
Orthogonal Connector Routing

Michael Wybrow1, Kim Marriott1, and Peter J. Stuckey2

1 Clayton School of Information Technology,
Monash University, Clayton, Victoria 3800, Australia,

{Michael.Wybrow,Kim.Marriott}@infotech.monash.edu.au
2 National ICT Australia, Victoria Laboratory,

Department of Computer Science & Software Engineering,
University of Melbourne, Victoria 3010, Australia,

pjs@csse.unimelb.edu.au

Abstract. Orthogonal connectors are used in a variety of common net-
work diagrams. Most interactive diagram editors provide orthogonal con-
nectors with some form of automatic connector routing. However, these
tools use ad-hoc heuristics that can lead to strange routes and even routes
that pass through other objects. We present an algorithm for computing
optimal object-avoiding orthogonal connector routings where the route
minimizes a monotonic function of the connector length and number of
bends. The algorithm is efficient and can calculate connector routings
fast enough to reroute connectors during interaction.

1 Introduction

Most interactive diagram editors provide some form of automatic connector rout-
ing between shapes whose position is fixed by the user. Usually the editor com-
putes an initial automatic route when the connector is created and updates this
each time the connector end-points (or attached shapes) are moved. Orthogonal
connectors, which consist of a sequence of horizontal and vertical line segments,
are a particularly common kind of connector, used in ER and UML diagrams
among others. However, in all current tools that we are aware of, automatic
routing of orthogonal connectors uses ad-hoc heuristics that lead to aestheti-
cally unpleasing routes and unpredictable behaviour.

For example, the graphic editors OmniGraffle Pro 5.1.1, and Dia 0.97, provide
automatic orthogonal connector routing but these routes may overlap other ob-
jects in the diagram. Both Microsoft Visio 2007, and ConceptDraw Pro 5 provide
object-avoiding orthogonal connector routing but in both applications connec-
tor routing does not use a predictable heuristic, such as minimizing distance or
number of segments. Furthermore, the routes are mostly updated only after ob-
ject movement has been completed, rather than as the action is happening. The
Graph layout library yFiles3 and demonstration editor yEd offers orthogonal
edge routing but routing is not maintained throughout further editing.

Thus, we know of no interactive diagram authoring tool which ensures that
the orthogonal connectors are optimally routed in any meaningful sense. On the

3 http://www.yworks.com/products/yfiles/

(a) (b) (c)

Fig. 1. Three stage routing: (a) the orthogonal visibility graph, (b) the optimal con-
nector routes, (c) the final routes after centering and nudging. Arrows indicate routing
direction for connectors.

other hand, automatic routing of poly-line connectors is better supported: two
tools, Dunnart and Inkscape, provide real-time poly-line connector routing which
is optimal in the sense that it minimizes edge bends and connector length. Both
use the connector routing library libavoid4 which has three steps in connector
routing [1]. The first stage is to compute a visibility graph for the diagram
which contains a node for each vertex of each object in the diagram and an
edge between two nodes iff they are mutually visible. The second stage uses A?

search to find the optimal route through the visibility graph for each connector.
The third stage computes the visual representation of the connector. This three
step approach is also used in the Spline-o-matic library5 developed for GraphViz
which supports poly-line and Bezier curve edge routing [2].

In this paper we describe how we have extended the connector routing library
libavoid to support orthogonal connector routing. The main contribution is to
show that a similar three step process to that used for poly-line connector rout-
ing can also be used for optimal orthogonal connector routing. We introduce the
orthogonal visibility graph in which edges in the graph represent horizontal or
vertical lines of visibility from the vertices and connector ports of each object
(Section 4). Connector routes are found using an A? search through the orthog-
onal visibility graph (Section 5). The algorithm is guaranteed to find a route for
each connector that is optimal in the sense that it minimizes bends and overall
connector length. Finally, the actual visual route is computed (Section 6). This
step orders and nudges apart the connectors in shared segments so as to ensure
that unnecessary crossings are not introduced and that crossings occur at the
start or end of the shared segment. It also tries to ensure that connectors pass
down the middle of “alleys” in the diagram when this does not lead to addi-
tional cost. Figure 1 shows an example layout using the three step process. Our

4 http://adaptagrams.sourceforge.net/libavoid/
5 http://www.graphviz.org/Misc/spline-o-matic/

2

A

B C D

E
F G

H I

destination

3 3

33

222

1 30 44

4

4

(a) (b) (c)

Fig. 2. (a) Comparison of our approach with that of Miriyala et al. [3], which chooses
the solid path (FGCDE) while our approach computes the dotted path (AHIE). (b)
Minimal required additional bends for reaching the destination with correct direction
from each point and direction. (c) The solid path is preferred to the dashed path since
it is the “initially straighter” path. The dotted line shows the middle of the “alley” of
possible paths for the middle segment of the connector.

algorithms are surprisingly efficient and fast enough to reroute connectors even
during direct manipulation of reasonably sized diagrams, thus giving instant
feedback to the diagram author (Section 7).

2 Related Work

Our work is a significant extension to the previously mentioned research into
three-step optimal routing of poly-line connectors to handle orthogonal connec-
tor routing. There has been some previous work on finding good orthogonal
connector routings between fixed position shapes. The most closely related work
in the graph drawing literature is that of Miriyala et al. [3] who also use an
A? algorithm for computing orthogonal connector paths. The main difference
is that they search through the rectangulation of the diagram rather than the
orthogonal visibility graph. The rectangulation is obtained by drawing vertical
lines from the vertices of each shape. The search is then through these rect-
angles. While superficially similar, the rectangulation is actually quite different
to the orthogonal visibility graph. The key difference is that the rectangulation
does not directly model horizontal visibility. This means that their algorithm is
heuristic and routes are not guaranteed to be optimal in any meaningful sense
even if minimizing edge crossings is ignored. Figure 2(a) shows the (solid) route
FGCDE computed by the approach of [3] to connect the left and right objects
even though the (dashed) route ABCDE is clearly better. Our approach will
generate the (dotted) route AHIE which is the shortest route with fewest bends
(where AH is the minimal distance from shapes allowed). The disadvantage of
our approach is that the rectangulation is O(n) in size while the orthogonal
visibility graph is O(n2) in size for n shapes.

Other related work includes algorithms for orthogonal graph layout [4]. The
standard technique is to solve a network flow problem in order to compute an
orthogonal representation for the graph which minimizes the total number of
connector bends. A compaction step is then applied to the orthogonal represen-
tation to assign positions to the nodes which minimize the area of the drawing
but do not introduce additional crossings or overlap. The key difference to the

3

problem we address is that in orthogonal graph layout the layout algorithm is
responsible for positioning nodes so as to minimize bends, while in our context
nodes, i.e. shapes, have a fixed position. It is also worth mentioning that the two
stage approach of orthogonal graph layout means that minimizing bends always
takes precedence over minimizing connector length so the layouts can contain
connectors with very long routes. We also mention incremental approaches to
orthogonal graph layout which incrementally construct the layout as vertices
(and all of their associated edges) are added one at a time [4]. Again nodes are
allowed to move and the focus is on bend minimization.

Orthogonal connector routing has been extensively studied in computational
geometry, in part because of its applications to VLSI circuit design. Lee et al. [5]
provides an extensive survey. One of most common earliest approaches was so-
called maze running in which objects are assumed to be laid out on a uniform
grid and a shortest path algorithm was employed to find the shortest path in the
grid [?]. The complexity is proportional to the size of the grid. In our context,
the grid needs to be very fine because the user is free to place elements where
they like and so the time complexity is prohibitively high. Our approach can be
considered a modification to maze running in which we use a non-uniform grid
whose mesh size is tailored to the geometry of the diagram. The problem we are
addressing is finding a minimum-cost path (MCP) where the cost is a function
of the number of bend points and path length. Algorithms with O(n log3/2 n)
complexity for routing a single connector where n is the number of objects (as-
suming they are rectangles) are known for this problem. However, it is fair to
say that these algorithms are complex, dependent on the kind of penalty func-
tion and difficult to implement. Our approach has the advantage of simplicity
and, since A? search is a generic technique, it can be extended to more com-
plex penalty functions such as one, for instance, penalizing connector crossings
(see Section 8). Furthermore, our approach is analogous to the poly-line con-
nector routing approach already used in libavoid and so implementation effort
is reduced. While the worst-case complexity of our approach is O(n2 log n), in
practice because of the good heuristic used in the A? search, we have found
performance is perfectly acceptable.

Another significant contribution of our paper is our algorithm for “nudging”
orthogonal connectors apart so as to improve the legibility of the layout. While
Miriyala et. al. do consider nudging, the issues and approach are quite different.
They do not consider the problem of how to avoid introducing unnecessary cross-
ings when separating connectors with a shared path. Our algorithm for ordering
connectors in shared paths so as to avoid introducing unnecessary crossings is
related to algorithms for metro-line crossing [6, 7]. The main difference is that
we have the additional requirement that the ordering should not introduce un-
necessary bends in the layout and so crossings are only allowed to occur when a
connector enters or leaves the shared path, but not in the shared path itself.

3 Problem Statement

For simplicity we model objects by their bounding rectangle and assume for
the purposes of complexity analysis that the number of connector points on

4

each object is a fixed constant. Also for simplicity, we assume that connectors
must start and end at distinct connection points. In practice, connectors are not
always connected to objects and may have end-points which are not connection
points. This can be handled by adding an extra node to the visibility graph for
this endpoint.

We are interested in finding a poly-line route of horizontal and vertical seg-
ments for each connector. We wish to find routes that are short and which
have few bends. While we also wish to reduce connector crossings we will delay
consideration of this until Section 8. We assume our penalty function p(R) for
measuring the quality of a particular route R is a monotonic function f of the
length of the path, ||R||, and the number of bends (or equivalently segments) in
R, bends(R), i.e. p(R) = f(||R||, bends(R)). We require that the routes are valid :
they do not pass through objects and only contain right-angle bends.

We use the Manhattan distance ||(v1, v2)||1 = |x1−x2|+ |y1−y2| to measure
the shortest orthogonal route between points v1 = (x1, y1) and v2 = (x2, y2).
We make use of 4 cardinal directions: N, S, E, W. We assume the functions right ,
left , and reverse defined by the mappings:

right = {N 7→ E, E 7→ S, S 7→W, W 7→ N}
left = {N 7→W, E 7→ N, S 7→ E, W 7→ S}

reverse = {N 7→ S, E 7→W, S 7→ N, W 7→ E}

We define the directions of point v2 = (x2, y2) from v1 = (x1, y1) as:

dirns(v1, v2) = {N | y2 > y1} ∪ {E | x2 > x1} ∪ {S | y2 < y1} ∪ {W | x2 < x1}

Note dirns(v1, v2) = {D} means v2 is on the line in direction D drawn from v1.

4 Orthogonal Visibility Graph

The basis for our approach is the observation that when finding routes minimiz-
ing the penalty function we need only consider routes in the orthogonal visibility
graph. This is defined as follows.

Let I be the set of interesting points (x, y) in the diagram, i.e. the connector
points and corners of the bounding box of each object. Let XI be the set of x
coordinates in I and YI the set of y coordinates in I. The orthogonal visibility
graph V G = (V,E) is made up of nodes V ⊆ XI × YI s.t. (x, y) ∈ V iff there
exists y′ s.t. (x, y′) ∈ I and there is no intervening object between (x, y) and
(x, y′) and there exists x′ s.t. (x′, y) ∈ I and there is no intervening object
between (x, y) and (x′, y). There is an edge e ∈ E between each point in V to its
nearest neighbour to the north, south, east and west iff there is no intervening
object in the original diagram.

An example orthogonal visibility graph is shown in Figure 1(a). It is quite
different to the standard (non-orthogonal) visibility graph used for poly-line
routing. In particular, the standard visibility graph has O(n) nodes if there are
n objects in the diagram while the orthogonal visibility graph has O(n2) nodes.
Both have O(n2) edges.
Observation: Let R be a valid orthogonal route for a connector c. Then there
exists a valid orthogonal route R′ using edges in the orthogonal visibility graph
for c s.t. p(R′) ≤ p(R).

5

Proof. We simply take the route R and “shrink” each segment on the route onto
a path in the visibility graph to give R′. By construction R′ is no longer than R
and has no additional bends. 2

The orthogonal visibility graph can be constructed using the following algo-
rithm. It has three steps:

1. Generate the interesting horizontal segments

HI = { ((x, y), (x′, y)) | (x, y), (x′, y) ∈ I s.t. x ≤ x′

and there is no intervening object between (x, y) and (x′, y)}.

2. Generate the interesting vertical segments

VI = { ((x, y), (x, y′)) | (x, y), (x, y′) ∈ I s.t. y ≤ y′

and there is no intervening object between (x, y) and (x, y′)}.

3. Compute the orthogonal visibility graph by intersecting all pairs of segments
from HI and VI . We note that this could be done lazily, however for simplicity
we construct the entire visibility graph in one step.

Theorem 1. The orthogonal visibility graph can be constructed in O(n2) time
for a diagram with n objects using the above algorithm.

Proof. The interesting horizontal segments can be generated in O(n log n) time
where n is the number of objects in the diagram by using a variant of the line-
sweep algorithm from [8, 9]. This uses a vertical sweep through the objects in
the diagram, keeping a horizontal “scan line” list of open objects with each node
having references to its closest left and right neighbors. Interesting, horizontal
segments are generated, when an object is opened, closed, or a connection point
is reached. Dually, the interesting vertical segments can generated in O(n log n)
time by using the line-sweep algorithm with a horizontal sweep. The last step
takes O(n2) time since there are O(n) interesting horizontal and vertical seg-
ments. 2

5 Routing the Connector

We use an A? algorithm which iteratively builds longer and longer partial paths
that start from the source node s until the destination node d is reached. Partial
paths are stored in a priority queue and at each step the partial path with lowest
cost is taken from the queue and expanded. The expanded nodes are placed in
the queue. The process stops when the path chosen for expansion is already at
d. The cost associated with each partial path is the cost of the partial path so
far plus a lower bound on the remaining cost to the destination.

If we are only trying to minimize connector length, the only state we need to
know about the partial path is the position of its end. However, if the number
of bends is also part of the cost we also need to know the direction of the path.
Thus, entries in the priority queue have form (v, D, lv, bv, p, cv) where v is the
node in the orthogonal visibility graph, D is the “direction of entry” to the node,

6

lv is the length of the partial path from s to v and bv the number of bends in
the partial path, p a pointer to the parent entry (so that the final path can be
reconstructed), and cv the cost of the partial path. There is at most one entry
popped from the queue for each (v, D) pair. When an entry (v, D, lv, bv, p, cv)
is scheduled for addition to the priority queue, it is only added if no entry with
the same (v, D) pair has been removed from the queue, i.e. is on the closed list.
And only the entry with lowest cost for each (v, D) pair is kept on the priority
queue.

When we remove entry (v, D, lv, bv, p, cv) from the priority queue we

1. add the neighbour (v′, D) in the same direction with priority f(lv+||(v, v′)||1+
||(v′, d)||1, sv + sd);

2. add the neighbours (v′, right(D)) and (v′, left(D)) at right angles to the entry
with priority f(lv + ||(v, v′)||1 + ||(v′, d)||1, sv + 1 + sd);

where sd is the estimation of the remaining segments required for the route from
(v′, D′) to (d, Dd). The estimation of the remaining segments required is: sd =

0. if D′ = Dd and dirns(v′, d) = {D′};
1. if left(Dd) = D′ ∨ right(Dd) = D′ and D′ ∈ dirns(v′, d);
2. if D′ = Dd and dirns(v′, d) 6= {D′} but D′ ∈ dirns(v′, d), or D′ = reverse(Dd)

and dirns(v′, d) 6= {Dd};
3. if left(Dd) = D′ ∨ right(Dd) = D′ and D′ 6∈ dirns(v′, d); and
4. if D′ = reverse(Dd) and dirns(v′, d) = {Dd}, or D′ =Dd and D′ 6∈ dirns(v′, d).

Figure 2(b) shows all the possible scenarios for determining the remaining min-
imal number of bends. We note that Miriyala et al. [3] use a similar cost.

Even taking into account number of bends, there are usually many alternate
routes of the same cost from source to destination. To make the routing behaviour
more predictable and faster we add a tie break for equal cost routes based on a
time stamp of when the entry was added to the priority queue. This means that
because the order in which neighbours is added is deterministic—straight, right,
left—there is a slight preference for right turns and also that the latest path is
extended in preference to earlier paths. See Figure 2(c).

The worst-case complexity of the A? algorithm is that of a priority queue
based implementation of the shortest path algorithm over the orthogonal visi-
bility graph. Thus:

Theorem 2. The above algorithm will find an optimal valid route for a single
connector through the orthogonal visibility graph in O(n2 log n) time where the
diagram has n objects. 2

6 Computing the visual representation

The third and last step in orthogonal connector routing is “nudging” of the
connectors to compute their actual position in the drawing. The importance of
this step is often overlooked, but feedback from users of Dunnart and Inkscape
suggests that it has a significant impact on the perception of layout quality. It
has two steps.

7

A A

B

B

C

C

D

D

1 2 3 4 5
A A

B

B

C

C

D

D

A A

B

B

C

C

D

D

(a) (b) (c)

Fig. 3. (a) A set of orthogonal connectors which share edges, and (b) an ordering
of shared edges to minimize crossings, (c) an order of shared edges that minimizes
crossings and does not introduce additional segments.

6.1 Ordering shared edges

The first aspect is determining the relative ordering of connectors in shared
edges. A consequence of routing connectors along the orthogonal visibility graph
is that multiple connectors will share edges of their paths. In order to make the
connector route clearer we want to nudge these paths apart to make the distinct
paths clear. It is important to do so in a manner which does not introduce
unnecessary crossings or bends in segments.

We now explain our algorithm to generate a relative ordering of connectors in
shared edges. Initially we construct the graph of shared edges, that is the subset
of the edges in the visibility graph that have two or more connectors routed along
that edge (plus their incident nodes). We process each connected component in
the graph separately since each defines an independent subproblem in terms of
the parts of connectors whose routes enter and exit this connected component
of shared edges. Note that one connector may enter and exit the connected
component multiple times in which case each sub-route is treated as a separate
connector. Processing of each connected component has two steps.

We first try and assign a uniform pseudo direction for each of these connector
sub-routes. This pseudo direction is independent of the actual direction of the
connector—it is simply used for route adjustment. Choose an arbitrary connector
sub-route A and fix its pseudo direction in an arbitrary direction. Now fix the
pseudo direction of a connector sub-route that shares an edge with A to have
the same direction as one of the shared edges. Follow the sub-route assigning the
same pseudo-direction until there is a conflict in which case we mark the sub-
route with a split point, reverse the pseudo-direction and continue following the
sub-route. Continue this until all sub-routes segments have a pseudo direction.
The whole process is O(e) where e is the number of edges in all the sub-routes
appearing in this tree.

In practice, we have found that the pseudo-direction assignment for each
connector sub-route is almost always consistent. We say a set of connector paths
is path consistent if the pseudo-direction assignment is consistent for each con-
nected component of the shared edge graph.

The next step is to determine for each shared edge a relative order, left to
right along the pseudo direction, of each of the connectors that share that edge.
We do this in an incremental fashion. Each edge starts with an empty sequence of
connectors. We choose an, as yet unconsidered, connector sub-route and process
each of its consistent sub-sections, one at a time (i.e. the sub-sections without

8

split point. We insert this consistent sub-section in the ordering for each shared
edge it makes use of. The key is that we will ensure that the necessary crossings
of this sub-section with other connectors only occur at the end of the last (in
the pseudo direction) shared edge between them, which is either at the end of
the connector or at a split point.

Consider adding a connector c to a shared edge order O for edge e. We need to
insert c in O in the appropriate place. There are three subsequences of connectors
in O = L++S++R. Those that enter e (along the pseudo direction) from the left
of c, L, those that enter in the same direction as c, S, and those that enter from
the right, R. Now c already shares an edge e′ with connectors in S, so we can
project the order O′ for this edge onto the connectors in S∪{c} to determine an
order SL++[c]++SR.6 The new order for edge s is hence L++SL++[c]++SR++R.
This step is O(e2).

Example 1. Consider the tree of shared edges shown if Figure 3(a). The ordering
of shared edges shown in Figure 3(b), has minimal connector crossings but adds
two extra segments in the route for D. The algorithm proceeds as follows. We as-
sign the pseudo direction left to right to connector A, and this propagates to the
other edges as shown by the arrow heads in Figure 3(c). The tree is path consis-
tent. We first add connector A as the unique route in each of edges 1–5. Next we
add connector B. Since it enters from below it is ordered after A in edge 1 and 2,
implicitly crossing A after edge 2. Similarly we add connector C. The resulting
ordering is ([A,B],[A,B],[A],[A,C],[A,C]). Next we add connector D, it is added
last on edges 2 and 3 but since it enters above C it is ordered between A and
C in edge 4. The final resulting ordering is ([A,B],[A,B,D],[A,D],[A,D,C],[A,C]).
The resulting diagram is shown in Figure 3(c). 2

Theorem 3. If the shared edge graph is path consistent the above ordering algo-
rithm produces segment orders with the minimal number of connector crossings,
and all connector crossings are produced at the end of the last (in the pseudo
direction) shared edge of the two connectors.

Proof. (Sketch) Consider any pair of (sub-routes of) connectors A and B in a
tree of shared edges. The algorithm ensures that the relative order of A and B
is fixed in all their shared edges. By definition this order is defined by their left
to right order on entry to the shared edge. Hence the two connectors can only
cross at the exit of the shared edge, and only do so if that is necessary. 2

Theorem 4. If the shared edge graph is planar then the above ordering algo-
rithm produces a planar layout.

Proof. (Sketch) The relative order of shared edged is always preserved from one
endpoint of the connectors, thus a crossing will only be inserted if the relative
order of the two endpoints is different, in which case the graph is not planar. 2

6 It may be that when starting from a split point that while c already shares an edge
e′ with connectors in S the ordering is not yet decided, in which case the ordering
is determined by following the sub-route back across the split point and along the
shared path to find the input ordering.

9

6.2 Final placement

The final step in the layout is to determine the exact coordinates of the orthogo-
nal connector segments. This nudges connector routes a minimum distance apart
to show the relative order of connectors with shared segments and also ensures
that connectors pass down the middle of “alleys” in the diagrams when this does
not lead to additional cost or additional edge crossings.

We collapse collinear segments in the connector routes into maximal hori-
zontal and vertical segments. This means that segments in the path alternate
horizontal and vertical alignment. We compute the horizontal and vertical po-
sition in separate passes. The horizontal pass works as follows and the vertical
pass is symmetric.

1. Determine a desired horizontal position for all non-end segments in the con-
nector. For the middle segment in an “S” or “Z” bend, this is the middle
of the “alley” that the segment is in. For example, for the solid connector
route shown in Figure 2(c), the dotted line shows the desired position for
this segment. For the middle segment in an “=” or “<” bend, this is that of
the vertex of the object that the segment bends around.

2. Generate a set of horizontal separation constraints to ensure that segments
maintain their current relative horizontal ordering with each other and with
the other objects in the diagram. In the case of shared segments the sep-
aration constraints impose the ordering determined previously. The con-
straints are designed to enforce non-overlap and also to stop segments passing
through each other and so introducing additional connector crossings.

3. Project the desired values on to the separation constraints to find the hori-
zontal position of the segments using the approximate projection algorithm
satisfy VPSC from [8, 9].

The constraints and desired positions can be generated using a variant of the
line-sweep algorithm from [8] in O((n+s) log(n+s)) time where n is the number
of diagram objects and s the total number of vertical connector segments. The
approximate projection algorithm has O((s + n)2) worst-case complexity but in
practice O((s + n) log(s + n)) complexity [9].

7 Evaluation

We have implemented all algorithms in the open source libavoid library and
call them from the Dunnart diagram editor.7 The library is written in C++ and
compiled with gcc 4.2.1 at -O3. We have used the orthogonal routing algorithms
to find routes in a variety of diagrams. Some examples are shown in Figure 4.

To investigate performance of the algorithms we ran the following experiment
on a MacBook Pro with a 2.53 GHz Intel Core 2 Duo processor and 2GB of
memory. The experiment used various sized grid arrangement of nodes, where
each outside node is connected to the diagonally opposite node by a connector,
and each node except those on the right and bottom edge is connected to the
7 Dunnart, including the orthogonal routing features, is available for download from
http://www.dunnart.org/.

10

(a) (b)

Fig. 4. Some diagrams used in the evaluation: (a) Grid-12x12 and (b) Graph-sparse.

Table 1. Average time taken to construct the orthogonal visibility graph, route all
connectors, and compute final positions of all connectors for various sized grids and
random graphs.

Diagram size VisGraph size Times (in msec.) to compute
Diagram |V | |E| |V | |E| VisGraph RouteConns FinalPos Total

Grid-6x6 36 35 594 740 1 9 10 19
Grid-8x8 64 63 941 1,139 3 31 30 64
Grid-10x10 100 99 2,081 3,033 5 188 47 240
Grid-12x12 144 143 2,064 2,559 6 193 107 306
Graph-sparse 231 276 53,342 104,421 161 107 188 456
Graph-dense 305 413 51,255 99,976 118 1,532 357 2,007

node directly down and to the right. We also used two larger random graphs.
Figure 4 shows the layout for a 12x12 grid and one of the random graphs.

We measured the time to construct the orthogonal visibility graph, the time
to find all connector routes using the A? algorithm, the time to centre routes
in channels and the time taken to perform nudging. The results are shown in
Table 1. We found for many small examples, the routing process for the entire
diagram can be performed in a fraction of a second. The size and construction
time for the visibility graph in grid examples is notably smaller, as would be ex-
pected since the shapes have visibility just to their neighbours. The routing step
is very fast in most cases, especially when close to optimal routes are available.
The time required to centre routes is negligible, so should always be performed
since it leads to more predictable routes. The Graph-dense example is notable
for the smaller visibility graph and higher routing time, where both are due to
the fact that many of the nodes in this graph are close together and obscure
visibility or block the optimal routes of connectors.

11

8 Conclusion

Most diagram editors and graph construction tools provide some form of auto-
matic orthogonal connector routing. However the routes are typically computed
using ad-hoc techniques and are not usually updated during direct manipula-
tion. We present algorithms for computing optimal object-avoiding orthogonal
connector routings where optimality is w.r.t some monotonic function of the con-
nector length and number of bends. Our approach is based on first computing
an orthogonal visibility graph for the diagram, then an optimal route using an
A? search, followed by computation of the precise connector path. The approach
is surprisingly fast and allow us to recalculate optimal connector routings fast
enough to reroute connectors even during direct manipulation of an object’s
position, thus giving instant feedback to the diagram author.

We plan to extend our work in three main ways. The first is to incorporate
a cost for edge crossings in the penalty function. An advantage of using the
orthogonal visibility graph and the shared path ordering step is that it allows
easy identification of edge crossings. Thus computing how many times a new
connector route crosses the previously routed connectors can be done simply
and with little additional overhead. The second extension is to support connector
routing which does not pass through cluster boundaries unnecessarily. This is
closely related to the first extension since a cluster boundary can be treated as
a kind of edge. The third extension is to develop even faster methods allowing
incremental changes to the orthogonal visibility graph and connector routes.

Acknowledgments: NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council. We acknowledge the support of the ARC through
Discovery Project Grant DP0987168.

References

1. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: GD
2005. Volume 3843 of LNCS., Springer (2006) 446–457

2. Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a general-
purpose edge router. In: GD 1996. Volume 1353 of LNCS., Springer (1997) 262–271

3. Miriyala, K., Hornick, S.W., Tamassia, R.: An incremental approach to aesthetic
graph layout. In: Proceedings of the 6th International Workshop on Computer-
Aided Software Engineering, IEEE Computer Society (Jul 1993) 297–308

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Inc. (1999)

5. Lee, D., Yang, C., Wong, C.: Rectilinear paths among rectilinear obstacles. Discrete
Applied Mathematics 70(3) (1996) 185–216

6. Argyriou, E., Bekos, M., Kaufmann, M., Symvonis, A.: Two Polynomial Time
Algorithms for the Metro-line Crossing Minimization Problem”. In: Graph Drawing:
16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21-
24, 2008, Revised Papers, Springer (2009) 336

7. Bekos, M., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on
metro maps. Lecture Notes in Computer Science 4875 (2008) 231

8. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. Lecture Notes in
Computer Science 3843 (2006) 153

9. Dwyer, T., Marriott, K., Stuckey, P.: Fast Node Overlap Removal-Correction. Lec-
ture Notes in Computer Science 4372 (2007) 446

12

