
Optimal k-level Planarization and Crossing
Minimization

Graeme Gange1, Peter J. Stuckey1, and Kim Marriott2

1 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{ggange,pjs}@csse.unimelb.edu.au
2 Clayton School of IT

Monash University, Vic. 3800, Australia
Kim.Marriott@infotech.monash.edu.au

Abstract. An important step in laying out hierarchical network dia-
grams is to order the nodes on each level. The usual approach is to
minimize the number of edge crossings. This problem is NP-hard even
for two layers when the first layer is fixed. Hence, in practice crossing
minimization is performed using heuristics. Another suggested approach
is to maximize the planar subgraph, i.e. find the least number of edges to
delete to make the graph planar. Again this is performed using heuristics
since minimal edge deletion for planarity is NP-hard. We show that using
modern SAT and MIP solving approaches we can find optimal orderings
for minimal crossing or minimal edge deletion for planarization on rea-
sonably sized graphs. These exact approaches provide a benchmark for
measuring quality of heuristic crossing minimization and planarization
algorithms. Furthermore, we can straightforwardly extend our approach
to minimize crossings followed by maximizing planar subgraph or vice
versa; these hybrid approaches produce noticeably better layout then
either crossing minimization or planarization alone.

1 Introduction

The standard approach for drawing hierarchical network diagrams is a three
phase approach in which (a) nodes in the graph are assigned levels producing a
k-level graph; (b) nodes are assigned an order so as to minimize edge crossings
in the k-level graph; and (c) the edge routes and node positions are computed.
There has been considerable research into step (b) which is called k-level cross-
ing minimization. Unfortunately this step is NP-hard even for two layers (k = 2)
where the ordering on one layer is given. Thus, research has focussed on devel-
oping heuristics to solve it. In practice the approach is to iterate through the
levels, re-ordering the nodes on each level using heuristic techniques such as the
barycentric method [1].

An alternative to performing crossing minimization in phase (b) is k-level
planarization problem. This was introduced by Mutzel [2] and is the problem of
finding the minimal set of edges that can be removed which allow the remaining

Fig. 1: Graphviz heuristic layout for the profile example graph.

1

3

2

4

65

7 8 910 11 12 13 14 1516 17 18 19

22 2324 25 2126 27 2028 3329 30 31 32

4336 41 3437 38394035 424445 46

51 47 48 49 555052 53 565754

5960 58

61

edges in the k-level graph to be drawn without any crossings. Mutzel has argued
convincingly that for hierarchical network diagrams with many crossings, this
leads to better drawings than those obtained by simply minimizing the total
number of edge crossings. While in some sense simpler than k-level crossing
minimization (since the problem is tractable for k = 2 with one side fixed) it is
still NP-hard for k > 2. A disadvantage of k-level planarization is that it does
not take into account the number of crossings that the non-planar edges generate
and so a poor choice of which edges to remove can give rise to unnecessary edge
crossings.

Here we introduce a combination of the two approaches we call k-level pla-
narization and crossing minimization. This minimizes the weighted sum of the
number of crossings and the number of edges that need to be removed to give
a planar drawing. We believe that this gives rise to nicer drawings than either
k-level planarization or k-level crossing minimization while providing a natural
generalization of both.

As some evidence for this consider the drawings shown in Figures 1 and Fig-
ure 2 of the example graph profile from the GraphViz gallery [3]. Figure 1
shows the layout from GraphViz using its heuristic for edge crossing minimiza-
tion. It has 54 edge crossing and requires removal of 17 edges to become planar.

The layout resulting from minimizing edge crossings is shown in Figure 2(a).
It has 38 crossings, significantly less than the heuristic layout. The layout result-
ing from maximizing the planar subgraph is shown in Figure 2(b) with deleted
edges dotted. It requires only 9 edges to be deleted but has 81 crossings. The
layout clearly shows that maximizing the planar subgraph in isolation is not
enough, leading to many unnecessary crossings.

The combined model allows us to minimize both crossings and edge deletions
for planarity simultaneously. Figure 2(c) shows the result of minimizing crossings

F
ig

.2
:

D
iff

er
en

t
la

yo
u

ts
o
f

th
e

p
ro

fi
le

ex
a
m

p
le

g
ra

p
h

.

(a
)

C
ro

ss
in

g
m

in
im

iz
a
ti

o
n

1
2

3
4

6
5

7
8

9
10

15
11

12
13

14
16

17
18

19

22
23

24
25

21
26

27
20

28
33

29
30

31
32

43
36

41
34

37
38

39
40

35
42

44
45

46

51
47

48
49

55
50

52
53

56
57

54

59
60

58

61

(b
)

M
a
x
im

u
m

p
la

n
a
r

su
b
se

t

1
2

3
4 6

5

7
8

9
10

15
11

12
13

14
16

17
18

19

22
23

24
25

21
26

27
20

28
33

29
30

31
32

43
36

41
34

37
38

39
40

35
42

44
45

46

51
47

48
49

55
50

52
53

56
57

54

59
60

58

61

(c
)

M
in

im
iz

e
cr

o
ss

in
g
s,

th
en

m
a
x
im

iz
e

p
la

n
a
r

su
b
se

t

1
2

3
4

6
5

7
8

9
10

15
11

12
13

14
16

17
18

19

22
23

24
25

21
26

27
20

28
33

29
30

31
32

43
36

41
34

37
38

39
40

35
42

44
45

46

51
47

48
49

55
50

52
53

56
57

54

59
60

58

61

(d
)

M
a
x
im

u
m

p
la

n
a
r

su
b
se

t,
th

en
cr

o
ss

in
g

m
in

im
iz

a
ti

o
n

1
2

3
4

6
5

7
8

9
10

15
11

12
13

14
16

17
18

19

22
23

24
25

21
26

27
20

28
33

29
30

31
32

43
36

41
34

37
38

39
40

35
42

44
45

46

51
47

48
49

55
50

52
53

56
57

54

59
60

58

61

and then maximizing the planar subset. It yields 38 crossings and 11 edge dele-
tions. Figure 2(d) shows the results of of maximizing the planar subset and the
minimize crossings. It yields 9 edge deletions and 57 edge crossings, a substantial
improvement over the maximal planar subgraph layout of Figure 2(b).

We believe these combined layouts clearly illustrate that some combination
of minimal edge crossing and minimal edge deletions for planarity leads to better
layout than either individually. Part of the advantage is simple that displaying
edges deleted for planarity differently makes the layout much clearer.

Apart from introducing these combined layouts, the paper has two main
technical contributions. The first is to give an binary program for the combined
k-level planarization and crossing minimization problem. By appropriate choice
of the weighting factor this model reduces to either k-level planarization or k-
level crossing minimization. Our basic model is reasonably straightforward but
we use some tricks to reduce symmetries, handle leaf nodes in trees and improve
bounds for edge cycles.

Our second technical contribution is to evaluate performance of the binary
program using both a generic MIP solver and a generic SAT solver. While MIP
techniques are not uncommon in graph drawing the use of SAT techniques is
quite unusual. Our reason for considering MIP is that MIP is well suited to
combinatorial optimization problems in which the linear relaxation of the prob-
lem is close to the original problem. However this does not seem true for k-level
planarization and/or k-level crossing minimization. Hence it is worth investigat-
ing the use of other generic optimization techniques. Over the last decade there
has been considerable improvement in SAT solving techniques and they are now
capable of solving problems with thousands of variables in a few seconds. Part of
this improvement arises by learning combinations of assignments to the Boolean
variables that lead to unsatisfiability (called “no goods”) as the search for the
optimum solution proceeds. The no goods are used to prune the search space
leading to orders of magnitude performance improvement.

We find that modern SAT solving with learning, and modern MIP solvers
(which now have special routines to handle SAT style models) are able to handle
the k-level planarization and crossing minimization problems and their combina-
tion for quite large k, meaning that we can solve step (b) to optimality. They are
fast enough to find the optimal ordering of nodes on all layers for graphs with
hundreds of nodes in a few minutes, so long as the graph is reasonably narrow
(less than 10 nodes on each level) and for larger graphs they finds reasonable
solutions within one minute.

The significance of our research is twofold. First it provides a benchmark for
measuring the quality of heuristic methods for solving k-level crossing minimiza-
tion and/or k-level planarization. Second, the method is practical for small to
medium graphs and leads to significantly fewer edge crossings involving fewer
edges than is obtained with the standard heuristic approaches. As computers
increase in speed and SAT solving and MIP solving techniques continue to im-
prove we predict that optimal solution techniques based on MIP and SAT will
replace the use of heuristics for step (b) in layout of hierarchical networks.

Furthermore, our research provides support for the use of generic optimiza-
tion techniques for exploring different aesthetic criteria. The use of generic tech-
niques allows easy experimentation with, for instance, our hybrid objective func-
tion. As another example rather than k-level planarization we might wish to min-
imize the total number of edges involved in crossings. This is simple to do with
generic optimization. Another advantage of generic optimization techniques is
that they also readily handle additional constraints on the layout, such as placing
some nodes on the outside or clustering nodes together.

The task of reducing crossings in k-layered graphs has received considerable
attention, particularly due to the layout algorithm of Sugiyama [4]. However,
most of these approaches, such as [5] tend to use heuristics, rather than finding
the global optimum.

The most closely related work is on the use of MIP and branch-and-bound
techniques for solving k-level crossing minimization. Jünger and Mutzel [6] com-
pared heuristic methods for two layer crossing minimization with a MIP encoding
solved using a specialized branch-and-cut algorithm to solve to optimality. They
found that the MIP encoding for the case when one layer is fixed is practical
for reasonably sized graphs. In another paper, Jünger et al [7] gave a 0-1 model
for k-level crossing minimization and solved it using a generic MIP solver. They
found that at that time MIP techniques were impractical except for quite small
graphs. We differ from this in considering planarization as well and in investi-
gating SAT solvers. We show that SAT solving with learning, and more recent
MIP solvers (which now have special routines to handle SAT style models) are
now practical for reasonably sized graphs.

Also related is Mutzel [2] which describes the results of using a MIP encoding
with branch-and-cut for the 2-level planarization problem. Here we give a binary
program model for k-level planarization and show that SAT with learning and
modern MIP solvers can solve the k-level planarization problem for quite large
k. We use a similar model to that of Jünger and Mutzel but examine both MIP
and SAT techniques to solving it.

The paper is organized as follows. In the next section we give our model
for combined planarity and crossing minimization. In Section 3 we show how to
improve the model by taking into account graph properties. In Section 4 we give
results of experiments comparing the different measures, and finally in Section 5
we conclude.

2 Model

A general framework for generating layouts of hierarchical data was presented by
[4]. This proceeds in three stages. First, the vertices of the graph are partitioned
into horizontal layers. Then, the ordering of vertices within these horizontal
layers is permuted to reduce the number of edge crossings. Finally, these layers
are positioned to straighten long edges and minimize edge length. Our focus is
on the second stage of this process – permuting the vertices on each layer.

Consider a graph with nodes divided into k layers, with edges restricted to
adjacent layers, ie. edges from layer i to i + 1. Denote the nodes in the k − th
layer by nodes[k], and the edges from layer k to layer k + 1 by edges[k]. For a
given edge e, denote the start and end nodes by e.s and e.d respectively.

The combined model for maximal planar subgraph and crossing minimization
is defined by the binary program:

min
∑

k∈levels C
∑

e,f∈edges[k] c(e,f) + P
∑

e∈edges[k] re (1)

s.t. ∧
k∈levels

∧
i,j,k∈nodes[k] l(i,j) ∧ l(j,k) → li,k (2)∧

k∈levels
∧

e,f∈edges[k] c(e,f) ↔ l(e.s,f.s) ⊕ l(e.d,f.d) (3)∧
k∈levels

∧
e,f∈edges[k] re ∨ rf ∨ ¬c(e.f) (4)

The variable l(i,j) indicates node i is before j in the level ordering. The variable
c(e,f) indicates that edge e crosses edge f . The variable re indicates that edge e
is deleted to make the graph planar. The constants C and R define the relative
weights of crossing minimization and edge deletion for planarity. The 3-cycle
constraints of Equation 2 ensures that the order variables are assigned to a
consistent ordering. Equation 3 defines the edge crossings variables in terms of
the ordering: the edges cross if the relative order of the start and end nodes are
reversed. It is encoded in clauses as

c(e,f) ∨ l(e.s,f.s) ∨ ¬l(e.d,f.d), c(e,f) ∨ ¬l(e.s,f.s) ∨ l(e.d,f.d),
¬c(e,f) ∨ l(e.s,f.s) ∨ l(e.d,f.d), ¬c(e,f) ∨ ¬l(e.s,f.s) ∨ ¬l(e.d,f.d).

The planarity requirement is encoded in Equation 4 which states that for each
pair either one is removed, or they dont cross. The combined model uses O(k.(e2+
n2)) Boolean variables and is O(k(n3 + e2)) in size.

We can convert this clausal model to a MIP binary program by converting
each clause b1 ∨ · · · bl ∨ ¬bl+1 ∨ · · · ∨ ¬bm to the linear constraint b1 + · · ·+ bl −
bl−1 − · · · − bm ≥ m− l + 1.

Long edges are handles by adding intermediate nodes in the levels that the
long edges cross and breaking the edge into components. For crossing minimiza-
tion each of these new edges is treated like an original edge. For the minimal
deletion of edges each component edge in a long edge e is encoded using the
same deletion variable re.

By adjusting the relative weights for crossing C, and planarization P , we
can create and evaluate new measures of clarity of the graph. With C = 1 +∑

k∈levels |edges[k]| and P = 1 we first minimize crossings, then minimize edge
deletions for planarity. With C = 1 and P =

∑
k∈levels |edges[k]|2 we first mini-

mize edge deletions and then crossings.

3 Additional Constraints

While the basic model described in Section 2 are sufficient to ensure correctness,
finding the optimum still requires a great deal of search. We can modify the
model to significantly improve performance.

a

d

b c

e f

ab ac bc

de df ef

(a) (b)

Fig. 3: (a) A graph (b) The corresponding vertex-exchange graph.

First note we add symmetry breaking by fixing the order of the the first
two nodes appearing on the same level. If the graph to be layed out has more
symmetries than this left-to-right symmetry we could use this to fix more vari-
ables (although we don’t do this in the experiments). Next, we can improve edge
crossing minimization by using as an upper bound the number of crossings in
a heuristic layout. We could also use heuristic solutions to bound planarity but
doing so requires computing how many edges need deletion, which is non-trivial.

3.1 Cycle Parity

Healy and Kuusik introduced the vertex-exchange graph [8] for analyzing lay-
ered graphs. Each edge in the vertex-exchange graph corresponds to a potential
crossing in the initial graph; each node corresponds to a pair of nodes within a
level.

Consider the graph show in Figure 3(a), its vertex-exchange graph is shown
in Figure 3(b). Note there are two edges (ab, de) corresponding to the two pairs
((a, d), (b, e)) and ((a, e), (b, d)). Edges corresponding to crossings in Figure 3(a)
are shown as solid, the rest are dashed.

For any given cycle in the vertex exchange graph, permuting nodes within a
layer will maintain parity in the number of crossings in the cycle. For cycles with
an odd number of crossings, this means that at least one of the pairs of edges in
the cycle will be crossing. This can be represented by the clause

∨
(e,f)∈cycle c(e,f).

When finding the maximal planar subgraph, we then know that at least one edge
involved in the cycle must be removed from the subgraph. Similarly since the
cycle is even in length we know that not all edges can cross, represented by∨

(e,f)∈cycle ¬c(e,f). Both these constraints can be added to the model.

A special case of cycle parity is the K2,2 subgraph. This subgraph always
produces exactly one crossing, irrespective of the relative orderings of the nodes
in the subgraph. When minimizing crossings, the corresponding c(e,f) variables
need not be included in the objective function, which considerable simplifies the
problem structure. Note that, for example, a K3,3 subgraph contains 9 K2,2

subgraphs, and each of the 9 ce,f variables arising can be ommitted from the
problem. For the experiments we add constraints for cycles of length 6 or less,
since the larger cycles did not improve performance.

0

4321

a b c d e

f

g h

Fig. 4: A partial layout with respect to some leaf nodes 1,2,3,4

3.2 Leaves

It is not difficult to prove that if a node on layer k has m child leaf nodes
(unconnected to any other node) on layer k + 1, then all of these leaf nodes can
be ordered together.

Consider the partial layout illustrated in Figure 4, where each node 1,2,3 and
4 is a leaf node with no outgoing arcs. If we place a node f in between nodes
1,2,3 and 4 (as illustrated) there is always at least as good a crossing solution by
placing f either before or after all of them. Here since there are 2 parents before
0 and 3 after f should be placed after 4, leading to 8 crossings rather than the
9 illustrated.

Similarly maximizing planarity always requires that all edges to siblings left
of f be removed or all edges from parents before 0, and all edges to siblings right
of f or all edges from parents after 0. An optimal solution always results by either
deleting all edges to leaf nodes (which makes the leaf positions irrelevant), or
ordering f after all leaves and deleting all edges from parents before 0, or ordering
f before all leaves and deleting all edges from parents after 0.

Since there is no benefit in splitting leaf siblings we can treat them as a
single node, but note we must appropriately weight the edge resulting, since it
represents multiple crossings and multiple edge deletions.

Let N be a set of m leaf nodes from a single parent node i. We replace N
by a new node j′, and replace all edges {(i, j) | j ∈ N} by the single edge (i, j′).
We replace each m terms c((i,j),f), j ∈ N in the objective function by one term
m × c((i,j′),f) and replace each of the m terms r(i,j), j ∈ N in the objective by
the term m× r(i,j′).

4 Experimental Results

We tested the binary model on a variety of graphs, using the pseudo-Boolean con-
straint solver MiniSAT+[9], and the Mixed Integer Programming solver CPLEX
12.0. All experiments were performed on a 3.0GHz Xeon X5472 with 32 Gb of
RAM running Debian GNU/Linux 4.0. We ran for a maximum of 60s.

We compared 4 different objective functions:

– crossing minimization: C = 1, P = 0;
– maximal planar subgraph C = 0, P = 1;

Table 1: Time to find and prove the minimal crossing layout and maximal planar
subgraph for Graphviz examples using MIP and SAT.

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT

best best solved best solved best solved best solved

crazy 3 2 0.04 2 0.01 1 0.03 1 0.01
datastruct 2 2 0.00 2 0.00 1 0.02 1 0.00
fsm 0 0 0.00 0 0.00 0 0.00 0 0.00
lion share 7 4 0.04 4 0.11 2 0.05 2 0.02
profile 54 38 6.81 54 — 12 — 9 5.39
switch 20 20 0.75 20 0.64 17 — 17 34.49
traffic lights 0 0 0.00 0 0.00 0 0.00 0 0.00
unix 3 2 0.05 2 0.01 1 0.04 1 0.02
world 50 46 — 50 — 15 — 13 —

– crossing minimization then maximal planar subgraph C = 1+
∑

k∈levels |edges[k]|,
P = 1; and

– maximal planar subgraph then minimize crossings C = 1, P =
∑

k∈levels |edges[k]|2.

To compare speed and effectiveness of the model we ran it on two sets of
graphs. The first set of graphs are all the hierarchical network diagrams appear-
ing in the GraphViz gallery [3]. The second set of graphs are random graphs of
k-levels with n nodes per level and a fixed edge density of 20% (that is each node
is connected on average to 20% of the nodes on the next layer). Problem class
gk n is a suite of 10 randomly generated instances with k levels and n nodes per
level.

Table 1 shows the results of minimizing edge crossings and maximizing planar
subgraphs with MIP and SAT solvers, as well as the crossings resulting in the
Graphviz heuristic layout for graphs from the GraphViz gallery. We use the
best variation of our model for each solver: for the MIP solver this is with all
improvements described in the previous section, while for the SAT solver we
omit the leaf optimization since it slows down the solver. For each solver we
show the solution, with least edge crossings or minimal number of edges deleted
for planarity, found in 60s and the time to prove optimality or ‘—’ if it was
not proved optimal. The results show that for realistic graphs we can find better
solutions than the heuristic method, even when there are very few crossings. The
best found crossing and edges deleted for planarization and problems solved/time
combination are highlighted in bold. We can find optimal crossing solutions for
9 out of ten examples, and maximal planar subgraph solutions for 7 out of 10
examples. The MIP approach is clearly superior for minimizing edge crossings,
while SAT is superior for maximizing planarity.

Table 2 shows the results of crossing minimization and maximal planar sub-
graph for the second data set of random graphs using the MIP and SAT solver.
The table shows: the total number of crossings when the graphs are laid out
using GraphViz then for each solver: the total number of crossings or edge dele-

Table 2: Time to find and prove the minimal crossing layout and maximal planar
subgraph, using MIP and SAT for random examples.

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT

best best solved best solved best solved best solved

g3 7 41 35 10 / 0.00 35 10 / 0.02 18 10 / 0.01 18 10 / 0.02
g3 8 103 86 10 / 0.03 86 10 / 0.10 31 10 / 0.15 31 10 / 0.04
g3 9 204 195 10 / 0.07 195 10 / 6.67 63 10 / 4.60 63 10 / 0.12
g3 10 399 373 10 / 0.97 380 8 / 14.44 91 5 / 15.53 91 10 / 3.37
g4 7 70 55 10 / 0.01 55 10 / 0.04 32 10 / 0.11 32 10 / 0.04
g4 8 187 169 10 / 0.09 169 10 / 0.68 61 10 / 3.83 61 10 / 0.16
g4 9 351 342 10 / 0.89 345 8 / 13.69 94 6 / 26.85 94 10 / 2.82
g4 10 703 681 9 / 2.37 — — 161 — 152 —
g5 7 101 95 10 / 0.03 95 10 / 0.11 47 10 / 0.43 47 10 / 0.08
g5 8 284 245 10 / 0.32 245 10 / 4.01 93 10 / 25.46 93 10 / 2.78
g5 9 474 450 10 / 0.99 — 5 / 30.47 139 1 / 35.37 138 3 / 47.46
g6 7 141 131 10 / 0.03 131 10 / 0.18 57 10 / 1.51 57 10 / 0.18
g6 8 357 324 10 / 0.53 324 10 / 13.34 112 4 / 11.64 111 10 / 28.81
g6 9 684 637 10 / 3.28 — — 190 — 197 —
g7 7 159 148 10 / 0.08 148 10 / 0.58 67 10 / 3.91 67 10 / 0.78
g7 8 390 366 10 / 0.72 372 6 / 12.35 134 1 / 47.75 140 —
g7 9 813 786 9 / 12.54 — — 238 — 233 —
g8 7 249 235 10 / 0.16 235 10 / 4.06 92 8 / 13.38 92 10 / 4.91
g8 8 466 431 10 / 1.51 — 1 / 10.73 154 — 165 —
g9 7 269 238 10 / 0.30 238 10 / 2.60 108 7 / 17.72 108 8 / 15.18
g9 8 572 541 10 / 2.95 — 3 / 28.71 197 — 200 —
g10 7 334 304 10 / 0.27 304 10 / 9.67 119 8 / 24.05 121 4 / 19.39
g10 8 733 661 10 / 10.68 — — 216 — 225 —

tions in the best solutions found in 60s for the suite (a ‘—’ indicates that for
at least one instance the method found no solution better than the Graphviz
bound in 60s) and the number of instances where optimal solutions were found
and proved and the average time to prove optimality.

The results are in accord with those for the first dataset and show that the
MIP solver can almost always find optimal minimal crossing solutions within
this time bound (only two instances failed). The Graphviz solutions can be sub-
stantially improved, the best solutions found have 10-20% fewer crossings.

For maximal planar subgraph, in contrast to edge crossings, the SAT solver
is better than the MIP solver, although as the number of levels increases the
advantage decreases.

Tables 3 and 4 show the results for the mixed objective functions: minimiz-
ing crossings then maximizing planar subgraph and the reverse. For minimizing
crossings first MIP dominates as before, and again is able to solve almost all
problems optimally within 60s. For the reverse objective SAT is better for the

Table 3: Time to find and prove optimal mixed objective solutions for Graphviz
examples using MIP and SAT.

Problem
Crossing then planarization Planarization then crossing

MIP SAT MIP SAT

best solved best solved best solved best solved

crazy (2, 1) 0.07 (2, 1) 10.51 (1, 2) 0.08 (1, 2) 0.31
datastruct (2, 1) 0.02 (2, 1) 0.26 (1, 2) 0.03 (1, 2) 0.23
fsm (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00
lion share (4, 3) 0.15 (4, 3) 3.55 (2, 5) 0.52 (2, 5) 0.60
profile (38, 11) 29.96 (281, 34) — (12, 66) — (13, 145) —
switch (20, 17) 1.36 (20, 17) 3.61 (17, 20) — (17, 20) —
traffic lights (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.01
unix (2, 1) 0.07 (2, 1) 10.52 (1, 2) 0.09 (1, 2) 0.32
world (47, 14) — (108, 19) — (18, 79) — (15, 106) —

small instances, but suffers as the instances get larger. This problem is signifi-
cantly harder than the minimizing crossings first.

Results not presented demonstrate that the improvements presented in the
previous section make a substantial difference. The elimination of K2,2 cycles is
highly beneficial to both solvers. Constraints for larger cycles can have significant
benefit for the MIP solver but rarely benefit the SAT solver. The leaf optimiza-
tion is good for the MIP solver, but simply slows down the SAT solver. We
believe this is because it complicates the MiniSAT+ translation of the objective
function to clauses. Overall the optimizations improve speed by around 2-5×.
They allow 6 more instances to find optimal solutions for minimizing crossing, 5
for maximal planar subgraph, 19 for crossing minimization then maximal planar
subgraph, and 9 for maximal planar subgraph then crossing minimization.

5 Conclusion

This paper demonstrates that maximizing clarity of heirarchical network dia-
gram by edge crossing minimization or maximal planar subgraph or their com-
bination can be solved optimally for reasonable sized graphs using modern SAT
and MIP software. Using this generic solving technology allows us to experiment
with other notions of clarity combining or modifying these notions. It also gives
us the ability to accurately measure the effectiveness of heuristic methods for
solving these problems.

References

1. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice Hall (1999)

2. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs.
In: Graph Drawing. (1997) 318–333

Table 4: Time to find and prove optimal mixed objective solutions for random
examples using MIP and SAT.

Problem
Crossing then planarization Planarization then crossing

MIP SAT MIP SAT

best solved best solved best solved best solved

g3 7 (35, 22) 10 / 0.01 (35, 22) 10 / 0.04 (18, 39) 10 / 0.02 (18, 39) 10 / 0.04
g3 8 (86, 41) 10 / 0.13 (86, 41) 10 / 0.37 (31, 102) 10 / 0.31 (31, 102) 10 / 0.21
g3 9 (195, 78) 10 / 0.48 (195, 78) 10 / 3.09 (63, 231) 9 / 10.31 (63, 231) 10 / 1.04
g3 10 (373, 115) 10 / 2.67 (564, 166) 2 / 40.99 (91, 444) 2 / 13.84 (91, 419) 9 / 10.64
g4 7 (55, 35) 10 / 0.05 (55, 35) 10 / 0.23 (32, 58) 10 / 0.21 (32, 58) 10 / 0.23
g4 8 (169, 76) 10 / 0.57 (169, 76) 10 / 1.58 (61, 223) 10 / 6.66 (61, 223) 10 / 1.91
g4 9 (342, 116) 10 / 1.66 (418, 162) 5 / 33.21 (94, 386) 3 / 31.03 (95, 382) 8 / 14.76
g4 10 (681, 195) 9 / 8.17 (1249, 338) — (158, 933) — (160, 928) —
g5 7 (95, 55) 10 / 0.08 (95, 55) 10 / 0.35 (47, 104) 10 / 0.76 (47, 104) 10 / 0.53
g5 8 (245, 108) 10 / 0.66 (245, 108) 10 / 8.38 (95, 269) 4 / 29.48 (94, 290) 8 / 25.24
g5 9 (450, 174) 10 / 3.83 (694, 210) 1 / 42.43 (142, 612) — (146, 656) —
g6 7 (131, 64) 10 / 0.25 (131, 64) 10 / 1.98 (57, 153) 10 / 2.74 (57, 153) 10 / 2.32
g6 8 (324, 136) 10 / 1.16 (357, 150) 6 / 22.50 (112, 419) 2 / 22.62 (117, 413) 2 / 31.29
g6 9 (637, 228) 10 / 8.15 (1353, 513) — (192, 881) — (212, 967) —
g7 7 (148, 83) 10 / 0.34 (148, 83) 10 / 23.94 (67, 168) 10 / 10.66 (67, 168) 10 / 10.59
g7 8 (366, 159) 10 / 3.00 (454, 236) 2 / 20.16 (136, 472) — (148, 500) —
g7 9 (778, 255) 8 / 18.96 (1372, 481) — (236, 1031) — (258, 1303) —
g8 7 (235, 116) 10 / 0.50 (235, 116) 10 / 14.06 (92, 272) 5 / 15.54 (93, 277) 8 / 22.09
g8 8 (431, 195) 10 / 5.06 (641, 345) 1 / 33.37 (154, 552) — (182, 639) —
g9 7 (238, 123) 10 / 0.77 (241, 126) 9 / 25.00 (108, 260) 6 / 16.29 (112, 283) 2 / 57.22
g9 8 (541, 229) 10 / 6.17 (981, 464) — (198, 757) — (216, 871) —
g10 7 (304, 144) 10 / 1.59 (329, 201) 7 / 33.19 (119, 362) 4 / 32.01 (126, 415) 1 / 58.29
g10 8 (661, 256) 9 / 15.15 (1216, 546) — (199, 832) — (224, 987) —

3. : Graphviz. http://www.graphviz.org/ Accessed [June 2010].
4. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-

chical system structures. IEEE Trans. Syst. Man Cybern. 11(2) (1981) 109–125
5. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline

crossing minimization. In: Graph Drawing. (1999) 217–224
6. Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of

exact and heuristic algorithms. Journal of Graph Algorithms and Applications 1(1)
(1997) 1–25

7. Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the
multi-layer crossing minimization problem. In: Proceedings of the 5th International
Symposium on Graph Drawing. (1997) 13–24

8. Healy, P., Kuusik, A.: The vertex-exchange graph: A new concept for multi-level
crossing minimisation. In: Graph Drawing. (1999) 205–216

9. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2 (2006) 1–26

