv). and use Dijkstra’s shortest path al-
gorithm rather than the A? algorithm (Inc-noA*). For the Move sub-experiment
we also give times for an incremental version providing partial feedback (Inc-par)
rather than complete feedback.

The results are shown in Table 1, for grids of size 6, 8, 10 and 12, and bayes.
A “—” indicates that the approach failed to complete the total experiment in
three hours.

We can see from the table that the static version of our algorithm is con-
siderably faster than Spline-O-Matic. The incremental versions are orders of
magnitude faster than static algorithms. While the incremental version is usable
for direct manipulation with complete feedback at least until grid10 (and with
difficulty at grid12), the static algorithms become unusable at grid08. The re-
sults show how important incremental recomputation is. The importance of the
invisibility graph is clearly illustrated by the difference between Inc-noInv and
Inc, improving visibility graph recomputation by orders of magnitude for Delete
and Move. The A? algorithm gives around 50% improvement in path re-routing.
Partial feedback reduces the overhead of movement considerably particularly as
the number of connectors grows.

10



(a) (b)

Fig. 3. (a) 6x6 Grid layout, showing the path taken through grid for Move experiment,
and (b) Layout of the bayes diagram

4 Conclusion

Most diagram editors and graph construction tools provide some form of auto-
matic connector routing, usually providing orthogonal or poly-line connectors.
However the routes are typically computed using ad hoc techniques and updated
in an ad hoc manner with no feedback during direct manipulation.

We have investigated the problem of incrementally computing minimal length
object-avoiding poly-line connector routings. Our algorithms are surprisingly fast
and allow us to recalculate optimal connector routings fast enough to reroute
connectors even during direct manipulation of an object’s position, thus giving
instant feedback to the diagram author.

References

1. The Omni Group: OmniGraffle Product Page. Web Page (2002)
http://www.omnigroup.com/omnigraffle/.

2. Larsson, A.: Dia Home Page. Web Page (2002)
http://www.gnome.org/projects/dia/.

3. Microsoft Corporation: Microsoft Visio Home Page. Web Page (2002)
http://office.microsoft.com/visio/.

4. Computer Systems Odessa: ConceptDraw Home Page. Web Page (2002)
http://www.conceptdraw.com/.

5. yWorks: yFiles - Java Graph Layout and Visualization Library. Web Page (2005)
www.yworks.com/products/yfiles/.

6. AT&T Research: Spline-o-matic library. Web Page (1999)
http://www.graphviz.org/Misc/spline-o-matic/.

7. Miriyala, K., Hornick, S.W., Tamassia, R.: An incremental approach to aesthetic
graph layout. In: Proceedings of the Sixth International Workshop on Computer-
Aided Software Engineering, IEEE Computer Society (1993) 297–308

11



grid06 grid08 grid10 grid12 bayes

Op Algorithm Vis Paths Vis Paths Vis Paths Vis Paths Vis Paths

Add

SoM 152 198 752 881 2449 2831 6669 1166 122 284
Static 40 67 154 313 475 1024 1209 1064 29 87
Inc-noInv 0 13 8 90 15 304 14 761 0 1
Inc-noA* 0 11 9 61 18 195 16 347 0 7
Inc 0 1 9 20 18 58 16 138 0 0

Delete

SoM 146 185 724 853 2385 2779 6542 1149 110 269
Static 40 64 153 296 463 1003 1186 1042 29 80
Inc-noInv 53 16 266 87 1006 298 1146 749 77 3
Inc-noA* 2 38 17 223 49 734 55 1331 7 9
Inc 2 8 18 58 48 204 55 504 8 0

Move

SoM 149 188 742 863 — — — — 114 282
Static 31 69 156 310 461 1004 1214 1026 29 79
Inc-noInv 43 15 230 80 950 289 1167 708 80 0
Inc-noA* 0 25 12 102 34 261 37 449 7 8
Inc 0 10 12 28 34 77 37 213 7 0

Inc-par 0 3 10 7 26 20 28 11 0 3

Table 1. Average visibility graph and connector routing times (in msec.)

8. Lee, D.T.: Proximity and reachability in the plane. PhD thesis, Department of
Electrical Engineering, University of Illinois, Urbana, IL (1978)

9. Welzl, E.: Constructing the visibility graph for n line segments in O(n2) time.
Information Processing Letters 20 (1985) 167–171

10. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1 (1986) 49–63

11. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In:
Proceedings of the fourth annual symposium on Computational geometry, ACM
Press (1988) 164–171

12. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility.
SIAM Journal on Computing 20 (1991) 888–910

13. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34 (1987) 596–615

14. Mitchell, J.S.: Geometric shortest paths and network optimization. In Sack, J.R.,
Urrutia, J., eds.: Handbook of Computational Geometry. Elsevier Science Publish-
ers B.V., Amsterdam (2000) 633–701

15. Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Infor-
mation Processing Letters 23 (1986) 71–76

16. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische
Mathematik (1959) 269–271

17. Nelson, R.C., Samet, H.: A consistent hierarchical representation for vector data.
In: SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graph-
ics and interactive techniques, New York, NY, USA, ACM Press (1986) 197–206

18. Shneiderman, B.: Direct manipulation: A step beyond programming languages.
IEEE Computer 16 (1983) 57–69

19. Woodberry, O.J.: Knowledge engineering a Bayesian network for an ecologi-
cal risk assessment. Honours thesis, Monash University, CSSE, Australia (2003)
http://www.csse.monash.edu.au/hons/projects/2003/Owen.Woodberry/.

12


