
 1

Math. Modelling and Sci. Computing, Vol. 9, No.1 pp. 1-23, 1998 ISSN 1067-0688/98 $7.00 + 0.00
Principia Scientia, Printed in USA

AUTOMATED PAIR-WISE COMPARISONS OF MICROBIAL
GENOMES

Arvind K. Bansal1, Peer Bork2, and Peter J. Stuckey3

1Department of Mathematics and Computer Science, Kent State University,

Kent, OH 44242, USA, Phone: +1.330.672-4004 ext. 214 E-mail: arvind@mcs.kent.edu
2Computer Informatics Division,, European Molecular Biology Laboratory, Meyerhofstr 1, Postfach 10 22
09, 69012 Heidelberg, Germany, Phone: +49.6221.387.534 E-mail: Bork@EMBL-Heidelberg.de

3Department of Computer Science, University of Melbourne, Parkville,
Victoria 3052, Australia, Phone +61.3.9287.9155 E-mail: pjs@cs.mu.oz.AU

ABSTRACT. In this paper, we describe a framework for an automated pair-wise
comparison of complete microbial2 genomes to derive putative orthologous genes �
functionally equivalent counterparts of genes in different genomes, corresponding
gene-groups � clusters of neighboring genes which have some natural pressure to
occur in close proximity, fused genes � separate adjacent genes in one genome which
join together to form a single gene in another genome, gene duplication, and
duplicated corresponding gene-groups. The framework has three stages: BLAST
(Basic Local Alignment Search Tool) � a popular sequence search technique �
comparison to filter gene-pairs with high similarity, alignment of filtered gene-pairs
using the Smith-Waterman alignment � a pair-wise sequence alignment based on
dynamic programming technique, and bipartite graph matching and fuzzy logic
techniques to identify orthologues and corresponding gene-groups. The identification
of orthologues is based upon modeling gene matchings from two genomes as bipartite
graph matching. Two different approaches and the corresponding algorithms to
identify orthologues have been described. Both the approaches give very similar
results. Five microbial genome pairs � partial E. coli (1304 genes)3 versus H.
influenzae, H. influenzae versus partial B. subtilis (1852 genes), partial B. subtilis
(1852 genes) versus M. genitalium, partial B. subtilis (1852 genes) versus M.
jannaschii, and M. genitalium versus M. jannaschii � have been compared. A
comparative analysis of results related to putative orthologues, corresponding gene-
groups, gene duplication, fused genes, gene shuffling � a gene correspondence such
that one of the matching genes occurs outside a corresponding gene group � and gene
conservation in various genomes is presented.
KEYWORDS. algorithms, archaea, bacteria, bipartite graph, computational biology,
computer software, cross-species comparison, gene-groups, genome sequence
analysis, graph matching, homologues, microbe, operons, orthologues, prokaryotes

1Supported in part by Research Council grant, Kent State University, Kent, Ohio, USA and Deutsche
Forschungsgemeinschaft – The German Federal Agency – grant during his sabbatical in 1995 and 1996
2The automated comparison can handle both bacterial genomes and archaeal genomes, and for convenience we
will refer to both as microbes.
31304 genes of E. coli have been chosen for historical reason as the first experimental data available at EMBL
during Fall 1995.

 2

1. INTRODUCTION

Microbes (bacteria and archaea) serve as model organisms for understanding basic metabolic
functions. Microbes are also important targets in biotechnology, disease treatment, and ecology, etc.
The first complete genome of a cellular organism was sequenced in 1995 [7]. Since then, many
others have been completed. Some of the completed ones are E. coli, M. genitalium [8], and M.
jannaschii [4]. Seven bacterial and three archaeal genomes will have been reported by the end of
1997.

A natural step in understanding microbial genomes is to chart out the functionality and the
variations in the functionality of genes and families of genes. Due to the size of genomes and
increasing rate of availability of complete sequences, a cost-effective and time-efficient way is to
perform a fully-automated pair-wise cross-species computational comparison of genome sequences.

A pair-wise cross-species computational comparison of complete genomes will help in the
identification of gene functions, function and evolution of gene families, gene conservation,
variations of functionality within various organisms [12], and mechanisms of evolution. The
information about clustered gene-groups will help in identifying higher order functions, and help in
relating gene-groups to metabolic pathways [17]. In addition, the identification of conserved genes
will help in refining the phylogenetic tree � a hypothetical evolution tree �� [13] further.

In order to compare two genomes, exact functional counterparts of genes in genomes have to be
identified and compared. Homologues are genes derived from some common ancestral gene.
Paralogues (para = in parallel) are homologous genes comprising a multigene family (as a result of
gene duplication) with possible variations in functionality. Due to the presence of many multigene
families in genomes which are homologues, one has to identify the exact functional counterpart of a
gene in another species out of a multigene family. These functional counterparts are called
orthologues (ortho = exact) that have arisen from speciation [6]. The orthologues can be the only
basis of gene comparison since the history of orthologous genes represents the history of species.
However, orthologues have to be carefully identified. Current similarity search techniques can
identify homologues. Orthologues and paralogues are homologues, thus current similarity search
techniques are unable to discriminate between the two groups. In this paper, we are mainly
concerned with the identification of putative orthologues and the corresponding gene-groups ��
clusters of neighboring genes which have some natural pressure to occur in proximity �� in genome-
pairs comprising of putative orthologues. However, our technique also derives and separates
duplicated genes and duplicated gene-groups from putative orthologues.

In this paper, we describe two techniques and the corresponding algorithms to derive putative
orthologues and corresponding gene-groups. There are three phases in the framework: the BLAST [3]
comparison phase, the Smith-Waterman alignment [19,20] phase, and a bipartite graph matching
phase. The BLAST comparison phase provides a time-efficient mechanism to identify possible gene-
pair matchings and prune out dissimilar gene-pair correspondences. The Smith-Waterman alignment
phase aligns the filtered gene-pairs to identify the regions of similarity. The last phase models the
matchings of two genomes as a weighted bipartite graph �� a graph with two sets of nodes such that
nodes in one set can have edges only with nodes in the other set �� such that each genome is placed
in a separate ordered set, and integrates heuristics with bipartite graph matching algorithms to identify
putative orthologues and corresponding gene-groups. The bipartite graph matching uses two different
variations: best first approach and a variation of the Hungarian method (Papadimitrou, 1982). In the
best first approach, the putative corresponding gene-groups are first identified, and the gene-pairs in
the matching gene-groups are positively biased during the identification of orthologues. The
variation of the Hungarian method tries to achieve the local maximization of a cumulative sum of
scores to identify corresponding gene-groups. The technique iteratively identifies putative

 3

corresponding gene-groups, iteratively biases the gene-pair matchings within a putative gene-group,
and treats orthologues as a special case of gene-groups with a group-size of one. Putative gene-
groups with a distance less than a threshold are merged. The process is repeated until gene-groups
can not be extended further. The developed prototype software uses the integration of Prolog [18]
using Sicstus 3.2 [15] and C and Unix system routines, and is portable across different architectures
supporting these languages and the BLAST software package. The current implementation uses the
GCG software package [5] for local alignment variant of the Smith-Waterman algorithm. For a
typical prokaryotic genome such as H. influenzae and B. subtilis, a typical Silicon Graphics
workstation takes approximately 7200 seconds for the BLAST phase, approximately 1800 seconds
for the Smith-Waterman alignment phase, and approximately twenty seconds for the bipartite
matching phase. The use of Prolog and the dynamic invocation of shells in UNIX routines slows
down the overall time-efficiency of the prototype software by approximately two to three times.
However, the automated comparison of two genomes is handled in realistic time, and the technique
is suitable for distributed computing.

The developed software has been utilized to compare five available genomes: partial E. coli
(1304 curate genes) H. influenzae, partial B. subtilis (1852 genes), M. genitalium, and M. jannaschii.
The comparison results suggest the presence of putative orthologues, putative corresponding gene-
groups, different types of correspondence in gene-groups, duplicated gene-groups, putative fused
genes, shuffling of genes, and conserved genes.
The contributions of this paper are:

(1) the development of algorithms to identify orthologues, corresponding gene-groups, types of
corresponding gene-groups;

(2) the integration of the information derived from the Smith-Waterman algorithm to identify
gene duplications, gene-group duplication, and fused genes;

(3) the development of an integrated software, and
(4) a comparative study of five genome-pairs.
The paper is organized as follows. Section 2 describes some background and definitions needed

for modeling. This section has been made generic to improve the readability to the researchers in
both Computational Science and Biological Science communities. Section 3 describes an overview
of various stages of software in finding the orthologues. Sections 4 and 5 describe the first approach:
Section 4 describes an algorithm to identify corresponding gene-groups, and Section 5 describes an
algorithm to find the best matchings in a bipartite graph. Section 6 describes a variant of the
Hungarian method and the corresponding algorithm to identify orthologues and corresponding gene-
groups. Section 7 presents a technique to derive fused genes. Section 8 briefly presents a comparison
of the five genome-pairs. Section 9 concludes the paper.

2. BACKGROUND AND DEFINITIONS

In this section we briefly describe basic definitions related to microbial genomes, basic alignment
techniques, some mathematical concepts needed in this paper, and definitions related to graphs and
bipartite matching. Subsection 2.1 describes the basics of genomes. Subsection 2.2 describes the
basic concepts of sequence searching and alignment. Subsection 2.3 describes the basic notions
related to gene-groups and operons �� an ordered set of genes involved in a complex functionality in
a metabolic pathway. Subsection 2.4 describes some mathematical concepts needed in this paper.
Subsection 2.5 lists the mathematical notations used in this paper. Subsection 2.6 describes the
notations needed to model a genome comparison using bipartite graph matching. Section 2.7

 4

describes the basics of the Hungarian method �� a well known bipartite graph matching technique ��
used in one of the algorithms.

2.1 Genome Related Background. The genome of an organism is encoded within molecules of
DNA. A molecule of DNA is a sequence of four nucleotides: adenine ‘A’, cytosine ‘C’, guanine ‘G’,
and thymine ‘T’. A DNA molecule is represented by a sequence of characters from the alphabet
{‘A’, ‘C’, ‘G’, ‘T’}. A protein is a sequence of different types of molecules collectively known as
amino acids. Commonly, the sequence of proteins comprises alanine ‘A’, arginine ‘R’, asparagine
‘N’, aspartic acid ‘D’, cysteine ‘C’, glutamic acid ‘E’, glutamine ‘Q’, glycine ‘G’, histidine ‘H’,
isoleucine ‘I’, leucine ‘L’, lysine ‘K’, methionine ‘M’, phenylalanine ‘F’, proline ‘P’, serine ‘S’,
threonine ‘T’, tryptophan ‘W’, tyrosine ‘Y’, and valine ‘V’. The alphabet {‘A’, ‘C’, ‘D’, ‘E’, ‘F’,
‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’} is denoted by A.

A microbial genome, denoted by subscripted capital Greek letter ��� is an ordered set of pairs of
the form <(�1, �1), …, (�n, �n)>. Each �I is a sequence of the form <s1, ..., sN> (1 � I � N) where sI �
N for DNA and sI � A for protein. Each �I is a control region preceding �i. In this paper, we are
interested in the comparison of protein sequences of the form <�11, …, �1N> and <�21, …, �2M>.

Homologues are similar genes derived from some common ancestral gene. Paralogues are
homologous genes in a multigene family as a result of gene duplication [6]. Paralogous genes may
have possible variations in functionality. An orthologue is the exact functional counterpart of a gene
in another genome that has arisen from speciation [6]. The history of an orthologous gene reflects the
history of the species.

2.2. Sequence Searching and Sequence Alignment Techniques. Two genetic sequences are similar,
if there is a significant match between them after limited shifting of characters. Sequence alignment
is the process of aligning similar sequences together in a way that asserts a correspondence between
characters that are thought to derive from a common ancestral sequence. Aligning a set of sequences
requires the introduction of spacing characters referred to as indels. If the aligned sequences did
indeed derive from a common ancestral sequence, then indels represent possible evolutionary events
in which characters were either inserted or deleted.

The BLAST software [3] uses local alignment to identify similar sequences. It is based upon
selecting a small subsequence, using string matching to identify locations of matches, and expanding
the size of matched segments at the identified locations. The similarity searches of BLAST are
asymmetric: comparing a sequence �I with �J may not give the same similarity score as comparing a
sequence �J with �I, and the comparison of the same sequences �I to �I and �J to �J gives different
scores for different sequences. However, BLAST is time efficient.

The Smith-Waterman algorithm [19] is a matrix-based dynamic programming technique to find
out the optimum pair-wise sequence alignment. The Smith-Waterman algorithm is more precise than
BLAST, and the order of gene-pair comparison does not affect the similarity score derived using the
Smith-Waterman algorithm. The time-complexity of the Smith-Waterman algorithm is O(N 2) where
N is the size of two aligned sequences.

2.3. Gene-groups and Operons. A gene-group is a cluster of neighboring genes <�I �J �K …> (I < J
� I + r, J < K � J + r where r is a positive bounded integer with a small upper bound such as ten)
which have a natural pressure to occur in proximity. A gene-group may have insertions,
permutations, or deletions of genes with reference to a corresponding gene-group in another genome.
A corresponding gene-group <�1I �1J �1K … > (I < J < K) in the genome �1 matches with a
corresponding gene-group <�2M �2N �2P …> (M < N < P) in �2 such that, in general, �1I and �1J and �1K

 5

etc. are similar to one of the genes in the sequence <�2M �2N �2P …>. A conserved gene-string <�I �I + 1
�I + 2 … �J> (J > I) [17] is a special case of corresponding gene-groups such that there is no gap
between two consecutive genes. If we allow deletion or insertion of single genes within a conserved
gene string, the resulting cluster is still considered a gene-group. A shuffling is a correspondence
between two putative orthologous genes such that one of the genes lies in a corresponding gene-
group. However, the number of shuffled genes is much smaller than the number of matching genes in
the corresponding gene-groups.

An operon [1] is a set of neighboring genes which are transcribed as a single unit and has
common regulatory elements. Often, genes within an operon belong to the same pathway or encode
different units of a single protein.

2.4. Some Mathematical Concepts. A sequence is in partial order if two consecutive elements in the
sequence are related with a relationship � which is transitive: sI � sJ (sI precedes sJ) and sJ � sK implies
sI � sK, and antisymmetric: sI � sJ implies sJ 	 sI where ‘	’ is inverse relation of ‘�’. However, SI � SJ
and SI � SK does not imply any order between SJ and SK. For example, the sets {1}, {1, 2}, {1, 2, 3},
{1, 2, 4} are in partial order with relationship ‘
’ (proper subset). Greatest lower bound, denoted by
��, of two consecutive elements in partial order is given by the lower value in the relationship. For
example, if SI � SJ then SI �� SJ = SI.

A set S of data elements of the form (�1I, �2K) when transposed will give a transposed set with
data elements of the form (�2K, �1I). We will denote the transposed set by the set ST.

2.5. Mathematical Notations. We denote genomes by subscripted capital Greek letter �I, mapping of
two genomes �1 and �2 by �1 �2 (or �2 �1), a set within curly brackets {…}, a tuple within
brackets (…), a sequence within angular brackets <…>, a range within square brackets […], number
of elements in a set S by |S|, membership of a set by �, union of two sets by �, union of multiple sets
by U, intersection of two sets by �, empty set by �, set difference by �, deletion of an element in a

set by �, insertion in a set by +, subset by �, existence of an element by �, forall by �.
We denote the Smith-Waterman alignment of two genes �1I and �2J by �1I � �2J, the aligned

version of �1I by ��(�1I � �2J), the aligned version of �2J by ��(�1I � �2J), the start position of aligned
version of �1I by start(��(�1I � �2J)), the end position of aligned version of �1I by end(��(�1I � �2J)),
the start position of aligned version of �2J by start(��(�1I � �2J)), the end position of aligned version
of �2J by end(��(�1I � �2J)).

For bipartite graph matching, we denote an edge by (�1I, �2J) (or (�2J, �1I)) where �1I � �1 and �2J
� �2, the mapping of a gene �1I � �1 to a gene �2J � �2 by �1I �2J, the source-node �1I of an edge (�1I,
�2J) by ������� ��J�� the sink-node �2J of an edge (�1I, �2J) by ������� ��J�� the set of source-nodes of a set
of edges S by �1(S), and the set of sink-nodes of a set of edges S by �2(S).

We use natural language with C-like syntax to express algorithms, and “%” to denote comments
in the algorithms.

2.6 Graphs and Genome Comparison Modeling. A graph has a set of nodes of the form {V1, …,
VN} and a set of edges connecting two nodes such that each edge is of the form (VI, VJ) where 1 � I, J

 6

 V1 V2

V3 V4

Figure 1. A strongly connected graph

�� 1 �� 2

5 6

4 3

3 4 7 8

8 1

 Figure 2. Genome comparison as bipartite graph

� N. A degree of a node is the number of edges incident upon the node. For example, the node V2 in
Figure 1 has a degree 2. A path in a graph is a sequence of edges which connect two nodes in a
graph. A strongly connected graph (see Figure 1) has a path between any pair of two nodes. A
bipartite graph has two sets of nodes such that there are edges from one set of nodes to another set of
nodes. However, there are no edges within the same set of nodes. A weighted bipartite graph has
different weights for different edges as shown in Figure 2.

A genome is a sequence of genes. Each gene is modeled as a node. A pair of genomes is
modeled as a weighted bipartite graph such that two similar genes in different genomes have edges
between them, and the similarity score between two genes is the weight of the corresponding edge.

2.7 The Hungarian Method for Matching Bipartite Graph. The Hungarian method [14] is a well-
known technique to find maximal matchings in bipartite graphs. Essentially it works as follows.

Initially the matching is empty: there are no edges in the matching. The Hungarian method
continually searches for an augmenting path in the graph, that is, a sequence of edges <(�1I, �2J) (�2J,
�1K) (�1K, �2L) (�2L, �1M) …> such that each odd-numbered edge is not a part of the current matching,
and each even-numbered edge is a part of the current matching, and the sum of the weights of the
odd-numbered edges is greater than the sum of the weight of the even-numbered edges. When an
augmenting path is found the matching is updated by adding the odd-numbered edges to the matching
and removing the even-numbered edges. Clearly the new matching has a greater total weight than the
previous matching. When no augmenting paths exist the matching is maximal. The time-complexity
of the Hungarian method to find a maximal matching is O(N 3), where N is the number of genes.

Example 1

The bipartite graph illustrated in Figure 3 has four nodes in the first set and four nodes in the
second set. The set of edges is {(�11, �21), (�11, �22), (�12, �21), (�12, �24), (�13, �22), (�13, �24), (�14, �23)}.

 7

�11

�12

�13

�14

�21

�22

�23

�24

�11

�12

�13

�14

Previous
unm atch

previous
m atch

new m atch

�21

�22

�23

�24

Figure 3. The Hungarian method for bipartite graph matching

Using the Hungarian method, an augmenting path is given by <(�21, �11) (�11, �22), (�22, �13), (�13,

�24) (�24, �12)> such that the sum of weights of the edges (�21, �11), (�22, �13), and (�24, �12) is greater
than the sum of the weights of the edges (�11, �22) and (�13, �24). Adding the odd-numbered edges and
deleting the even-numbered edges results in the matching shown on the right of Figure 3. The
process is repeated until there are no more augmenting paths. The final matchings are given by the
solid edges (�11, �21), (�12, �24), and (�13, �22).

3. OVERALL SCHEME TO IDENTIFY ORTHOLOGUES

In this section, we describe an overall scheme to derive orthologues and corresponding gene-groups.
As shown in Figure 4, there are four stages of identifying orthologues, and there are two parallel
streams in the BLAST phase. This parallel streams are caused due to the asymmetry of comparison
present in the BLAST comparison. We denote the first stream by ‘A’ and the second stream by ‘B’
for convenience.

3.1. Stage 1: Gene-pair Filtering by the BLAST Comparison. The input to this stage is a pair of
genomes �1 and �2, and the output of this stage is a set of gene-pairs of the form (�1I, �2J) or (�2J, �1I)
where �1I is a gene in �1 and �2J is a gene in �2. Every gene (1 � I � number of genes in a genome) in
one genome is compared with the other complete genome to identify the set of potentially similar
genes. In Stage 1A, the genes of �1 are compared against �2, and in Stage 1B, the genes of �2 are
compared against �1. A BLAST search process is invoked for every gene search. After the BLAST
search, the two similarity scores high score and chance expectation value are obtained. Those gene
comparisons which have a similarity score less than a threshold value (high-score < 50 and chance
expectation value > 10-9) are pruned. In order to avoid any false negatives, conservative cutoff values
are chosen. After identifying the set S2 of filtered pairs from �2 �1, the elements in the set S2 are
transposed. The transposed set S2

T is merged with the set of filtered pairs derived from �1 �2, and
duplicates are removed. This merged set is passed as an input to stage 2.

3.2. Stage 2: Pair-wise Alignment using Dynamic Programming. The input to this stage is a set of
filtered gene-pairs (�1I, �2J) from Stage 1. The output of this stage is a 9-tuple of the form (�1I, �2J,
start(�1(�1I)), end(�1(�1I)), start(�2(�2J)), end(�2(�2J)), length of match, maximum length of mismatch,
percentage similarity score). Every gene pair (�1I, �2J) (or (�2K, �1l)) filtered from Stage 1 is aligned
using a variant of the Smith-Waterman local alignment provided by the GCG software package [5].
The start information describes the starting point of a sequence in the gene-pair alignment, and the
end information describes the relative end point of a sequence in the gene-pair alignment. The start,
end, and length of match were used to identify gene-fusion: two consecutive genes fused to form a

 8

single gene. The length of maximum mismatch was used to identify false positive matches, since the
presence of very long sequences of indels implies the possible presence of artifacts.

3.3. Stage 3: Bipartite Graph Matching. In this stage, comparison of two genomes is modeled as a
weighted bipartite graph with genes as nodes, possible matchings as edges, and matching scores after
the Smith-Waterman alignment as the weights of the edges. This stage performs the following tasks:

(1) Best matchings between node-pairs are identified, and other matchings are pruned.
(2) Putative corresponding gene-groups are identified and classified into different categories.
(3) Duplicated genes, fused genes, and duplicates of gene-groups are identified.

This stage uses two different algorithms as described in Sections 4, 5 and 6. The first algorithm
identifies the putative corresponding gene-groups first by comparing two genomes; sorts the weights
of the edges in descending order, and positively biases the weights of the edges in the putative
corresponding gene-groups before identifying the best matches. The second algorithm �� a variant of
the Hungarian method �� is based upon maximizing the cumulative sum of the weights of the edges
of groups of genes in proximity. Both algorithms use heuristics to positively bias the weights within
the putative corresponding gene-groups. Surprisingly, the findings from both algorithms are very
similar.

3.4. Stage 4: Identification of Fused Genes. The input to this stage is the output from the Smith-
Waterman algorithm. Fused genes are identified using the criterion that two consecutive orthologous
genes �1I and �1(I � 1) � �1 (�2J and �2(J � 1) � �2) match with a gene �2J � �2 (�1I � �1), the intervals of
�1I �2J and �1(I � 1) �2J (�2J �1I and �2(J � 1) �1I) are adjacent to each other; and the cumulative sum
of the length of �1I and �1(I + 1) (�2J and �2(J � 1)) is very close to the length of �2J (�1I). It is possible that
during fusion, insertion or deletion may occur. In order to take care of alignment variations, length
matching is relaxed to fall within a range which is less than half the length of the smallest gene in two
genomes.

3.5. Overall System Execution. A prototype software using Prolog, C, and Unix was developed.
Each comparison runs the BLAST software two times for self comparison (�1 �1 and �2 �2). The
result is used to normalize BLAST scores by using the score of self-comparison of genes to represent
the score for a 100 percent match. The BLAST software is run two more times to compare genomes
��1 �2 and �2 �1). Using the merged set of filtered matching pairs derived from the BLAST
comparisons, the Smith-Waterman alignment software is executed once. The resulting similarity
scores are used to model the genome matching as a bipartite matching problem, which is solved using
one of the two matching algorithms.

For a typical size of 1800 genes X 1600 genes comparison, it takes approximately 7200 seconds
for BLAST comparisons on a typical Silicon Graphics machine. For approximately 2000 filtered
pairs, it takes approximately 2000 seconds for Smith-Waterman alignment on a typical Silicon
Graphics machine. The bipartite graph matching algorithms take approximately 20 seconds to
execute. Since the BLAST self-comparison for normalization has to be executed only once for each
genome, the performance is improved further to approximately 110 minutes for following genome-
pair comparisons.

 9

Genomes �1 and �2

BLAST comparison �1 a �2

with threshold filter

Filtered gene-pairs A

BLAST comparison �2 a �1

with threshold filter

Filtered gene-pairs B

Orthologues with fused gene-group information

Aligned gene-pairs

Smith-Waterman local alignment

Bipartite match algorithms
(best first and Hungarian)

Fused gene identification

Merge and
remove duplicates

Orthologues and orthologous groups

Figure 4. A scheme for the identification of orthologues and gene-groups

4. A TECHNIQUE TO IDENTIFY PUTATIVE GENE-GROUPS

In this section, we describe an algorithm to identify gene-groups in �1 and the corresponding gene-
groups in �2. The complexity and proof of correctness of the algorithm has been removed from this
paper in the interest of addressing a broad community.

This algorithm is based upon searching for the matchings in a neighborhood of a gene-pair
matching (�1I, �2J). A seed window size b is used. If any other matching (�1(I + r), �2(J ± s)) (where r, s �
b) is found in the proximity, then the process is repeated from the matching (�1(I + r), �2(J ± s)). The next
search is performed in the proximity (J � b, J + s + b) if the next matching is (�1(I + r), �2(J + s)), or in the
proximity (J � s � b, J + b) if the next matching is (�1(I + r), �2(J � s)). Since the proximity keeps
changing, variably sized gene-groups are identified. Since one node may have multiple matchings,
multiple gene-group matchings are identified. This algorithm is run twice: once by traversing the
matching genes in �1 in order, and then traversing the matching genes in �2 in order. This double
traversal is needed to derive the information of gene-groups in one genome which match with
multiple duplicated gene-groups in another genome. The basic algorithm is given in Figure 5. Many
optimized variants of the algorithm are possible. The explanation is as follows.

One of the genomes �1 is traversed from start to end. Let the set of nodes in �1 (or �2) be S1, and
the set of unprocessed weighted edges be S2. Let the seed window size to identify neighbors in
proximity be b. At any point, a weighted edge (�1I, �2J) � set of remaining edges is picked such that �1I
has the least value of I. S3 �� the neighborhood set of �1I �� is {�1(I � b), …, �1(I + b)} such that 0 � I � b
and I + b � number of genes in �1. Let the set of all the nodes in �2 which match with �1I be S4. Let
the set of nodes in S4 which share an edge with the nodes in the neighborhood set S3 be S5. The set S5
is identified by selecting the nodes in S4, one at a time, and taking the intersection of the set of nodes

 10

in �1 connected to the node and the set S3. If the intersection is non-empty then that node in S4 is
included in S5. If the set S5 is non-empty then there is at least one possibly matching gene-group.
After detecting the presence of a corresponding gene-group, the nodes in �1 are traversed from the
node �1I, and the putative gene-groups are collected as follows.

To facilitate dynamic alteration of neighboring nodes, a copy of the sets S3 and S5 is made in the
sets S7 and S9 respectively. The set S8 is used to verify matching edges incident upon the nodes in S3
during the collection of variably sized gene-groups. If there is a matching node within the range �1(K +

r) 0 < r � b, K � I � S7 which matches one of nodes �2L � S9, then there is a group. The set of edges in a
neighborhood is collected in S6; S7 �� the neighborhood set of �1K(K � I) � S7 �� is extended
dynamically to include the neighbors of �1(K + r); S9 �� the neighborhood set of matching nodes in �2
�� is extended dynamically to include the neighbors of �2L; and all the edges incident on �1(K + r) 0 < r � b

and K � I are included dynamically in the set S8. Those edges which are traversed once are deleted from
S8, and those nodes in �2 which have been traversed once are deleted from the sets S5 and S9. After a
matching (�1(K + r) � S7) (�2L � S9) is not found in the neighborhood, S6 �� the current collected set
of edges �� is closed; �1(S6) �� the set of source-nodes in S6 � gives a putative corresponding gene-
group in �1, and �2(S6) �� the set of sink-nodes in S6 �� gives the putative corresponding gene-group
in �2. By identifying the direction of mapping, the type of gene-groups {in-order, reverse, permuted}
is decided, and the putatively matching group (gene-group type, �1(S6), �2(S6)) is stored in S �� the
set of matching gene-groups. The set of nodes in �2 which have been traversed during the
identification of the last group is deleted from the set S9, the set of traversed edges is deleted from the
set S8.

The process is repeated to identify the next putative corresponding gene-group which starts with
�1I. This is possible since there are duplicates of gene-groups. Dynamically incrementing the
neighborhood set of �1I and the set of matching nodes in �2 and the set of matching edges ensures
selection of all the variably sized gene-groups. After finding out all the putative corresponding gene-
groups involving �1I (including singleton groups in the absence of any group of size greater than or
equal to 2), the set of edges incident upon �1I is deleted to avoid reconsideration. The process is
repeated by picking up the next edge in S2 which has the minimum index, until S2 is empty.

Example 2

Consider Figure 6. There are four matching nodes in genome �1 and six matching nodes in
genome �2. Let us further assume that the set S2 �� the set of edges after the Smith-Waterman
alignment �� is {(�11, �22), (�11, �26), (�12, �23), (�12, �25), (�13, �24), (�14, �27)}. The set S1 �� the set of
nodes in �1 �� is {�11, �12, �13, �14}. Let us assume the seed window size to be one.

We start traversing from node �11. The value of S3 �� the neighborhood set for �11 �� is {�11,
�12}. The value of S4 �� the set of nodes in �2 which match with �11 �� is {�22, �26}. The set of
neighboring nodes for �22 is {�21, �22, �23}, and the set of neighboring nodes for �26 is {�25, �26, �27}.
The value of S5 �� the subset of {�22, �26} whose neighbors match with the set {�11, �12} �� is {�22,
�26}. The value of S9 �� the set of all neighboring nodes in the set S2 �� is {�21, �22, �23, �25, �26, �27}
which is derived by the union of two sets {�21, �22, �23} and {�25, �26, �27}. The value of S8 �� the union
of the set of the edges incident upon the nodes �11 and �12 �� is {(�11, �22), (�11, �26), (�12, �23), (�12,
�25)}. Since the set S5 is non-empty, putative corresponding gene-groups are present. The traversal
from �11 gives the first edge as (�11, �22). Since �22 � S9 and the edge (�12, �23) � S8 and the node �23 �
S9, the edge (�11, �22) is inserted in the set S6 and deleted from the set S8; the node �22 is deleted from
the set S9. The new value of the set S8 is {(�11, �26), (�12, �23), (�12, �25), (�13, �24)} which is given by

 11

union of {(�13, �24)} �� the set of edges incident upon �13 �� and the set {(�11, �26), (�12, �23), (�12, �25)}.
The new value of the set S9 is {�21, �23, �24, �25, �26, �27}. The new value of the set S5 is {�22}.

The process is repeated with the node �12 which gives the new value of the set S6 as {(�11, �22), (�12,
�23)}, the new value of the set S8 as {(�11, �26), (�12, �25), (�13, �24)}, the new value of the set S9 as {�21,
�24, �25, �26, �27}. When the process is repeated with the node �13, there is no matching of the form (�14,
�25). The iteration stops after inserting the edge (�13, �24) in the set S6. After this iteration, the value
of the set S6 is {(�11, �22), (�12, �23), (�13, �24)}, the value of the set S8 is {(�11, �26), (�12, �25)}, the value
of the set S9 is {�21, �25, �26, �27}, and the value of the set S5 is {�22}. It is easy to verify that the group
is in-order, the set �1(S6) gives a putative corresponding gene-group {�11, �12, �13} in �1, and the set
�2(S6) gives a putative corresponding gene-group {�22, �23, �24} in �2. The triple (in-order, {�11, �12,
�13}, { �22, �23, �24}) is stored in the set S, and the process is repeated again with �11. The triple
(reverse, {�11, �12}, { �26, �25}) is identified and inserted in the set S. After inserting the triple, the set
S5 becomes empty. The new value of the set S2 is {(�14, �27)}. No group is found with the node �14,
and the set S2 becomes empty in the next iteration. The algorithm terminates with the final value of S
as {(in-order, {�11, �12, �13}, { �22, �23, �24}), (reverse, {�11, �12}, { �26, �25})}.

5. THE FIRST TECHNIQUE TO IDENTIFY ORTHOLOGUES

In this section, we describe the first technique to identify putative orthologues. In this scheme, the
knowledge about putative corresponding gene-groups is used to bias positively the edges between
matching gene-pairs in corresponding gene-groups under the assumption that matching gene-pairs
occurring within corresponding gene-groups are more probable to be an orthologue than shuffled
genes with similar weights.

The technique uses sorting to arrange the weights of the edges in descending order, and starts
marking the node-pairs with highest weight. The node-pairs with highest weight become putative
orthologues, and all the edges incident upon those two nodes are removed from further consideration.
The process is repeated until no more pairs are left.

5.1 Orthologue Resolution. The gene-pair matchings were divided into four categories: one-to-one,
much-above, preferred, and conflict. One-to-one means that the genes �1I and �2J in matching gene-
pair (�1I, �2J) have no other matching genes. Much above means that the weight of (�1I, �2J) �� one of
the edges in the union of the sets of the edges incident upon �1I and �2J �� stands out compared to all
other edges incident upon �1I or �2J. We used an adhoc criterion that the weight of a much-above edge
is 20 percent above the weights of other edges incident upon �1I and �2J. Preferred means that the
weight of the highest matching edge is 10 percent above the weights of other edges incident upon �1I
and �2J, or is inside a putative corresponding gene-group despite having a conflicting weight. Conflict
means that the weights of all edges incident upon �1I and �2J are so close that it is not possible to
identify the outstanding matching gene-pair. There is a partial order (under the relationship
orthologues) between these classes: one-to-one 	 much above 	 preferred 	 conflict. Clearly, one-to-
one matching corresponds to unique orthologues, and much-above matchings correspond to clear
orthologues. In the absence of enough number of sequenced genomes, we did not have statistical
results to decide upon the cutoff point.

5.2 Algorithm for Orthologues and Corresponding Gene-groups. The similarity scores for gene-
groups are first positively biased. The resulting scores are sorted. The classification is done based
upon descending order of weights of the edges. The edge (�1I, �2J) with highest weight is selected and

 12

classified and all other edges incident on the source-node �1I and �2J are discarded. The process is
repeated until there are no more edges in the bipartite graph.

Algorithm putative corresponding gene-groups;

Input: 1. A set G of matching gene-pairs from the Smith-Waterman algorithm;
2. A pair of genomes �1 and �2;

Output: 1. A set S of putative gene-groups in �1 (or �2);
{ 1. let the ordered sets of genes in �1 be S1; S2 = G;

2. while (S2 � �) {
3. let the next edge be (�1I, �2J) � S2 such that I has the minimum index;
4. S3 = the neighborhood set of the node �1I � S1;
5. S4 = the set of sink-nodes in �2 for the source-node �1I;
6. find out the subset S5 � S4 whose neighbors match with nodes in S3;
7. if (S5 � �) { % There is at least one putative matching gene-group;

8. S7 = S3; S8 = U(sets of edges incident upon the nodes � S3);

9. S9 = U(the neighborhood sets of nodes in S5);

10. while (S5 � �) { % collect single-gene-groups and multi-gene-groups from �1I
11. S6 = �; % get ready to collect the next group
12. pick the next edge (�1K, �2M) � S8 such that K has the minimum index;
13. while (�1K � S7) {

14. if ((�1K, �2M) � S8 && �2M � S9 && (�1(K + r) r � b, �2L � S9) � S8) {
15. S6 = S6 + (�1K, �2M); S7 = S7 � {�1(K + b), …, �1(K+ r + b)};
16. S5 = S5 	 �2M; % ensure that same group is not repeated
17. S8 = S8 � edges incident upon {�1(K + b), …, �1(K + r + b)} 	 {(�1K, �2M)};
% update the set of edges from the next match
18. K = K + r; % the next matching node with the smallest index
19. S9 = S9 � {�2(L � b), …, �2(L + b)} 	 {�2M};

20. else {S6 = S6 + (�1K, �2M); S2 = S2 	 (�1K, �2M); S9 = S9 	 �2M; S5 = S5 	 �2M;}
21. S8 = S8 	 (�1K, �2M); S2 = S2 	 (�1K, �2M);

}
22. if (|S6| � 2) {% a gene-group should have minimum size 2

23. g = group-type(S6) where g � {in-order, reverse, permuted};
24. S = S + (g,
1(S6),
2(S6));}

}
}

}
25. S10 = the set of the edges incident upon �1I;
26. S2 = S2 	 S10; % remove �1I from the future consideration;

}
}

 Figure 5. An algorithm to identify putative matching gene-groups

 13

� 1 1

� 1 2

� 1 3

� 1 4

� 2 1

� 2 2

� 2 3

� 2 4

� 2 5

� 2 6

� 2 7

s in g le e d g e

g e n e - g r o u p 1

g e n e -g r o up 2

Figure 6. Identifying putative gene-groups in �1 �2

A: one-to-one B: one-to-many C: one-to-many D: many-to-many

Figure 7. Different classification of edges incident upon matching nodes

The edge groups between two matching nodes �1I � �1 and �2J � �2 can be classified into three
major groups (see Figure 7) as follows: one-to-one, one-to-many, and many-to-many. One-to-one
means that degree of both �1I and �2J is one. One-to-many means that either �1I or �2J has degree greater
than one. One-to-many can be further classified based upon whether the node with degree one is �1I, or
the node with the degree one is �2J. Many-to-many means that both �1I and �2J have degree greater than
one. The one-to-one edges are unique orthologues, and they are removed from the consideration first.
After picking the edges in descending order of the weights, each case is handled separately. In each
case, we check whether the highest weight edge is much-above, preferred, or conflicting. For one-to-
many, the edge with second highest weight from the set of edges incident upon �2J (or �1I) is picked.
For many-to-many edges, the second highest weights from the set of edges incident upon �1I and the set
of edges incident upon �2J are picked up. The highest weight is compared against the second highest
weights4 to classify the orthologues. A formal algorithm is described in Figure 8.

The scheme works well except in some cases: it can not identify orthologues in the presence of
paralogues which give many-to-many matchings, or when the similarity scores are so close that it is
not possible to distinguish the orthologues. In such cases there is a clear conflict, and the putative
orthologues can be resolved only by biological reasoning or by understanding the role of proteins in
the metabolic pathways. The values of the bias-factors for much-above, group-biasing etc. used in
this algorithm are adhoc due to the current lack of sequenced genomes needed for statistics.

Example 3

Consider Figure 9. After the Smith-Waterman alignment, the value of S1 �� the set of weighted
edges in the bipartite graph �� is {(�11, �22, 79), (�12, �21, 56), (�12, �23, 84), (�13, �24, 49), (�13, �26, 38),
(�14, �21, 46), (�15, �25, 36), (�15, �27, 33), (�16, �25, 38), (�16, �27, 39)}. The value of S2 �� the set of
gene-groups �� is {(reverse, (�11, �12), (�22, �21)), (permuted, (�11, �12, �13, �14), (�22, �23, �24, �21)), (in-
order, (�15, �16), (�25, �27)), (reverse, (�12, �16), (�27, �25))}. After sorting, the value of S3 �� the set of

4 Second highest weights from �1I and �2J in the case of many-to-many

 14

edges sorted by weight �� becomes {(�12, �23, 84), (�11, �22, 79), (�12, �21, 56), (�13, �24, 49), (�14, �21,
46), (�13, �26, 38), (�15, �25, 36), (�15, �27, 33)}.

After positively biasing (by 20 percent) the weights of the edges inside the putative
corresponding gene-groups, the value of S4 �� the set of positively biased edges �� becomes {(�11,
�22, 95), (�12, �21, 67), (�12, �23, 100), (�13, �24, 59), (�13, �26, 38), (�14, �21, 55), (�15, �25, 44), (�15, �27, 40),
(�16, �25, 46), (�16, �27, 47)}. In the first pass, {(�11, �22)} �� the set of one-to-one matchings �� is
identified and removed. Remaining classifications are done next.

During the first iteration, the edge (�12, �23) is classified as much above orthologue since the
weight 100 is greater than 1.2 � 67. The weighted edges (�12, �23, 100) and (�12, �21, 67) are deleted
from the set S4, and the process of classification is repeated. The edge (�13, �24) is classified much-
above since the weight 59 is greater than 38 � the weight of the edge (�13, �26). After the deletion of
the edge (�12, �21), the weighted edge (�14, �21) becomes much-above. Note that this choice of
classification for (�14, �21) is made under the assumption to identify the maximum number of
orthologues. It is possible that �21 is a mutated duplication of �23, and �14 and �21 are less similar.
Handling such cases of duplications is a limitation of any automated matching technique, and needs
biological reasoning. There is a many-to-many matching between the nodes �15, �16, �25, and �27. This
occurs because �15 and �17 are putative paralogues and �25 and �27 are putative paralogues. The
resolution of orthologues in such cases is very difficult, and must be performed by biological
reasoning or by the correct knowledge of metabolic pathways.

6. APPLICATION OF THE HUNGARIAN METHOD FOR BIPARTITE MATCHING

The first technique was based upon finding the putative corresponding gene-groups, and then
identifying the orthologues. In order to confirm the results derived from the previous technique, and
to establish confidence in our results, we used a different technique for bipartite graph matching. The
second technique applies the Hungarian method to find a maximal matching in the weighted bipartite
graph. Two genomes form a bipartite graph with edges between nodes that have passed the BLAST
filter. Similarity score after the Smith-Waterman alignment provides the weight of an edge. A
maximal matching for a weighted graph is a set of weighted edges with disjoint endpoints such that
the sum of their weights is maximal. The algorithm given in Figure 10 clusters edges in a bipartite
graph iteratively by positively biasing the grouped genes such that the cumulative sum of the weights
of the edges is locally maximum. A single orthologue is treated as a cluster of size one.

 At the conclusion of the maximal matching phase, we have a matching between the genes in �1
and �2 such that no node is matched more than once and the weights between matched genes are high
on average. The next stage is a grouping algorithm which initially treats each matched pair as a gene-
group of size one. Adjacent gene-groups are merged iteratively if the regions where the gene-groups
appear in �1 and �2 are sufficiently close.

We merge gene-groups which overlap within a seed window size b. A matched gene-group
{(�1K, �2J), …, (�1K + r, �2L)}, is considered to have an extended range pair ([minimum{ K, …, K + r } �
b, maximum{ K, …, K + r} + b], [minimum{ J, …, L} � b, maximum{ J, …, L}+ b]). This shows the
regions in �1 and �2, respectively, where the matched genes appear. Two gene-groups with extended
range pair ([l11, u11], [l 21, u21]} and ([l12, u12], [l 22, u22]) are considered to overlap, if both the ranges
[l 11 � b, u11 + b] and [l12, u12] overlap and the ranges [l21 � b, u21 + b] and [l22, u22] overlap.

 15

Algorithm orthologues;

Input: 1. A set S1 of gene-pairs after the Smith-Waterman alignment;
2. A set S2 of the union of set of weighted edges in the putative corresponding gene-groups derived

from �1 � �2 and the transpose of the set of weighted edges in putative corresponding gene-
groups derived from �2 � �1;

3. Much-above factor c, group bias factor f, and preferred factor p;

Output: 1. A set O of triples (�1I, �2J, classification);
{
1. S3 = the set of weighted edges in S1 sorted in descending order by weight;
2. O =�; G =�; S4 = set of gene-pairs of the form �1I � �2J in S2; S5 = �;
3. � ((�1I, �2J, weight) � S3) {% positively bias the weights of grouped edges

4. if ((�1I � �2J) � S4) S5 = S5 + (�1I, �2J, f * weight); else S5 = S5 + (�1I, �2J, weight);}
5. � (�1I, �2J, weight) � S5 { % identify one-to-one matches first

6. if (((degree(�1I) = = 1) && (degree(�2J) = = 1))) { % it is a unique orthologue
7. O = O + (�1I, �2J, unique); S5 = S5 	 (�1I, �2J, weight);}

8. while (S5 � �) { % find the best edge classification
9. pick the next edge (�1I, �2J, weight1) � S5 in descending order by weight;
10. S6 = set of the edges incident upon �1I; S7 = set of the edges incident upon �2J;
11. if (degree(�1I) = = 1 && degree(�2J) = = 1) O = O � (�1I, �2J, clear);
12. else if (degree(�2J) = = 1) { % handle the case when �1I has two or more matches;

13. pick (�1I, �2L, weight2) � S6 such that weight2 is the second highest in S6;
14. if (weight1 � c * weight2) O = O � (�1I, �2J, clear);

15. else if (weight1 � p * weight2) O = O � (�1I, �2J, preferred);
16. else {

17. S8 = subset of S6 such that weight1 � p * (minimum of all weights in S8);
18. S9 = set of triples with every edge of S8 marked as conflict; O = O � S9;
}

19. else if (degree(�1I) = = 1 { % handle the case when �2J has two or more matches;
20. let (�1K, �2J, weight2) � S7 such that weight2 is the second highest in S7;
21. if (weight1 � c * weight2) O = O � (�1I, �2J, clear);

22. else if (weight1 � p * weight2) O = O � (�1I, �2J, preferred);
23. else {

24. S8 = subset of S7 such that weight1 � p * (minimum of all weights in S8);
25. S9 = set of triples with every edge of S8 marked as conflict; O = O � S9;
}

26. else { % both �1I and �2J have two or more matches;
27. let (�1I, �2L, weight2) � S6 such that w2 is the second highest weight in S6;
28. let (�1K, �2J, weight3) � S7 such that w3 is the second highest weight in S7;
29. if ((weight1 � c * weight2) && (weight1 � c * weight3)) O = O � (�1I, �2J, clear);

30. else if ((weight1 � p * weight2) && (weight1 � p * weight3)) O = O � (�1I, �2J, preferred);
31. else {

32. S8 = subset of S7 such that weight1 � p * (minimum of all weights in S8);
33. S9 = set of triples with every edge of S8 marked as conflict; O = O � S9;

}
}

34. S5 = S5 	 S6 	 S7; % remove other edges incident upon these nodes from consideration;}
Figure 8. An algorithm to identify orthologues using first technique

 16

 7 9

 5 6
 8 4

5 0 4 6

 4 9

 3 8

3 3 3 6

 3 9

� 1 1

� 1 2

� 1 3

� 1 4

� 1 5

� 1 6

o n e - to -o n e

m u c h -a b o v e

p r e fe r r e d

c o n f l i c t

p r u n e d
(in s ig n i f i c a n t)

� 2 1

� 2 2

� 2 3

� 2 4

� 2 5

� 2 6

� 2 7

3 7

Figure 9. Bipartite matching of various types of edges for orthologues

The algorithm repeatedly searches for overlapping gene-groups, which are merged to form a

larger gene-group. The search continues until none of the remaining gene-groups overlaps. Note that
the
process is confluent, in the sense that it does not matter in which order the search for overlapping
gene-groups is performed � the same overall result will be discovered. The time-complexity of the
calculation of the final gene-groups is O(N 2) where N is the number of nodes.

The next stage of the technique uses the computed gene-groups of size greater than minsize ��
minimum size of the group �� to alter the weights of edges in the initial graph. Each edge (�1(K+ r),
�2M) which, if considered as a singleton gene-group, would overlap with a gene-group of size minsize
or greater if the calculated gene-groups are positively biased. Note that this will increase all the
weights of edges in gene-groups with size greater than minsize. The weights of other edges are
negatively biased.

We could perform the same process repeatedly until the calculated matching does not change.
Indeed, we experimented with this idea. The calculated gene-groups did not change significantly in
each iteration in the process, but it was not stable. This occurred because the maximal matching
algorithm will always match a gene if possible, and hence some of the edges in the maximal matching
have low similarity scores and are unlikely to represent useful biological information. These parts of
the matching altered in each iteration.

Finally the maximal matching and gene-group calculations are repeated with these new edge
weights. The justification for the new calculation is that the original maximal matching may not have
chosen to match two genes that are part of a gene-group because there was an equally likely match
candidate that was not part of the gene-group. By penalizing the matches which are inside a putative
gene-group in the recalculation, the maximal matching will build larger gene-groups.

Example 4

 Consider the diagram illustrated to the left of Figure 11. Suppose a maximal matching is given by
the solid lines, and the remaining edges are shown as dashed lines. The first two matching edges are
considered as singleton gene-groups. Given a seed window size of one, the extended range pairs are
illustrated by vertical lines. Since both ranges overlap they are merged into a single group. The
result of the final calculation is shown to the right. Supposing that minsize is two, there are two gene-
groups of size two or greater, illustrated with different shadings. Every dashed edge and each solid
edge that is part of a gene-group of size two or greater is positively biased by the bias-factor. The
bias-factor is subtracted from other dashed edges and solid edges which form a singleton gene-group.

 17

Algorithm Hungarian-variant-orthologues;

Input: 1. G 	 a set of weighted edges in bipartite graph;
2. A maximal matching S1 from the Hungarian method;
3. A seed window size b;
4. A bias-factor f to positively bias the genes in a putative corresponding gene-group;
5. A predetermined number of iterations N;

Output: 1. A set S of grouped orthologues (including single element groups);

{ Iteration-index = 1;
while (iteration-index � N){ % repeat a reasonable number of times
 1. S2 =�; S =�; % S2 is the initial set of single element groups

2. � (pairs (�1K, �2M) � S1) { % Initialize
3. S2 = S2 + ([K, K], [M, M], {(�1K, �2M)});
4. � ([l11, u11], [l 21, u21], G1) � S2 {

5. S2 = S2 	 {([l 11, u11], [l 21, u21], G1)};
6. � ([l12, u12], [l 22, u22], G2) � S2 { % start merging neighboring groups

7. if (((l11 	 b � l12 � u11 + b) || (l11 	 b � u12 � u11 + b)) &&
 ((l21 	 b � l22 � u21 + b) || (l21 	 b � u22 � u21 + b)) {
% ranges overlap so merge
8. S2 = S2 	 {([l 12, u12], [l 22, u22], G2)};
9. l11 = minimum(l11, l12); u11 = maximum(u11, u12);
10. l21 = minimum(l21, l22); u22 = maximum(u21, u22); % range of merged groups
11. G1 = G1 + G2;

}
}

}
12. S3 =�; % S3 is new graph with biased edges
13. � (�1I, �2J, weight) � G {

14.if (([l11, u11], [l 21, u21], G1) � S
where ((l11 	 b � I � u11 + b) && (l21 	 b � J � u21 + b)))

15. weight = weight * (1 + f);
16. else weight = weight * (1 	 f);
17. S3 = S3 + {(�1I, �2J, weight)};

}
18. S1 = maximal matching on graph S3;
19. else I = I + 1;

}
Figure 10. An algorithm for the Hungarian method variant to identify orthologues and gene-groups

 18

matches

positively
biased

negatively
biased

Group 1

Group 2

Range

Figure 11. Merging gene-groups in the Hungarian variant method

7. IDENTIFYING FUSED GENES

A fused gene-group has two genes in one genome which match with different portions of a gene in
the other genome as shown in Figure 12.

begin11 end11 begin12 end12

begin2 end2

begin11 end11 begin12 end12

begin2 end2

begin11 end11 begin12 end12

begin2 end2
 A: Fused gene B: Fused gene with insertion C: Fused gene with deletion

Figure 12. Types of fused genes

Let us assume that two consecutive genes �1I and �1(I + 1) fuse to form a new fused gene �2J. The

following set of rules (1A) to (1D) is used to identify exact gene-fusion (see Figure 12A). The set of
rules (2A) to (2D) is used to identify fused genes with insertions (see Figure 12B). The set of rules
(3A) to (3D) is used to identify fused genes with deletions (see Figure 12C). The rationale for � and �
is that there may be some mismatch allowed due to imprecision involved in the sequence alignment
process or sequencing errors. Equation 1D is derivable from the application of 1A, 1B, and 1C;
Equation 2D is derivable from the application of Equations 2A, 2B, and 2C; and Equation 3C is
derivable from the application of Equations 3A, 3B, and 3C .

length(�1I) + length(�1(I + 1)) � � � length(�2J) � length(�1I) + length(�1(I + 1)) � � (1A)
begin(�1(�1I � �2J)) � � � begin(�2(�1I � �2J)) � begin(�1(�1I � �2J)) � � (1B)
end(�1(�1(I + 1) � �2J)) � � � end(�2(�1I � �2J)) � end(�1(�1(I + 1) � �2J)) � � (1C)
end(�1(�1I � �2J) � 2� �� < begin(�1(�1(I+1) � �2J)) � end(�1(�1I � �2J)) + 2� � � (1D)

length(�1I) + length(�1(I + 1)) + � < length(�2J) (2A)
begin(�1(�1I � �2J)) � � � begin(�2(�1I � �2J)) � begin(�1(�1I � �2J)) � � (2B)
end(�1(�1(I + 1) � �2J)) � � � end(�2(�1I � �2J)) � end(�1(�1(I + 1) � �2J)) � � (2C)
end(�1(�1I � �2J) + 2� + � < begin(�1(�1(I+1) � �2J)) (2D)

 19

517520516510500

383383383383383

58

76757673

58625758

63

0
100
200
300

400
500
600

1 2 5 10 15
Seed window size

cumulative

unique

clear

preferred

Figure 13 : Effect of seed window size on number of orthologues and corresponding gene-groups

length(�1I) + length(�1(I + 1)) � � > length(�2J) (3A)
begin(�1(�1I � �2J)) � � � begin(�2(�1I � �2J)) � begin(�1(�1I � �2J)) � � (3B)
end(�1(�1(I + 1) � �2J)) � � � end(�2(�1I � �2J)) � end(�1(�1(I + 1) � �2J)) � � (3C)
end(�1(�1I � �2J) � 2� � � > begin(�1(�1(I+1) � �2J)) (3D)

8. RESULTS AND DISCUSSION

Five genomes �� partial E. coli, H. influenzae, partial B. subtilis, M. genitalium, and M. jannaschii,
were compared pair-wise. These genomes were among the first to be sequenced. E. coli and H.
influenzae belong to the gram-negative group of bacteria; M. genitalium and B. subtilis belong to the
gram-positive group of bacteria; and M. jannaschii is an archaeon. We compared 1304 genes of E.
coli5 versus 1680 genes of H. influenzae, 1680 genes of H. influenzae versus 1852 genes of B.
subtilis, 1852 genes of B. subtilis versus 1735 genes of M. jannaschii, 1852 genes of B. subtilis versus
472 genes of M. genitalium, and 472 genes of M. genitalium versus 1735 genes of M. jannaschii. E.
coli and H. influenzae are phylogenetically very close, H. influenzae and B. subtilis are somewhere
in-between, and B. subtilis and M. jannaschii are further away in evolution. The results were
repeated with different seed window sizes for neighborhood proximity to see the variations in
groupings. The results have been summarized in the following subsections.

8.1 Effect of Seed Window Size on Orthologues and Gene-groups. Figure 12 shows the effect of
changing seed window size (for neighborhood proximity) on the number of orthologues. This
experiment was run by comparing 1304 genes of E. coli and 1680 genes of H. influenzae. The graph
shows that the number of orthologues saturates after the seed the window size of ten. The variation in
the number of corresponding gene-groups and orthologues is less than 4 percent, which is well within
tolerance limits, suggesting that the seed window size does not have a significant effect on the
identification of orthologues or gene-groups. This is to be expected since our scheme takes care of
variably sized groups dynamically. The only contributing effect is that the choice of larger window
size marginally increases the number of grouped genes. As the genes inside the gene-groups are
positively biased, some of the marginally shuffled genes in the proximity become clear orthologues
and some of them become preferred orthologues.

5 for historical reasons. Our first experiment was performed on 1304 genes of curate E. Coli present in EMBL
database in 1995.

 20

A: groups in proximity B: in-order gene-groups C: reverse gene-group D: permuted gene-groups

E: Duplicated gene-groups F: Multiple gene-groups

Figure 14. Different classification of corresponding gene-groups

8.2 Gene-group Classification and Findings. Using cross-species comparison, gene-groups have
been classified into different categories: in-order, reverse, permuted, fused, multiple, and duplicated.
Fused gene-groups can be further subclassified as exact fusion, fusion with deletion, and fusion with
insertion. An in-order gene-group has the corresponding gene-groups in the same sequence as shown
in Fig 14B. A reverse-order gene-group has the matching genes in one of the groups in ascending
order, and the corresponding genes in the other group in descending order, as shown in Figure 14C.
A permuted gene-group (see Figure 14D) has at least one matching gene-pair which does not
preserve any order. A duplicated group has at least one gene in at least one of the groups which has
been duplicated in the corresponding gene-group of another genome (see Figure 14E). A multiple
gene-group has a subset of gene-group duplicated at more than one location in a genome (see Figure
14F). Multiple gene-groups include paralogous gene-groups which can not be clearly distinguished
without use of the knowledge of metabolic pathways and biological reasoning.

8.3 A Comparative Study of Orthologues and Corresponding Gene-groups. Table 1 shows a
statistical study of different types of corresponding gene-groups (in �1 �2): single denotes unique
corresponding gene-groups, multiple I denotes multiple duplicated gene-groups in �2 corresponding
to a gene-group in �1, multiple II denotes multiple duplicated gene-groups in �1 corresponding to a
gene-group in �2, duplicate I denotes the gene-groups which have one or more duplicated genes in
the corresponding gene-group in �2 for a gene-group in �1, duplicate II denotes one or more
duplicated genes in the corresponding gene-group in �1 for a gene-group in �2, fused I denotes the
gene-pairs in �1 which are fused in �2, and fused II denotes the gene-pairs in �2 which are fused in �1.

We counted the total number of orthologues as the sum of orthologues in three categories,
namely, unique, clear, and preferred; conflicting orthologues need to be resolved by biological
reasoning, and are not accounted for in our statistics. Under this criterion, 39.6 percent of E. coli
genes (516 out of 1304 genes) are orthologous with H. influenzae genes, 24.5 percent of B. subtilis
genes (453 out of 1852 genes) are orthologous with H. influenzae genes, 38.2 percent of M.
genitalium genes (180 out of 472 genes) are orthologous with B. subtilis genes, 17 percent of M.
genitalium (80 out of 472 genes) genes are orthologous with M. jannaschii genes. In addition, 24
percent of E. coli genes (313 out of 1304 genes) have unresolved matchings with H. influenzae genes,
8.8 percent of B. subtilis genes (163 out of 1852 genes) have unresolved matchings with H. influenzae
genes, 5.9 percent of M. genitalium genes (28 out of 472 genes) have unresolved matchings with B.
subtilis genes, 1.5 percent of B. subtilis genes (29 out of 1852 genes) have unresolved matchings with
M. jannaschii genes, and 5.9 percent of M. genitalium genes (28 out of 472 genes) have unresolved

 21

Table 1. Corresponding gene-groups in various genomes

Partial EC - HI Partial BS - HI Partial BS - MJ Partial BS - MG MG - MJ

Single 88 60 22 18 11
Multiple I 82 45 12 22 9
Multiple II 63 50 14 18 7
Duplicated I 170 90 21 38 38
Duplicated II 193 92 21 48 37
Fused I 4 3 0 0 0
Fused II 0 0 0 0 0

unique clear preferred conflict

383
341

146146

55
76

35
1162

57
77

2348
23

313

163

28
2928

0

100

200
300

400

unique clear preferred conflict

Partial EC - HI

Partial BS - HI

Partial BS -
MG
Partial BS - MJ

Figure 15. A comparative study of orthologues in multiple genomes

matchings with M. jannaschii genes. The phylogenetically close microbes (Olsen et. al, 1994), such
as E. coli versus H. influenzae and B. subtilis versus M. genitalium, share more orthologues compared
to microbes further away such as B. subtilis versus H. influenzae. Evolutionary distant genome pairs
(Olsen et. al, 1994) such as B. subtilis versus M. jannaschii or M. genitalium versus M. jannaschii,
have a much smaller percentage of orthologous genes.

The statistics in Table I show that as the phylogenetic distance increases, the number of
corresponding gene-groups decreases. M. jannaschii shows the least similarity. Phylogenetically
close genomes such as E. coli and H. influenzae share the maximum number of corresponding gene-
groups, including a very large number of duplicated gene-groups, suggesting duplication as a
common mechanism of evolution. The normal size of gene-groups is 2 to 5 with the maximum size
as large as 27 in case of rRNA proteins between E. coli and H. influenzae. Fused genes are present in
genome-pairs E. coli and H. influenzae, and H. influenzae and B. subtilis.
Orthologues statistics in Table I and Figure 16 shows that phylogenetically close genome pairs tend
to have a higher percentage of orthologues in the corresponding gene-groups while phylogenetically
distant genome pairs have a lower percentage of orthologues in the corresponding gene-groups,
suggesting more shuffling as the phylogenetic distance increases. For phylogenetically close
genomes E. coli and H. influenzae, the similarity scores of the unique orthologues varied from 49 to
98 with a average around 76. For phylogenetically distant genome pairs the similarity scores of
unique orthologues varied from 45 to 70 with an average score of 55.

A comparison of orthologues of H. influenzae, B. subtilis, and M. jannaschii suggested that there
are 104 orthologues6 which are common in all three. There were 94 orthologues shared between B.

6 Sum of number of unique orthologues + number of clear orthologues + number of preferred orthologues

 22

250

139

54
3822

108

55

15
31

13

86
53
132011

37 36
172214

65 51

71317 8 70 0 0
0

50

100

150

200

250

Single Multigene I Multigene I IDuplicated IDuplicated
II

Fused

Partial EC - HI

Partial BS - HI

Partial BS - MJ

Partial BS -
MG
 Mg - MJ

Figure 16. A comparative study of orthologues genes in corresponding gene-groups

subtilis and M. jannaschii which were not orthologous in B. subtilis and H. influenzae, and there were
349 orthologues shared between B. subtilis and H. influenzae which were not orthologous in B.
subtilis and M. jannaschii. Comparing with grouped-orthologues in all three suggests that significant
shuffling takes place in all three genomes.

A comparison of the orthologues of M. genitalium, B. subtilis, and M. jannaschii suggested that
44 orthologues are common in all three. There are 136 orthologues shared between B. subtilis and M.
genitalium which do not occur in M. jannaschii. There are 154 orthologues shared between B.
subtilis and M. jannaschii which do not occur in M. genitalium. There are 36 orthologues shared
between M. genitalium and M. jannaschii which are absent in B. subtilis.

Out of 104 common orthologues shared by H. influenzae and B. subtilis and M. jannaschii, 25
orthologues were also found in M. genitalium. With the knowledge that M. genitalium is a very small
genome, we conclude that these 25 genes are relatively conserved. A detailed comparative study of
differences and conserved orthologues is outside the scope of this paper, and will be presented
separately.

9. CONCLUSION

In this paper, we have presented a technique to model pair-wise comparison of two genomes as a
bipartite graph matching problem. We have presented two different approaches and algorithms to
identify the best-matching edges and gene-groups. The first approach finds the putative gene-groups
first and then positively biases the edges between putative gene-groups to identify different classes of
orthologues and corresponding gene-groups. The second approach is a variation of the well-known
Hungarian method to identify the gene-groups and orthologues iteratively until no better groups can
be found. The second approach also uses heuristics to positively bias the edges starting within a
group. Both the approaches give very similar results.

The study of pair-wise comparisons of five genomes suggests that evolutionary distant
organisms share less numbers of common orthologous genes and corresponding gene-groups.
Duplication is a common mechanism for evolution. Evolutionary close genomes share a high
percentage of duplicated genes and some fused genes, while evolutionary distant genomes share a
smaller percentage of duplicated genes and have no fused genes. As the evolutionary distance
increases, the shuffling of orthologous genes increases. In addition to conserved paralogues, there are
around 25 orthologues which are present in all five of the genomes.

 23

ACKNOWLEDGEMENTS

This research was initiated during the first author’s visit at EMBL during Fall 1995. The first author
acknowledges lively discussions with the colleagues at EMBL, especially with Chris Sander and his
group during Fall 1995.

REFERENCES

1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson (1983), “Molecular Biology

of THE CELL,” Publishers: Garland Publishing, Inc.
2. Almgren, J., J. Anderson, S. Anderson et. al. (1995) “Sicstus 3 Prolog Manual,” Swedish Institute

of Computer Science
3. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, D. J. Lipman (1990), “Basic Alignment Search

Tools,” J. Mol. Biol., 215: 403-410
4. Bult, C. J., O. White, G. J. Olsen et. al. (1996), “Complete Genome Sequence of the

Methanogenic Archaeon, Methanococcus jannaschii,” Science, 273: 1067�1044
5. Devereux, Haberli, and Smithies (1984), “A Comprehensive Set of Sequence Analysis Program

for Vax,” Nucleic Acid Research, 12(1): 387�395
6. Fitch, W. M. (1970) “Distinguishing Homologous from Analogous Proteins,” Systematic

Zoology, pp. 99 � 113
7. Fleischmann, R. D., M. D. Adams, O. White et. al. (1995) , “Whole-Genome Random

Sequencing and Assembly of Haemophilus influenzae Rd,” Science, 269: 496�512
8. Fraser, C. M, J. D. Gocayne, O. White et. al. (1995), “The Minimal Gene Complement of

Mycoplasma Genitalium,” Science, 270: 397�403
9. Koonin, E. V., R. L. Tatusov, and K. E. Rudd (1995), “Sequence Similarity Analysis of

Escherichia coli Proteins: Functional and Evolutionary Implications,” Proc. of Natl. Acad. Sci.,
USA, 92: 11921�11925

10. Koonin, E. V., A. R. Mushegian, M. Y. Galperin, and D. R. Walker (1997), “Common and
Distinctive Features of Archeal and Bacterial Genomes Revealed by Computer Analysis of
Protein Sequences,” to appear in Molecular Microbiology

11. Labedan, B. and M. Riley (1995), “Widespread Protein Sequence Similarities: Origin of E. coli
Genes,” Journal of Bacteriology, 177: 1585�1588.

12. Mushegian, A. R. and E. V. Koonin (1996), “A Minimal Gene Set for the Cellular Life Derived
by Comparison of Bacterial Genomes,” Proc. Natl. Acad. Sci. USA, 93: 10268 � 10273

13. Olsen, J., C. R. Woese, and R. Overbeek (1994), “The Winds of Evolutionary Change: Breathing
New Life into Microbiology,” Journal of Bacteriology, Vol. 176, 1:1�6

14. Papadimitrou, C. H., and K. Steiglitz (1982) “Combinatorial Optimization: Algorithm and
Complexity,” Publisher: Prentice Hall

15. Setubal, J. and J. Meidanis (1997), “Introduction to Computational Biology,” PWS Publishing
Company

16. Tatusov, R. L., A. Mushegian, P. Bork et. al., (1996), “Metabolism and Evolution of
Haemophilius Influenzae Deduced From a Whole-Genome Comparison with Escherichia Coli,”
Current Biology, Vol. 6, 3: 279�291

17. Waterman, M. S. (1984), “General Methods for Sequence Comparison,” Bull. Math. Biol., 46:
473�500

18. Waterman, M. S.(1995), “Introduction to Computational Biology: Maps, Sequences, and
Genomes,” Publishers: Chapman & Hall

