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ABSTRACT. In this paper, we describe a framework for an automated pair-wise
comparison of complete microbiajenomes to derive putative orthologous genes
functionally equivalent counterparts of genes in different genomes, corresponding
gene-groups— clusters of neighboring genes which have some natural pressure to
occur in close proximity, fused genes separate adjacent genes in one genome which
join together to form a single gene in another genome, gene duplication, and
duplicated corresponding gene-groups. The framework has three stages: BLAST
(Basic _Local Aignment _Sarch_Tol) — a popular sequence search technigue
comparison to filter gene-pairs with high similarity, alignment of filtered gene-pairs
using the Smith-Waterman alignment a pair-wise sequence alignment based on
dynamic programming technique, and bipartite graph matching and fuzzy logic
techniques to identify orthologues and corresponding gene-groups. The identification
of orthologues is based upon modeling gene matchings from two genomes as bipartite
graph matching. Two different approaches and the corresponding algorithms to
identify orthologues have been described. Both the approaches give very similar
results. Five microbial genome pairs partial E. coli (1304 genes)versusH.
influenzae H. influenzaeversus partiaB. subtilis (1852 genes), partidd. subtilis

(1852 genes) versudl. genitalium partial B. subtilis (1852 genes) versuM.
jannaschij and M. genitalium versusM. jannaschii— have been compared. A
comparative analysis of results related to putative orthologues, corresponding gene-
groups, gene duplication, fused genes, gene shuffling gene correspondence such
that one of the matching genes occurs outside a corresponding gene-gamapgene
conservation in various genomes is presented.
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1. INTRODUCTION

Microbes (bacteria and archaea) serve as model organisms for understanding basic metabolic
functions. Microbes are also important targets in biotechnology, disease treatment, and ecology, etc.
The first complete genome of a cellular organism was sequenced in 1995 [7]. Since then, many
others have been completed. Some of the completed on&s aodi, M. genitalium[8], and M.
jannaschii[4]. Seven bacterial and three archaeal genomes will have been reported by the end of
1997.

A natural step in understanding microbial genomes is to chart out the functionality and the
variations in the functionality of genes and families of genes. Due to the size of genomes and
increasing rate of availability of complete sequences, a cost-effective and time-efficient way is to
perform a fully-automated pair-wise cross-species computational comparison of genome sequences.

A pair-wise cross-species computational comparison of complete genomes will help in the
identification of gene functions, function and evolution of gene families, gene conservation,
variations of functionality within various organisms [12], and mechanisms of evolution. The
information about clustered gene-groups will help in identifying higher order functions, and help in
relating gene-groups to metabolic pathways [17]. In addition, the identification of conserved genes
will help in refining the phylogenetic tree- a hypothetical evolution tree- [13] further.

In order to compare two genomes, exact functional counterparts of genes in genomes have to be
identified and compared.Homologuesare genes derived from some common ancestral gene.
Paralogues(para = in parallel) are homologous genes comprising a multigene family (as a result of
gene duplication) with possible variations in functionality. Due to the presence of many multigene
families in genomes which are homologues, one has to identify the exact functional counterpart of a
gene in another species out of a multigene family. These functional counterparts are called
orthologues(ortho = exact) that have arisen from speciation [6]. diieologuescan be the only
basis of gene comparison since the history of orthologous genes represents the history of species.
However, orthologues have to be carefully identified. Current similarity search techniques can
identify homologues. Orthologues and paralogues are homologues, thus current similarity search
techniques are unable to discriminate between the two groups. In this paper, we are mainly
concerned with the identification qdutative orthologuesnd thecorresponding gene-groups-
clusters of neighboring genes which have some natural pressure to occur in preximigenome-
pairs comprising of putative orthologues. However, our technique also derives and separates
duplicated genes and duplicated gene-groups from putative orthologues.

In this paper, we describe two techniques and the corresponding algorithms to derive putative
orthologues and corresponding gene-groups. There are three phases in the framework: the BLAST [3]
comparison phase, the Smith-Waterman alignment [19,20] phase, and a bipartite graph matching
phase. The BLAST comparison phase provides a time-efficient mechanism to identify possible gene-
pair matchings and prune out dissimilar gene-pair correspondences. The Smith-Waterman alignment
phase aligns the filtered gene-pairs to identify the regions of similarity. The last phase models the
matchings of two genomes as a weighted bipartite gra@hgraph with two sets of nodes such that
nodes in one set can have edges only with nodes in the othersseth that each genome is placed
in a separate ordered set, and integrates heuristics with bipartite graph matching algorithms to identify
putative orthologues and corresponding gene-groups. The bipartite graph matching uses two different
variations: best first approach and a variation of the Hungarian method (Papadimitrou, 1982). In the
best first approach, the putative corresponding gene-groups are first identified, and the gene-pairs in
the matching gene-groups are positively biased during the identification of orthologues. The
variation of the Hungarian method tries to achieve the local maximization of a cumulative sum of
scores to identify corresponding gene-groups. The technique iteratively identifies putative



corresponding gene-groups, iteratively biases the gene-pair matchings within a putative gene-group,
and treats orthologues as a special case of gene-groups with a group-size of one. Putative gene-
groups with a distance less than a threshold are merged. The process is repeated until gene-groups
can not be extended further. The developed prototype software uses the integration of Prolog [18]
using Sicstus 3.2 [15] and C and Unix system routines, and is portable across different architectures
supporting these languages and the BLAST software package. The current implementation uses the
GCG software package [5] for local alignment variant of the Smith-Waterman algorithm. For a
typical prokaryotic genome such && influenzaeand B. subtilis a typical Silicon Graphics
workstation takes approximately 7200 seconds for the BLAST phase, approximately 1800 seconds
for the Smith-Waterman alignment phase, and approximately twenty seconds for the bipartite
matching phase. The use of Prolog and the dynamic invocation of shells in UNIX routines slows
down the overall time-efficiency of the prototype software by approximately two to three times.
However, the automated comparison of two genomes is handled in realistic time, and the technique
is suitable for distributed computing.

The developed software has been utilized to compare five available genomes:Epantital
(1304 curate genes). influenzaepartialB. subtilis(1852 genesM. genitalium andM. jannaschii
The comparison results suggest the presence of putative orthologues, putative corresponding gene-
groups, different types of correspondence in gene-groups, duplicated gene-groups, putative fused
genes, shuffling of genes, and conserved genes.

The contributions of this paper are:

(1) the development of algorithms to identify orthologues, corresponding gene-groups, types of

corresponding gene-groups;

(2) the integration of the information derived from the Smith-Waterman algorithm to identify

gene duplications, gene-group duplication, and fused genes;

(3) the development of an integrated software, and

(4) a comparative study of five genome-pairs.

The paper is organized as follows. Section 2 describes some background and definitions needed
for modeling. This section has been made generic to improve the readability to the researchers in
both Computational Science and Biological Science communities. Section 3 describes an overview
of various stages of software in finding the orthologues. Sections 4 and 5 describe the first approach:
Section 4 describes an algorithm to identify corresponding gene-groups, and Section 5 describes an
algorithm to find the best matchings in a bipartite graph. Section 6 describes a variant of the
Hungarian method and the corresponding algorithm to identify orthologues and corresponding gene-
groups. Section 7 presents a technique to derive fused genes. Section 8 briefly presents a comparison
of the five genome-pairs. Section 9 concludes the paper.

2. BACKGROUND AND DEFINITIONS

In this section we briefly describe basic definitions related to microbial genomes, basic alignment
techniques, some mathematical concepts needed in this paper, and definitions related to graphs and
bipartite matching. Subsection 2.1 describes the basics of genomes. Subsection 2.2 describes the
basic concepts of sequence searching and alignment. Subsection 2.3 describes the basic notions
related to gene-groups and operensan ordered set of genes involved in a complex functionality in

a metabolic pathway. Subsection 2.4 describes some mathematical concepts needed in this paper.
Subsection 2.5 lists the mathematical notations used in this paper. Subsection 2.6 describes the
notations needed to model a genome comparison using bipartite graph matching. Section 2.7



describes the basics of the Hungarian method well known bipartite graph matching technigue
used in one of the algorithms.

2.1 Genome Related BackgroundThe genome of an organism is encoded within molecules of
DNA. A molecule of DNA is a sequence of four nucleotides: adenine ‘A’, cytosine ‘C’, guanine ‘G’,
and thymine ‘T'. A DNA molecule is represented by a sequence of characters from the alphabet
{A,'C, 'G’, “T'}. A protein is a sequence of different types of molecules collectively known as
amino acids. Commonly, the sequence of proteins comprises alanine ‘A’, arginine ‘R’, asparagine
‘N’, aspartic acid ‘D’, cysteine ‘C’, glutamic acid ‘E’, glutamine ‘Q’, glycine ‘G’, histidine ‘H’,
isoleucine ‘I', leucine ‘L', lysine ‘K’, methionine ‘M’, phenylalanine ‘F’, proline ‘P’, serine ‘S’,
threonine ‘T, tryptophan ‘W’, tyrosine Y’, and valine ‘V’. The alphabet {'A’, ‘C’, ‘D’, 'E’, 'F’,
‘G HL T, K L, MY N P QL 'R (S, T VY, WY Y is denoted by A.
A microbial genomedenoted by subscripted capital Greek leligis an ordered set of pairs of
the form <{, y1), ..., G(n, Yn)>. Eachy, is a sequence of the form;<s., s> (1 <1 < N) where se
N for DNA and s € A for protein. Eachy, is a control region preceding In this paper, we are
interested in the comparison of protein sequences of the faim < y.n> and 92y, ..., Yav>.
Homologuesare similar genes derived from some common ancestral géaealoguesare
homologous genes in a multigene family as a result of gene duplication [6]. Paralogous genes may
have possible variations in functionality. Arthologueis the exact functional counterpart of a gene
in another genome that has arisen from speciation [6]. The history of an orthologous gene reflects the
history of the species.

2.2. Sequence Searching and Sequence Alignment TechniquBso genetic sequences are similar,

if there is a significant match between them after limited shifting of charac®eguence alignment

is the process of aligning similar sequences together in a way that asserts a correspondence between
characters that are thought to derive from a common ancestral sequence. Aligning a set of sequences
requires the introduction of spacing characters referred tndats If the aligned sequences did

indeed derive from a common ancestral sequence, then indels represent possible evolutionary events
in which characters were either inserted or deleted.

The BLAST software [3] uses local alignment to identify similar sequences. It is based upon
selecting a small subsequence, using string matching to identify locations of matches, and expanding
the size of matched segments at the identified locations. The similarity searches of BLAST are
asymmetric: comparing a sequengcevith y; may not give the same similarity score as comparing a
sequence; with v, and the comparison of the same sequepctsy, andy; to v, gives different
scores for different sequences. However, BLAST is time efficient.

The Smith-Waterman algorithm [19] is a matrix-based dynamic programming technique to find
out the optimum pair-wise sequence alignment. The Smith-Waterman algorithm is more precise than
BLAST, and the order of gene-pair comparison does not affect the similarity score derived using the
Smith-Waterman algorithm. The time-complexity of the Smith-Waterman algorithnNié) @ere
N is the size of two aligned sequences.

2.3. Gene-groups and OperonsA gene-grougs a cluster of neighboring geneg % vk ...> (1< J

<Il+r, J<K<J+rwhere ris a positive bounded integer with a small upper bound such as ten)
which have a natural pressure to occur in proximity. A gene-group may have insertions,
permutations, or deletions of genes with reference to a corresponding gene-group in another genome.
A corresponding gene-grougysy vi Vik -.- > (I < J < K) in the genomé&; matches with a
corresponding gene-groufyzm yanvzpe -.-> (M < N < P) inI'; such that, in generak, andy,; andyik



etc. are similar to one of the genes in the sequenggayzpr ...>. Aconserved gene-stringy, v+ 1
Yi+2 ...y (3 >1) [17] is a special case of corresponding gene-groups such that there is no gap
between two consecutive genes. If we allow deletion or insertion of single genes within a conserved
gene string, the resulting cluster is still considered a gene-groughufflingis a correspondence
between two putative orthologous genes such that one of the genes lies in a corresponding gene-
group. However, the number of shuffled genes is much smaller than the number of matching genes in
the corresponding gene-groups.

An operon[1] is a set of neighboring genes which are transcribed as a single unit and has
common regulatory elements. Often, genes within an operon belong to the same pathway or encode
different units of a single protein.

2.4. Some Mathematical ConceptsA sequence is in partial order if two consecutive elements in the
sequence are related with a relationghighich is transitive: st s; (S precedesssand sn s implies
S 7 &, and antisymmetric; & s implies s¢ s where &’ is inverse relation oft’. However, $n S
and $n S¢ does not imply any order betweenpa®d &. For example, the sets {1}, {1, 2}, {1, 2, 3},
{1, 2, 4} are in partial order with relationshig” (proper subset) Greatest lower boundlenoted by
], of two consecutive elements in partial order is given by the lower value in the relationship. For
example, if $n Sthen $ 1S = S.

A set S of data elements of the forp,(y2x) when transposed will give a transposed set with
data elements of the formy, y11). We will denote the transposed set by the Set S

2.5. Mathematical Notations We denote genomes by subscripted capital Greek Igtterxapping of

two genomed’; andI’; by I'; o I' (or ', o I'y), a set within curly brackets {...}, a tuple within
brackets (...), a sequence within angular brackets <...>, a range within square brackets [...], number
of elements in a set S by |S|, membership of a set byion of two sets by, union of multiple sets

by U, intersection of two sets by, empty set by, set difference by, deletion of an element in a

set by—, insertion in a set by +, subsetdyexistence of an element Byforall by V.

We denote the Smith-Waterman alignment of two gemeandy,; by y1 <> V25 the aligned
version ofyy by mi(y1 <> 729, the aligned version ab; by (1 <> v25), the start position of aligned
version ofyy; by start(m,(yu <> v25), the end position of aligned versionyef by endn(yn <> v23)),
the start position of aligned versionyef by start(n,(v1 <> v24)), the end position of aligned version
of o3 by endmy(y1 <> 29)-

For bipartite graph matching, we denote an edge:hyy4;) (or (v25 v1))) Wherey;, € T'; andyz;

e I',, the mapping of a geng € I'; to a genegy; e I'; by vy o v23 the source-nodg, of an edgey,
v29 by mi(y11, 123), the sink-noder,; of an edgey, v23) by m(vi, 120), the set of source-nodes of a set
of edges S byI,(S), and the set of sink-nodes of a set of edgesI$:(S).

We use natural language with C-like syntax to express algorithms, and “%” to denote comments
in the algorithms.

2.6 Graphs and Genome Comparison ModelingA graph has a set of nodes of the form,{\.,
V\} and a set of edges connecting two nodes such that each edge is of the faf)wvidere 1< 1, J
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Figure 1. A strongly connected graph

Figure 2. Genome comparison as bipartite graph

< N. A degree of a node is the number of edges incident upon the node. For example, theémode V
Figure 1 has a degree 2. A path in a graph is a sequence of edges which connect two nodes in a
graph. A strongly connected graph (see Figure 1) has a path between any pair of two nodes. A
bipartite graph has two sets of nodes such that there are edges from one set of nodes to another set of
nodes. However, there are no edges within the same set of nodes. A weighted bipartite graph has
different weights for different edges as shown in Figure 2.

A genome is a sequence of genes. Each gene is modeled as a node. A pair of genomes is
modeled as a weighted bipartite graph such that two similar genes in different genomes have edges
between them, and the similarity score between two genes is the weight of the corresponding edge.

2.7 The Hungarian Method for Matching Bipartite Graph. The Hungarian method [14] is a well-
known technique to find maximal matchings in bipartite graphs. Essentially it works as follows.

Initially the matching is empty: there are no edges in the matching. The Hungarian method
continually searches for aaugmenting patfin the graph, that is, a sequence of edges, ¥ (Y23
Y1k) (Y1, Y2u) (yau, yam) -..> such that each odd-numbered edge is not a part of the current matching,
and each even-numbered edge is a part of the current matching, and the sum of the weights of the
odd-numbered edges is greater than the sum of the weight of the even-numbered edges. When an
augmenting path is found the matching is updated by adding the odd-numbered edges to the matching
and removing the even-numbered edges. Clearly the new matching has a greater total weight than the
previous matching. When no augmenting paths exist the matching is maximal. The time-complexity
of the Hungarian method to find a maximal matchin@( 3), whereN is the number of genes.

Example 1

The bipartite graph illustrated in Figure 3 has four nodes in the first set and four nodes in the
second set. The set of edges i81{(y21), (Y11, Y22), (12, Y21), (Y12, Y24), (Y13, V22), (Y13, Y24), (V140 Y23)}-
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Figure 3. The Hungarian method for bipartite graph matching

Using the Hungarian method, an augmenting path is givenyay w6) (y11, v22), (Y22, Y13), (Y13,
v24) (Y24, Y12)> such that the sum of weights of the edges, (y11), (Y22, Y13), and {24, y12) iS greater
than the sum of the weights of the edges 122) and {13, y24). Adding the odd-numbered edges and
deleting the even-numbered edges results in the matching shown on the right of Figure 3. The
process is repeated until there are no more augmenting paths. The final matchings are given by the

solid edges {11, V21), (Y12, Y24), and {13, 722).
3. OVERALL SCHEME TO IDENTIFY ORTHOLOGUES

In this section, we describe an overall scheme to derive orthologues and corresponding gene-groups.
As shown in Figure 4, there are four stages of identifying orthologues, and there are two parallel
streams in the BLAST phase. This parallel streams are caused due to the asymmetry of comparison
present in the BLAST comparison. We denote the first stream by ‘A’ and the second stream by ‘B’
for convenience.

3.1. Stage 1: Gene-pair Filtering by the BLAST ComparisonThe input to this stage is a pair of
genomed’; andI',, and the output of this stage is a set of gene-pairs of the farmd or (y2a y1)
wherey,, is a gene i, andy,; is a gene if,. Every gene (¥ | < number of genes in a genome) in
one genome is compared with the other complete genome to identify the set of potentially similar
genes. In Stage 1A, the genedofare compared againkt, and in Stage 1B, the geneslafare
compared againdt;. A BLAST search process is invoked for every gene search. After the BLAST
search, the two similarity scoréggh scoreandchance expectation valee obtained. Those gene
comparisons which have a similarity score less than a threshold wahes€ore< 50 andchance
expectation value 10°) are pruned. In order to avoid any false negatives, conservative cutoff values
are chosen. After identifying the set @ filtered pairs fromi, o I'y, the elements in the set &e
transposed. The transposed Sgtis merged with the set of filtered pairs derived fionw I, and

duplicates are removed. This merged set is passed as an input to stage 2.

3.2. Stage 2: Pair-wise Alignment using Dynamic Programmind.he input to this stage is a set of
filtered gene-pairsy(, v2;) from Stage 1. The output of this stage is a 9-tuple of the fafm-L,
start(mi(y.)), endna(yn)), star(na(y29)), endnz(y2)), length of match, maximum length of mismatch,
percentage similarity scoye Every gene pairy{,, v2j) (Or (y2«, vu)) filtered from Stage 1 is aligned

using a variant of the Smith-Waterman local alignment provided b @@ softwarepackage5].

The start information describes the starting point of a sequence in the gene-pair alignment, and the
endinformation describes the relative end point of a sequence in the gene-pair alignmestiaril he

end andlength of matchwere used to identify gene-fusion: two consecutive genes fused to form a



single gene. Thkength of maximum mismatevas used to identify false positive matches, since the
presence of very long sequences of indels implies the possible presence of artifacts.

3.3. Stage 3: Bipartite Graph Matching.In this stage, comparison of two genomes is modeled as a
weighted bipartite graph with genes as nodes, possible matchings as edges, and matching scores after
the Smith-Waterman alignment as the weights of the edges. This stage performs the following tasks:

(1) Best matchings between node-pairs are identified, and other matchings are pruned.
(2) Putative corresponding gene-groups are identified and classified into different categories.
(3) Duplicated genes, fused genes, and duplicates of gene-groups are identified.

This stage uses two different algorithms as described in Sections 4, 5 and 6. The first algorithm
identifies the putative corresponding gene-groups first by comparing two genomes; sorts the weights
of the edges in descending order, and positively biases the weights of the edges in the putative
corresponding gene-groups before identifying the best matches. The second algeathaniant of
the Hungarian method-is based upon maximizing the cumulative sum of the weights of the edges
of groups of genes in proximity. Both algorithms use heuristics to positively bias the weights within
the putative corresponding gene-groups. Surprisingly, the findings from both algorithms are very
similar.

3.4. Stage 4: Identification of Fused Gened he input to this stage is the output from the Smith-
Waterman algorithm. Fused genes are identified using the criterion that two consecutive orthologous
genesyy andysq 1) € I'1 (y2s andyzg: 1) € T'z) match with a gengy; € Iz (yu € I'y), the intervals of

Y1 O Y23 @andyig+ 1) & Y20 (Y23 @ yu @andyzg: 1y 1) are adjacent to each other; and the cumulative sum

of the length ofy1; andyy + 1) (Y25 @andyz: 1) is very close to the length of; (y1). It is possible that

during fusion, insertion or deletion may occur. In order to take care of alignment variations, length
matching is relaxed to fall within a range which is less than half the length of the smallest gene in two
genomes.

3.5. Overall System ExecutionA prototype software using Prolog, C, and Unix was developed.
Each comparison runs the BLAST software two times for self compaiisenI(; andI'; . I';). The

result is used to normalize BLAST scores by using the score of self-comparison of genes to represent
the score for a 100 percent match. The BLAST software is run two more times to compare genomes
(T1a Iz andI; a I'y). Using the merged set of filtered matching pairs derived from the BLAST
comparisons, the Smith-Waterman alignment software is executed once. The resulting similarity
scores are used to model the genome matching as a bipartite matching problem, which is solved using
one of the two matching algorithms.

For a typical size of 1800 genes X 1600 genes comparison, it takes approximately 7200 seconds
for BLAST comparisons on a typical Silicon Graphics machine. For approximately 2000 filtered
pairs, it takes approximately 2000 seconds for Smith-Waterman alignment on a typical Silicon
Graphics machine. The bipartite graph matching algorithms take approximately 20 seconds to
execute. Since the BLAST self-comparison for normalization has to be executed only once for each
genome, the performance is improved further to approximately 110 minutes for following genome-
pair comparisons.
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Figure 4. A scheme for the identification of orthologues and gene-groups
4. A TECHNIQUE TO IDENTIFY PUTATIVE GENE-GROUPS

In this section, we describe an algorithm to identify gene-groups &mnd the corresponding gene-
groups inl’. The complexity and proof of correctness of the algorithm has been removed from this
paper in the interest of addressing a broad community.

This algorithm is based upon searching for the matchings in a neighborhood of a gene-pair
matching {1, y29). A seed window size b is used. If any other matching f, v2¢+ s) (Where r, <
b) is found in the proximity, then the process is repeated from the matghing, -+ s). The next
search is performed in the proximity{b, J + s + b) if the next matching ig(- ), Y2¢ + s), OF in the
proximity (J— s— b, J + b) if the next matching i$:( + n, v20- ). Since the proximity keeps
changing, variably sized gene-groups are identified. Since one node may have multiple matchings,
multiple gene-group matchings are identified. This algorithm is run twice: once by traversing the
matching genes i’y in order, and then traversing the matching gends; im order. This double
traversal is needed to derive the information of gene-groups in one genome which match with
multiple duplicated gene-groups in another genome. The basic algorithm is given in Figure 5. Many
optimized variants of the algorithm are possible. The explanation is as follows.

One of the genomds is traversed from start to end. Let the set of nod€s (arI;) be S, and
the set of unprocessed weighted edges hbel®t the seed window size to identify neighbors in
proximity be b. At any point, a weighted edge, (.) € set of remaining edges is picked such fhat
has the least value of |.3-S- the neighborhood set ofi—is {yi4-b), ..., Yig+p} Such that < | — b
and | + b< number of genes if;, Let the set of all the nodeslin which match withy;, be S. Let
the set of nodes in,8vhich share an edge with the nodes in the neighborhood set$ The set $
is identified by selecting the nodes in 8ne at a time, and taking the intersection of the set of nodes



in I'; connected to the node and the set B the intersection is non-empty then that nodemsS
included in & If the set $is non-empty then there is at least one possibly matching gene-group.
After detecting the presence of a corresponding gene-group, the nddearentraversed from the
nodey,;, and the putative gene-groups are collected as follows.

To facilitate dynamic alteration of neighboring nodes, a copy of the sat&lS is made in the
sets $and g respectively. The seg& used to verify matching edges incident upon the nodes in S
during the collection of variably sized gene-groups. If there is a matching node within the, gange
no<r<b k=1 € S which matches one of nodes € S, then there is a group. The set of edges in a
neighborhood is collected ingSS; — the neighborhood set ofikk > ) € S — is extended
dynamically to include the neighborsajk + n; Ss— the neighborhood set of matching nodeg:n
—is extended dynamically to include the neighborgofand all the edges incident @1 + o <r<b
and k= 1 @re included dynamically in the set SThose edges which are traversed once are deleted from
S5, and those nodes Iy which have been traversed once are deleted from thessaigd . After a
matching {1k +n € &) a (yao € &) is not found in the neighborhood; -S- the current collected set
of edges— is closed]1,(Ss) — the set of source-nodes ig-S- gives a putative corresponding gene-
group inI'y, andlIx(Ss) — the set of sink-nodes iry S gives the putative corresponding gene-group
in T',. By identifying the direction of mapping, the type of gene-group®{der, reverse, permutgd
is decided, and the putatively matching group (gene-group I48s), I1.(S;)) is stored in S— the
set of matching gene-groups. The set of node¥.irwhich have been traversed during the
identification of the last group is deleted from the sett& set of traversed edges is deleted from the
set Q.

The process is repeated to identify the next putative corresponding gene-group which starts with
vyu. This is possible since there are duplicates of gene-groups. Dynamically incrementing the
neighborhood set of;, and the set of matching nodeslin and the set of matching edges ensures
selection of all the variably sized gene-groups. After finding out all the putative corresponding gene-
groups involvingyy, (including singleton groups in the absence of any group of size greater than or
equal to 2), the set of edges incident uggns deleted to avoid reconsideration. The process is
repeated by picking up the next edge im@ich has the minimum index, unti} & empty.

Example 2

Consider Figure 6. There are four matching nodes in gefigraad six matching nodes in
genomel’,. Let us further assume that the set-S the set of edges after the Smith-Waterman
alignment—is {(v11, v22), (11, Y26), (12, V23), (Y12, Y25), (Y13, V24), (Y14, v27)}. The set $— the set of
nodes inl'y —is {y11, Y12, Y13 Y14}. L€t us assume the seed window size to be one.

We start traversing from node;. The value of $— the neighborhood set fgig; — is {y1,
v12p. The value of $— the set of nodes ifi, which match withy;; — is {22, v26}. The set of
neighboring nodes for; is {y21, Y22, Y23}, and the set of neighboring nodes 16§ is {V2s v26, Y27}-

The value of §— the subset of,, 26 Whose neighbors match with the sgt{ yi2} — IS {y22

726} The value of $— the set of all neighboring nodes in the set-Sis {y21, Y22, Y23, Y25, Y26 Y27}

which is derived by the union of two setgA V22, y23 and {yzs v26, v273. The value of — the union

of the set of the edges incident upon the nagdeandyiz — is {(y11, V22), (11, Y26), (Y12, V23), (Y12,

v25)}. Since the setsSs non-empty, putative corresponding gene-groups are present. The traversal
from y11 gives the first edge agif, y22). Sincey,; € S and the edgey{s, y23) € Ss and the node,s €

S, the edgey, v22) is inserted in the set; &nd deleted from the sef; $he nodey,; is deleted from

the set & The new value of the seg B {(y11, 126), (Y12, 23, (y12: ¥25), (Y13, 724)} Which is given by

10



union of {(y13, v24)} — the set of edges incident upps— and the set {41, Y26), (Y12 V23), (Y12, Y25)}-
The new value of the sebt B {y21, Y23, Y24, Y25,Y26, Y27} The new value of the set & {y.2}.
The process is repeated with the negavhich gives the new value of the seBS {(/11, v22), (Y12,
v23)}, the new value of the set &8s {(/11, v26), (12, Y25), (Y13, 724)}, the new value of the seb &s {2,
Y24, Y25,Y26, Y273 When the process is repeated with the nggeéhere is no matching of the form4,
v25). The iteration stops after inserting the edge 1.4) in the set § After this iteration, the value
of the set §|S {(“{11, Ygg), (‘{12, Ygg), (Y13, Y24)}, the value of the SethS {(“{11, Yge), (‘{12, Y25)}, the value
of the set &is {y21, V25 V26, Y27}, @nd the value of the set 8 {y,,}. It is easy to verify that the group
is in-order, the setl1;(Sg) gives a putative corresponding gene-groyp, {12, vist in I';, and the set
ITx(Se) gives a putative corresponding gene-group, {23, 24 in T'2. The triple (n-order, {y11, Y12,
v13}, { Y22 Y23 V24}) is stored in the set S, and the process is repeated agairy;witiThe triple
(reverse {y11, 12}, { V26 Y25}) IS identified and inserted in the set S. After inserting the triple, the set
Ss becomes empty. The new value of the sas$(y14, Y27)}. NoO group is found with the nodg,,
and the set becomes empty in the next iteration. The algorithm terminates with the final value of S

as {(in-order, {v11, y12, Y1sh { V22, v23, v24}), (reverse {yis, v12}, { v26 v25h)}-
5. THE FIRST TECHNIQUE TO IDENTIFY ORTHOLOGUES

In this section, we describe the first technique to identify putative orthologues. In this scheme, the
knowledge about putative corresponding gene-groups is used to bias positively the edges between
matching gene-pairs in corresponding gene-groups under the assumption that matching gene-pairs
occurring within corresponding gene-groups are more probable to be an orthologue than shuffled
genes with similar weights.

The technique uses sorting to arrange the weights of the edges in descending order, and starts
marking the node-pairs with highest weight. The node-pairs with highest weight become putative
orthologues, and all the edges incident upon those two nodes are removed from further consideration.
The process is repeated until no more pairs are left.

5.1 Orthologue Resolution.The gene-pair matchings were divided into four categooies:to-one,
much-above, preferre@ndconflict. One-to-oneneans that the genes andy,; in matching gene-

pair (11, Y29 have no other matching gendduch abovemeans that the weight ofi(, y.;) — one of

the edges in the union of the sets of the edges incidentyypmdy,;— stands out compared to all
other edges incident upgn orvy,;, We used aadhoccriterion that the weight of much-above edge

is 20 percent above the weights of other edges incidentwpandy,; Preferredmeans that the
weight of the highest matching edge is 10 percent above the weights of other edges incidgnt upon
andy,; or is inside a putative corresponding gene-group despite having a conflicting vizoglfitct

means that the weights of all edges incident uppandy,; are so close that it is not possible to
identify the outstanding matching gene-pair. There is a partial order (under the relationship
orthologue} between these classeste-to-one) much above preferredy conflict Clearly,one-to-

one matchingcorresponds tainique orthologugsand much-above matchingsorrespond taclear
orthologues In the absence of enough number of sequenced genomes, we did not have statistical
results to decide upon the cutoff point.

5.2 Algorithm for Orthologues and Corresponding Gene-groupsThe similarity scores for gene-

groups are first positively biased. The resulting scores are sorted. The classification is done based
upon descending order of weights of the edges. The ggge;( with highest weight is selected and
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classified and all other edges incident on the source-po@ady,; are discarded. The process is
repeated until there are no more edges in the bipartite graph.

Algorithm  putative corresponding gene-groups;

Input: 1. A set G of matching gene-pairs from the Smith-Waterman algorithm;
2. A pair of genomeE; andTy;
Output: 1. AsetS of putative gene-group§ir{or I';);

{ 1. let the ordered sets of genegirbe S; S, = G;
2. while (S # @) {

3. let the next edge be(, v,) € S, such that | has the minimum index;
4. S;=the neighborhood set of the nades S;;
5. S, =the set of sink-nodes Ity for the source-nodg;
6. find out the subsetsSc S, whose neighbors match with nodes in S
7. if (Ss# ¢ ){% There is at least one putative matching gene-group;
8. S =5 S = J(sets of edges incident upon the node);
9. Sy = Y(the neighborhood sets of nodes i S
10. while (S # @) { % collect single-gene-groups and multi-gene-groups frgm
11. S5 = ¢; % get ready to collect the next group
12. pick the next edger{x, y2m) € Ss such that K has the minimum index;
13. while (1ik € S) {
143 ((vik, Yom) € S5 && Yom € S && (Yik+nreb, ToL € ) € S) {
15.5 =S+ (ak: Yom); ST = S U Ve v bp -os Viko 1+ b3
16.S5 =S - you; % ensure that same group is not repeated
17.5 = S U edges incident upory{x + v, ... Vi +r+by — {(Y1k Yam)hi
% update the set of edges from the next match
18.K = K + r; % the next matching node with the smallest index
19.S=S U {201y - Yo + o) — {¥om};
20.else {S= S+ (1, Y2w): = S~ Gaxr Yom)s = S— Yoms S = S - vaui}
| 21.5=S- (11, Y2m); S = S — (i Yom);
22.if (|Se| = 2) {% a gene-group should have minimum size 2
23.g = group-type(§ where ge {in-order, reverse, permuted};
} 24. S=S + (9.11(Sy), T1x(Se));}
}
}

25. S, = the set of the edges incident upgen
26.S, =S, - Si; % removeyy, from the future consideration;

Figure 5. An algorithm to identify putative matching gene-groups
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Figure 6. Identifying putative gene-groupsin o I';
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A: one-to-one B: one-to-many C: one-to-many  D: many-to-many

Figure 7. Different classification of edges incident upon matching nodes

The edge groups between two matching nades I'; andy,; € I'; can be classified into three
major groups (see Figure 7) as follovage-to-one one-to-many and many-to-many One-to-one
means that degree of bath andy,; is one. One-to-manymeans that eitheg, ory,; has degree greater
than one.One-to-manycan be further classified based upon whether the node with degree gneris
the node with the degree oneyis Many-to-manymeans that botjy, andy,; have degree greater than
one. Theone-to-oneedges ar@niqueorthologues, and they are removed from the consideration first.
After picking the edges in descending order of the weights, each case is handled separately. In each
case, we check whether the highest weight edgeich-abovepreferred or conflicting Forone-to-
many the edge with second highest weight from the set of edges incidenyAfony,) is picked.

For many-to-manyedges, the second highest weights from the set of edges incident gpuhthe set
of edges incident upop,; are picked up. The highest weight is compared against the second highest
weights to classify the orthologues. A formal algorithm is described in Figure 8.

The scheme works well except in some cases: it can not identify orthologues in the presence of
paralogues which give many-to-many matchings, or when the similarity scores are sbatlasis
not possible to distinguish the orthologues. In such cases there is a clear conflict, and the putative
orthologues can be resolved only by biological reasoning or by understanding the role of proteins in
the metabolic pathways. The values of the bias-factormémh-abovegroup-biasingetc. used in
this algorithm are adhoc due to the current lack of sequenced genomes needed for statistics.

Example 3

Consider Figure 9. After the Smith-Waterman alignment, the value-ef e set of weighted
edgeS in the bipartite graph is {(Yllv Y22, 79), (’le, Y21, 56), (’le, Y23, 84), (’)/13, Y24, 49), (Y13, Y26, 38),
(’\/14, Y21, 46), (’\/15, Y25, 36), (’\/15, Vo1, 33 ), (’)/16, Y25, 38), (’)/16, Y21, 39)} The value of S— the set of
gene-groups— is {(reverse (vi1, v12), (v22 v21)), (Permuted (vis, vi2, Y13, Y1), (Y22, V23 Y24, ¥21)), (iN-
order, (yis v1e), (v2s 727)), (reverse (yiz, vie), (v27, v25))}. After sorting, the value of S— the set of

* Second highest weights from andy,; in the case of many-to-many

13



edgeS sorted by Welght— becomes {‘(12, Y23, 84), (’Yll, Y22, 79), (’le, Y21, 56), (’)/13, Y24, 49), (Y14, Y21,
46), (y13, 726, 38), (Y15, Y25, 36), (y15, 27, 33)}-

After positively biasing (by 20 percent) the weights of the edges inside the putative
corresponding gene-groups, the value p£Sthe set of positively biased edgesbecomes {13,
Y22, 99), (12, Y21, 67), (Y12, Y23 100), (Y13, Y24, 59), (Y13, Y26, 38), (Y14: Y21, 59), (Y15, V25, 44), (Y15, Y27, 40),
(16, Y25, 46), (v16, V27 47)}. In the first pass, {{11, v22)} — the set of one-to-one matchings is
identified and removed. Remaining classifications are done next.

During the first iteration, the edge.4, y.3) is classified asnuch above orthologusince the
weight100is greater tharl.2 x 67. The weighted edges$:{, v23, 100 and {12, v21, 67) are deleted
from the set § and the process of classification is repeated. The edge.f) is classifiedmuch-
abovesince the weighb9 is greater thaB8— the weight of the edge6, v26). After the deletion of
the edge Y2, v21), the weighted edgey.q, y.1) becomesmuch-above Note that this choice of
classification for {14, v21) is made under the assumption to identify the maximum number of
orthologues. It is possible that; is a mutated duplication gbs, andyis andy,; are less similar.
Handling such cases of duplications is a limitation of any automated matching technique, and needs
biological reasoning. There is a many-to-many matching between theyagdesy.s, andy,7. This
occurs becauses andy,; are putative paralogues amgi andy,; are putative paralogues. The
resolution of orthologues in such cases is very difficult, and must be performed by biological
reasoning or by the correct knowledge of metabolic pathways.

6. APPLICATION OF THE HUNGARIAN METHOD FOR BIPARTITE MATCHING

The first technique was based upon finding the putative corresponding gene-groups, and then
identifying the orthologues. In order to confirm the results derived from the previous technique, and
to establish confidence in our results, we used a different technique for bipartite graph matching. The
second technique applies tHangarian method to find a maximal matching in the weighted bipartite
graph. Two genomes form a bipartite graph with edges between nodes that have passed the BLAST
filter. Similarity score after the Smith-Waterman alignment provides the weight of an edge. A
maximal matching for a weighted graph is a set of weighted edges with disjoint endpoints such that
the sum of their weights is maximal. The algorithm given in Figure 10 clusters edges in a bipartite
graph iteratively by positively biasing the grouped genes such that the cumulative sum of the weights
of the edges is locally maximum. A single orthologue is treated as a cluster of size one.

At the conclusion of the maximal matching phase, we have a matching between the genes in
andTI’; such that no node is matched more than once and the weights between matched genes are high
on average. The next stage is a grouping algorithm which initially treats each matched pair as a gene-
group of size one. Adjacent gene-groups are merged iteratively if the regions where the gene-groups
appear i, andl’; are sufficiently close.

We merge gene-groups which overlap within a seed window size b. A matched gene-group
{(viks V29, .-+, Gik +n Y20)}, IS considered to have an extended range pam{inudK, ..., K+ r} —

b, maximunfK, ..., K + ¢ + b], [minimundJ, ..., B — b, maximunjJ, ..., B+ b]). This shows the
regions inl'; andl’,, respectively, where the matched genes appear. Two gene-groups with extended
range pair ([i, Ui, [121, W]} and ([li2, W2, [122, Wo]) are considered to overlap, if both the ranges
[l12— b, wi + b] and [l,, ;] overlap and the ranges [} b, w; + b] and [b,, W] overlap.
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Algorithm orthologues;
Input: 1. A set $of gene-pairs after the Smith-Waterman alignment;
2. A set $of the union of set of weighted edges in the putative corresponding gene-groups derived
from I'; o T, and the transpose of the set of weighted edges in putative corresponding gene-
groups derived fron', o T'y;
Much-abovdactor c,group bias factoff, andpreferred factomp;

Output: 1. A set O of triplesy(, v25 classification);

{
1. S;=the set of weighted edges ins®rted in descending order by weight;
2. O =7; G 57, S, = set of gene-pairs of the fonm o v,,in S; S =;
3. VY ((yu, y25 Weight)e S;) {% positively bias the weights of grouped edges
4, if (ynoyn)eS) S=S+ (ya y2u T * weight); else $= S + (yu1, 723 Weight);}
Y (v, Y25 Weight)e S { % identify one-to-one matches first
6. if (degreefy) = = 1) && (degreef,) = = 1))) { % it is a unique orthologue
7. O=0+{, 25 UNique); Ss = S5~ (v, 2 Weight);}
8. while (S; # @) { % find the best edge classification
9. pick the next edgey{, v25 Weight) € S in descending order by weight;
10. S = set of the edges incident upan S; = set of the edges incident upgg
11. if (degreefy) = = 1 && degreef,) = = 1) O = OU (Y1), 725 Clearn);
12. else if (degreat;) = = 1) { % handle the case whenhas two or more matches;
13. pick @11, y21, Weight) € Ss such that weightis the second highest ip;S
14. if (weight, > ¢ * weight) O = OU (y1, Y25 Clear);
15. else if (weight > p * weight) O = OuU (Y1), Y25 preferred;
16. else {
17. S; = subset of Ssuch that weight< p * (minimum of all weights in §;
18. Sy = set of triples with every edge of ®arked as conflict; 0 = O S;
}

19. else if (degreaq)) = = 1 { % handle the case when has two or more matches;
20. let (y1k, 22 Weight) € S; such that weightis the second highest in; S
21.if (weight, > ¢ * weight) O = OU (y1;, Y2 Clear);
22.else if (weight > p * weight) O = QU (yy, y2 preferred;

23. else {
24. S = subset of Ssuch that weight< p * (minimum of all weights in §;
25. S = set of triples with every edge of ®arked as conflict; 0 = O &;
}

26. else { % bothy;, andy,; have two or more matches;

27. let (y), v2u, Weight) € Ss such that wis the second highest weight ig S
28. let (yi, Y23 Weight) € S; such that wis the second highest weight in S
29.if ((weight, > ¢ * weight) && (weight; > ¢ * weight)) O = OU (Y, Y25 Clear);
30. else if ((weight > p * weight) && (weight; > p * weight)) O = OU (y1,, Y25 preferred;
31. else {

32. S3 = subset of Ssuch that weight< p * (minimum of all weights in &;

33. S = set of triples with every edge of ®arked as conflict; 0 = O &;

}
}
34. S =S - S - S;; % remove other edges incident upon these nodes from considgration;
Figure 8. An algorithm to identify orthologues using first technique

o
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Figure 9. Bipartite matching of various types of edges for orthologues

The algorithm repeatedly searches for overlapping gene-groups, which are merged to form a
larger gene-group. The search continues until none of the remaining gene-groups overlaps. Note that
the
process is confluent, in the sense that it does not matter in which order the search for overlapping
gene-groups is performed- the same overall result will be discovered. The time-complexity of the
calculation of the final gene-groupsd$N ) whereN is the number of nodes.

The next stage of the technique uses the computed gene-groups of size greatarsizan—
minimum size of the group— to alter the weights of edges in the initial graph. Each edge
v2m) Which, if considered as a singleton gene-group, would overlap with a gene-groupminsize
or greater if the calculated gene-groups are positively biased. Note that this will increase all the
weights of edges in gene-groups with size greater thiagize The weights of other edges are
negatively biased.

We could perform the same process repeatedly until the calculated matching does not change.
Indeed, we experimented with this idea. The calculated gene-groups did not change significantly in
each iteration in the process, but it was not stable. This occurred because the maximal matching
algorithm will always match a gene if possible, and hence some of the edges in the maximal matching
have low similarity scores and are unlikely to represent useful biological information. These parts of
the matching altered in each iteration.

Finally the maximal matching and gene-group calculations are repeated with these new edge
weights. The justification for the new calculation is that the original maximal matching may not have
chosen to match two genes that are part of a gene-group because there was an equally likely match
candidate that was not part of the gene-group. By penalizing the matches which are inside a putative
gene-group in the recalculation, the maximal matching will build larger gene-groups.

Example 4

Consider the diagram illustrated to the left of Figure 11. Suppose a maximal matching is given by
the solid lines, and the remaining edges are shown as dashed lines. The first two matching edges are
considered as singleton gene-groups. Given a seed window size of one, the extended range pairs are
illustrated by vertical lines. Since both ranges overlap they are merged into a single group. The
result of the final calculation is shown to the right. Supposingniradizeis two, there are two gene-
groups of sizéwo or greater, illustrated with different shadings. Every dashed edge and each solid
edge that is part of a gene-group of dime or greater is positively biased by the bias-factor. The
bias-factor is subtracted from other dashed edges and solid edges which form a singleton gene-group.
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Algorithm Hungarian-variant-orthologues;

Input: 1. G- a set of weighted edges in bipartite graph;

2. A maximal matching Sfrom the Hungarian method;

3. A seed window size b;

4. A bias-factor f to positively bias the genes in a putative corresponding gene-group;
5

. A predetermined number of iterations N;
Output: 1. A set S of grouped orthologues (including single element groups);

{ lteration-index = 1;
while (iteration-index< N){ % repeat a reasonable number of times
1. $=@;S ;% Sis the initial set of single element groups
2.V (pairs ik, vaw) € S) { % Initialize
3- & = SZ+ ([Kr K]! [M! M]! {( YlKv YZM)})y
4.V ([l12,Unal, [121, W], G1) € S{
5.9 =S {([l 12,t, 121, U], G1)};
6.V ([li2,ura, [122,U2d], Go) € S { % start merging neighboring groups
7 0f(((lu=b<lp<ug+b) || l1—b<up<uy+b)) &&
(1 =b<Tp< U+ b) || (b1 —b < Uy < Uy + b)) {
% ranges overlap so merge
8.5=5S—{([l 12 W, [l22, w3, G}
9. |11 = minimum(h_l, |12), U1 = maXimUm(ljl, Ulz);
10. by = minimum(by, 1>5); U, = maximum(yy, Wy); % range of merged groups
11. G=G + Gy

}
}
12. S3 ; % S3 is new graph with biased edges
13.V (Y1|, Y25 Welght)e G {

14.if 3 (([112, Wnal, [122, Wa], G1) € S

where (11— b< 1< uy +b) && (I — b < I< Uy + b))
15. weight = weight * (1 + f);

16. else weight = weight * (4 f);

| 17.8 = S+ {(va1, v20 Weight)};

18. S = maximal matching on graph;S
19.elsel=1+1;

}

Figure 10. An algorithm for the Hungarian method variant to identify orthologues and gene-groups
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Figure 11. Merging gene-groups in the Hungarian variant method

7. IDENTIFYING FUSED GENES

A fused gene-group has two genes in one genome which match with different portions of a gene in

the other genome as shown in Figure 12.

begin, end; begin: end.  begin, end, begipp end,

begin,;; end; begin;, end,
]

=V N

begin end begin end begin
A: Fused gene B: Fused gene with insertion

end

C: Fused gene with deletjon

Figure 12. Types of fused genes

Let us assume that two consecutive geaesndy, + 1) fuse to form a new fused geps. The
following set of rules (1A) to (1D) is used to identify exact gene-fusion (see Figure 12A). The set of
rules (2A) to (2D) is used to identify fused genes with insertions (see Figure 12B). The set of rules
(3A) to (3D) is used to identify fused genes with deletions (see Figure 12C). The rationaator
is that there may be some mismatch allowed due to imprecision involved in the sequence alignment
process or sequencing errors. Equation 1D is derivable from the application of 1A, 1B, and 1C;
Equation 2D is derivable from the application of Equations 2A, 2B, and 2C; and Equation 3C is

derivable from the application of Equations 3A, 3B, and 3C .

length(yy) + length(yig+ 1) — € <length(yz) < length(yq) + length(yyg + 1) + €
beginmi(yu <> v29)) — 8 < beginma(vu <> v29)) < begin(mi(yu <> v29)) + 6
endmni(yig+ <> v29) — 6 < endma(y1 <> 729) < endma(yig+1) <> y29) + 6
endmni(yu <> y23) — 26 —& <begin(mi(yig+1) <> ¥23) < endma(yn <> 72)) + D + ¢

length(y,) +length(yo+ 1) + & <length(yzy)

begin(mi(yu <> v29) — & < begin(m(yu <> v29) < begir(mi(yy <> v29)) + 6
endma(yi + 1 <> v29) — 8 < endma(yu <> v29) < endma(yio+ 1y <> v29) + 8
endmy(yy <> 729 + 2 + & <beginmi(y1g+1) <> v29)
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Figure 13 : Effect of seed window size on number of orthologues and corresponding gene-groups

length(y.) +length(y.q + 1)) — £ >length(yz) (3A)
beginmi(yu <> v25)) — 8 < begin(na(yn <> v29)) < begir(ni(yn <> y29) + 6 (3B)
endmi(yig+ 1) <> v29) — 6 < endma(y1 <> v29)) < endma(yiq + 1) <> y29) + 6 (3C)
endmi(yu <> v29) — 20 — & > beginmi(yig+1) <> 721)) (3D)

8. RESULTS AND DISCUSSION

Five genomes— partial E. coli, H. influenzag partial B. subtilis M. genitalium andM. jannaschij
were compared pair-wise. These genomes were among the first to be sequenceli.andH.
influenzaebelong to the gram-negative group of bactdvlagenitaliumandB. subtilisbelong to the
gram-positive group of bacteria; aMl jannaschiiis an archaeon. We compared 1304 gends of
coli® versus 1680 genes &f. influenzae 1680 genes oH. influenzaeversus 1852 genes @.
subtilis 1852 genes d. subtilisversus 1735 genes bF. jannaschij 1852 genes d. subtilisversus
472 genes oM. genitalium and 472 genes ®f. genitaliumversus 1735 genes bf. jannaschii E.

coli andH. influenzaeare phylogenetically very closkl, influenzaeandB. subtilisare somewhere
in-between, and. subtilis and M. jannaschiiare further away in evolution. The results were
repeated with different seed window sizes for neighborhood proximity to see the variations in
groupings. The results have been summarized in the following subsections.

8.1 Effect of Seed Window Size on Orthologues and Gene-groupsgure 12 shows the effect of
changing seed window size (for neighborhood proximity) on the number of orthologues. This
experiment was run by comparing 1304 genes.afoli and 1680 genes &f. influenzae The graph

shows that the number of orthologues saturates after the seed the window size of ten. The variation in
the number of corresponding gene-groups and orthologues is less than 4 percent, which is well within
tolerance limits, suggesting that the seed window size does not have a significant effect on the
identification of orthologues or gene-groups. This is to be expected since our scheme takes care of
variably sized groups dynamically. The only contributing effect is that the choice of larger window
size marginally increases the number of grouped genes. As the genes inside the gene-groups are
positively biased, some of the marginally shuffled genes in the proximity bedeareorthologues

and some of them becomeeferred orthologues

® for historical reasons. Our first experiment was performed on 1304 genes of curate E. Coli present in EMBL
database in 1995.
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Figure 14. Different classification of corresponding gene-groups

8.2 Gene-group Classification and FindingsUsing cross-species comparison, gene-groups have
been classified into different categorigsorder, reverse, permuted, fused, multipgadduplicated

Fused gene-groupsan be further subclassified axact fusiopfusion with deletionandfusion with
insertion Anin-order gene-group has the corresponding gene-groups in the same sequence as shown
in Fig 14B. Areverse-ordemene-group has the matching genes in one of the groups in ascending
order, and the corresponding genes in the other group in descending order, as shown in Figure 14C.
A permuted gene-grougsee Figure 14D) has at least one matching gene-pair which does not
preserve any order. duplicated grouphas at least one gene in at least one of the groups which has
been duplicated in the corresponding gene-group of another genome (see Figure dlE)ipl&
gene-grouphas a subset of gene-group duplicated at more than one location in a genome (see Figure
14F). Multiple gene-groups include paralogous gene-groups which can not be clearly distinguished
without use of the knowledge of metabolic pathways and biological reasoning.

8.3 A Comparative Study of Orthologues and Corresponding Gene-groupdable 1 shows a
statistical study of different types of corresponding gene-grougds; @nI',): single denotes unique
corresponding gene-groupspltiple | denotes multiple duplicated gene-group$ ircorresponding

to a gene-group ir;, multiple 11 denotes multiple duplicated gene-groupg ircorresponding to a
gene-group i, duplicate Idenotes the gene-groups which have one or more duplicated genes in
the corresponding gene-group in for a gene-group i, duplicate Il denotes one or more
duplicated genes in the corresponding gene-grodp fior a gene-group i, fused Idenotes the
gene-pairs ih’; which are fused ili;, andfused lldenotes the gene-pairslinwhich are fused il;.

We counted the total number of orthologues as the sum of orthologues in three categories,
namely, unique, clear, andpreferred conflicting orthologuesneed to be resolved by biological
reasoning, and are not accounted for in our statistics. Under this criterion, 39.6 peEetwlbf
genes (516 out of 1304 genes) are orthologous Mitimfluenzaegenes, 24.5 percent Bf subtilis
genes (453 out of 1852 genes) are orthologous Withnfluenzaegenes, 38.2 percent ofl.
genitaliumgenes (180 out of 472 genes) are orthologous Ritbubtilis genes, 17 percent o.
genitalium (80 out of 472 genes) genes are orthologous Mitlfannaschiigenes. In addition, 24
percent of. coligenes (313 out of 1304 genes) have unresolved matchingd withhuenzaegenes,

8.8 percent oB. subtilisgenes (163 out of 1852 genes) have unresolved matchingd viithuenzae
genes, 5.9 percent M. genitaliumgenes (28 out of 472 genes) have unresolved matching8with
subtilisgenes, 1.5 percent Bf subtilisgenes (29 out of 1852 genes) have unresolved matchings with
M. jannaschiigenes, and 5.9 percentMf genitaliumgenes (28 out of 472 genes) have unresolved
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Table 1. Corresponding gene-groups in various genomes

Partial EC - HI Partial BS - HI| Partial BS - MJ Partial BS - MG MG - MJ

Single 84 6/ 2p 1B 11
Multiple | 82 45 1 22 9
Multiple Il 63 50 14 1§ 1
Duplicated | 170 90 piil 38 38
Duplicated Il 193 9P 21 418 37
Fused | 4 3 ) D D
Fused Il [i ( (1] D D

@ Partial EC-H

@ Partial BS - H

H Partial BS -

NG .
unique clear  preferred conflict W Partial BS - M)

Figure 15. A comparative study of orthologues in multiple genomes

matchings withM. jannaschiigenes. The phylogenetically close microbes (Olsen et. al, 1994), such
asE. coliversud. influenzaeandB. subtilisversusM. genitalium share more orthologues compared

to microbes further away such BssubtilisversusH. influenzae Evolutionary distant genome pairs
(Olsen et. al, 1994) such 8s subtilisversusM. jannaschiior M. genitaliumversusM. jannaschij

have a much smaller percentage of orthologous genes.

The statistics in Table | show that as the phylogenetic distance increases, the number of
corresponding gene-groups decreasht. jannaschiishows the least similarity. Phylogenetically
close genomes such Bscoli andH. influenzaeshare the maximum number of corresponding gene-
groups, including a very large number of duplicated gene-groups, suggesting duplication as a
common mechanism of evolution. The normal size of gene-groups is 2 to 5 with the maximum size
as large as 27 in case of rRNA proteins betweeroli andH. influenzae Fused genes are present in
genome-pair&. coliandH. influenzagandH. influenzaeandB. subtilis
Orthologues statistics in Table | and Figure 16 shows that phylogenetically close genome pairs tend
to have a higher percentage of orthologues in the corresponding gene-groups while phylogenetically
distant genome pairs have a lower percentage of orthologues in the corresponding gene-groups,
suggesting more shuffling as the phylogenetic distance increases. For phylogenetically close
genome<£. coliandH. influenzaethe similarity scores of thenique orthologuesaried from 49 to
98 with a average around 76. For phylogenetically distant genome pairs the similarity scores of
unique orthologuesaried from 45 to 70 with an average score of 55.

A comparison of orthologues #f. influenzaeB. subtilis andM. jannaschiisuggested that there
are 104 orthologu&svhich are common in all three. There were 94 orthologues shared b&ween

® Sum of number of unique orthologues + number of clear orthologues + number of preferred orthologues
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Figure 16. A comparative study of orthologues genes in corresponding gene-groups

subtilisandM. jannaschiiwhich were not orthologous B. subtilisandH. influenzagand there were
349 orthologues shared betweBn subtilis and H. influenzaewhich were not orthologous iB.
subtilisandM. jannaschii Comparing with grouped-orthologues in all three suggests that significant
shuffling takes place in all three genomes.

A comparison of the orthologues M. genitalium B. subtilis andM. jannaschiisuggested that
44 orthologues are common in all three. There are 136 orthologues shared BetsvdstitisandM.
genitaliumwhich do not occur irM. jannaschii There are 154 orthologues shared betwen
subtilis and M. jannaschiiwhich do not occur iM. genitalium There are 36 orthologues shared
betweenM. genitaliumandM. jannaschiiwhich are absent iB. subtilis

Out of 104 common orthologues sharedHhyinfluenzaeandB. subtilisandM. jannaschij 25
orthologues were also foundih. genitalium With the knowledge thal. genitaliumis a very small
genome, we conclude that these 25 genes are relatively conserved. A detailed comparative study of
differences and conserved orthologues is outside the scope of this paper, and will be presented
separately.

9. CONCLUSION

In this paper, we have presented a technigque to model pair-wise comparison of two genomes as a
bipartite graph matching problem. We have presented two different approaches and algorithms to
identify the best-matching edges and gene-groups. The first approach finds the putative gene-groups
first and then positively biases the edges between putative gene-groups to identify different classes of
orthologues and corresponding gene-groups. The second approach is a variation of the well-known
Hungarian method to identify the gene-groups and orthologues iteratively until no better groups can
be found. The second approach also uses heuristics to positively bias the edges starting within a
group. Both the approaches give very similar results.

The study of pair-wise comparisons of five genomes suggests that evolutionary distant
organisms share less numbers of common orthologous genes and corresponding gene-groups.
Duplication is a common mechanism for evolution. Evolutionary close genomes share a high
percentage of duplicated genes and some fused genes, while evolutionary distant genomes share a
smaller percentage of duplicated genes and have no fused genes. As the evolutionary distance
increases, the shuffling of orthologous genes increases. In addition to conserved paralogues, there are
around 25 orthologues which are present in all five of the genomes.
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