
A Framework for Extended Algebraic Data
Types

Martin Sulzmann1, Jeremy Wazny3 and Peter J. Stuckey2,3

1 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg
2 NICTA Victoria Laboratory

3 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{jermyrw,pjs}@cs.mu.oz.au

Abstract. There are a number of extended forms of algebraic data types
such as type classes with existential types and generalized algebraic data
types. Such extensions are highly useful but their interaction has not
been studied formally so far. Here, we present a unifying framework for
these extensions. We show that the combination of type classes and gen-
eralized algebraic data types allows us to express a number of interesting
properties which are desired by programmers. We support type checking
based on a novel constraint solver. Our results show that our system is
practical and greatly extends the expressive power of languages such as
Haskell and ML.

1 Introduction

Algebraic data types enable the programmer to write functions which pattern
match over user-definable types. There exist several extensions of algebraic data
types which increase the expressiveness of the language significantly. Läufer
and Odersky [LO94] consider the addition of (boxed) existential types whereas
Läufer [Läu96] was the first to introduce a combination of single-parameter type
classes and existential types [LO94]. Xi, Chen and Chen [XCC03] introduced
yet another extension of algebraic data types known as guarded recursive data
types (GRDTs). GRDTs are largely equivalent to Cheney’s and Hinze’s first-
class phantom types [CH03] and Peyton Jones’s, Washburns’ and Weirich’s gen-
eralized algebraic data types (GADTs) [JWW04].4 All these extensions are very
interesting but have largely been studied independently.

Here, we present a system which unifies these seemingly unrelated extensions,
something which has not been studied formally before.

Specifically, our contributions are:

– We formalize an extension of Hindley/Milner where the types of constructors
of algebraic data types may be constrained by type equations and type classes
(Section 4). Such a system of extended algebraic data types subsumes GADTs
and type classes with extensions [JJM97,Jon00].

4 For the purposes of this paper, we will use the term GADTs which appears to be
gaining popularity.



– An important point of our system is that GADTs and type classes can inter-
act freely with each other. Thus, we can express some interesting properties
which are desired by programmers (Section 4.1).

– We support type checking based on a novel checking method for implication
constraints (Section 5).

– We have implemented the type checker as part of the Chameleon system [SW]
(experimental version of Haskell).

We continue in Section 2 where we introduce some basic notations and as-
sumptions used throughout the paper. In Section 3 we review type classes with
existential types and GADTs and summarize their differences and commonali-
ties. Related work is discussed in Section 6. We conclude in Section 7. Note that
we use Haskell-style syntax in example programs throughout the paper.

Additional details including a description of the semantic meaning of pro-
grams and its type soundness proof can be found in an accompanying technical
report [SWP06].

2 Preliminaries

We write ō to denote a sequence of objects o1,...,on. As it is common, we
write Γ to denote an environment consisting of a sequence of type assignments
x1 : σ1, ..., xn : σn. Types σ will be defined later. We commonly treat Γ as a set.
We write “−” to denote set subtraction. We write fv(o) to denote the set of free
variables in some object o with the exception that fv({x1 : σ1, ..., xn : σn})
denotes fv(σ1, ..., σn). In case objects have binders, e.g. ∀a, we assume that
fv(∀a.o) = fv([b/a]o)− {b} where b is a fresh variable and [b/a] a renaming.

We generally assume that the reader is familiar with the concepts of sub-
stitutions, unifiers, most general unifiers (m.g.u.) etc [LMM87] and first-order
logic [Sho67]. We write [t/a] to denote the simultaneous substitution of variables
ai by types ti for i = 1, .., n. Sometimes, we write o1 ≡ o2 to denote syntactic
equivalence between two objects o1 and o2 in order to avoid confusion with =.
We use common notation for Boolean conjunction (∧), implication (⊃) and uni-
versal (∀) and existential quantifiers (∃). Often, we abbreviate ∧ by “,” and use
set notation for conjunction of formulae. We sometimes use ∃̄V .Fml as a short-
hand for ∃fv(Fml) − V.Fml where Fml is some first-order formula and V a set
of variables, that is existential quantification of all variables in Fml apart from
V . We write |= to denote the model-theoretic entailment relation. When writing
logical statements we often leave (outermost) quantifiers implicit. E.g., let Fml1
and Fml2 be two formulae where Fml1 is closed (contains no free variables).
Then, Fml1 |= Fml2 is a short-hand for Fml1 |= ∀fv(Fml2).Fml2 stating that in
any (first-order) model for Fml1 formula ∀fv(Fml2).Fml2 is satisfied.

3 Background: Type classes with existential types and
GADTs

In our first example program, we make use of existential types as introduced by
Läufer and Odersky [LO94].

data KEY = forall a. Mk a (a->Int)
g (Mk x f) = f x
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The algebraic data type KEY has one constructor Mk of type ∀a.a → (a →
Int) → KEY . Note that variable a does not appear in the result type. In the
Haskell syntax we indicate this explicitly via forall a. When constructing a
value of type KEY we are able to hide the actual values involved. Effectively,
a refers to an existentially bound variable. 5 Thus, when pattern matching over
KEY values we should not make any assumptions about the actual values in-
volved. This is the case for the above program text. We find that the type of g
is KEY → Int.

The situation is different in case of

g1 (Mk x f) = (f x, x)

The type of x escapes as part of the result type. However, we have no knowledge
about the actual type of x. Hence, function g1 should be rejected.

In some subsequent work, Läufer [Läu96] considers a combination of single-
parameter type classes [WB89] and existential types. Consider

class Key a where getKey::a->Int
data KEY2 = forall a. Key a => Mk2 a
g2 (Mk2 x) = getKey x

where the class declaration introduces a single-parameter type class Key with
method declaration getKey : ∀a.Key a ⇒ a → Int. We use Key to constrain
the argument type of constructor Mk2, i.e. Mk2 : ∀a.Key a ⇒ a → KEY2 . The
pattern Mk2 x gives rise to Key a and assigns the type a to x. In the function
body of g2, expression getKey x has type Int and gives rise to Key a which can
be satisfied by the type class arising out of the pattern. Hence, function g2 is of
type KEY2 → Int.

GADTs are one of the latest extensions of the concept of algebraic data
types. They have attracted a lot of attention recently [SP04,PG04,Nil05]. The
novelty of GADTs is that the (result) types of constructor may differ. Thus, we
may make use of additional type equality assumptions while typing the body of
a pattern clause.

Here, we give excerpts of a standard program which defines a strongly-typed
evaluator for a simple term language. We use the GADT notation as implemented
in GHC 6.4 [GHC].

data Term a where
Zero : Term Int
Pair : Term b->Term c->Term (b,c)

eval :: Term a -> a
eval Zero = 0
eval (Pair t1 t2) = (eval t1, eval t2)

The constructors of the above GADT Term a do not share the same (result)
type (which is usually required by “standard” algebraic data types). In case of
Zero the variable a in the GADT Term a is equal to Int whereas in case of Pair
the variable a is equal to (b,c) for some b and c. Effectively, the constructors
5 It may helpful to point out that ∀a.a → (a → Int) → KEY is equivalent to

(∃a.a → (a → Int)) → KEY . Hence, “existential” variables are introduced with the
“universal” forall keyword
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mimic the typing rules of a simply-typed language. That is, we can guarantee
that all constructed terms are well-typed. The actual novelty of GADTs is that
when pattern matching over GADT constructors, i.e. deconstructing terms, we
can make use of the type equality assumptions implied by constructors to type
the body of pattern clauses. E.g. in case of the second function clause we find
that Pair t1 t2 has type Term a. Hence, t1 has type Term b and t2 has type
Term c where a = (b, c). Hence, (eval t1, eval t2) has type (b, c) which is
equivalent to a under the constraint a = (b, c). The constraint a = (b, c) is only
available while typing the body of this particular function clause. That is, this
constraint does not float out and therefore does not interact with the rest of the
program. Hence, the type annotation eval::Term a->a is correct.

The short summary of what we have seen so far is as follows. Typing-wise the
differences between GADTs and type classes with existential types are marginal.
Both systems are extensions of existential types and both make temporary use
of primitive constraints (either type equalities or type class constraints) arising
out of patterns while typing the body of a function clause. E.g, in function g2
we temporarily make use of Key a arising out of pattern Mk2 x whereas in the
second clause of function eval we temporarily make use of a = (b, c) arising out
of pattern Pair t1 t2. A subtle difference is that the GADT type system has
an additional typing rule to change the type of expressions under type equation
assumptions (see upcoming rule (Eq) in Figure 2). Such a rule is lacking in
the theory of qualified types [Jon92] which provides the basis for type classes
with extensions. The consequence is that we cannot fully mimic GADTs via the
combination of multi-parameter type classes [JJM97] with existential types and
functional dependencies [Jon00]. We elaborate on this issue in more detail.

The following program is accepted in GHC.

class IsInt a b | ->a
instance IsInt Int b
class IsPair a b c | b c->a
instance IsPair (b,c) b c
data Term2 a = forall b. IsInt a b => Zero b

| forall b c. IsPair a b c => Pair (Term b) (Term c)

The declaration IsInt a b |->a introduces a multi-parameter type class IsInt.
The functional dependency |->a in combination with the instance declaration
enforces that if we see IsInt a b the variable a will be improved by Int. The
second parameter is somewhat redundant but necessary due to a GHC condition
which demands that at least one type class parameter in a data definition must
refer to an existential variable. Similarly, the declarations for type class IsPair
enforce that in IsPair a b c the variable a will be improved by (b,c). The
up-shot of this encoding of type equations in terms of functional dependencies
is that we can use the Term2 a type (and its constructors) instead of the GADT
Term a to ensure that only well-typed terms will ever be constructed.

However, we cannot use the Term2 a type to deconstruct values. The follow-
ing definition does not type check in GHC.

eval2 :: Term2 a -> a
eval2 (Zero _) = 0
eval2 (Pair t1 t2) = (eval t1, eval t2)
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The pattern match in the first clause gives rise to the constraint IsZero a b
which enforces that a is equal to Int. In the GHC implementation, the effect
functional dependencies have on types in a program is “irreversible”. Hence, the
GHC type checker complains that variable a in the type annotation is unified
with Int. In case of the GADT system, we can “undo” this effect by an extra
(Eq) typing rule.

The immediate question is what kind of (type) behavior we can expect in a
system which supports GADTs and type classes with extensions. The current
GHC implementation treats both concepts separately and therefore function
eval type checks but function eval2 fails to type check. Given that types Term
a and Term2 a effectively describe the same data structure, this may lead to
confusion among programmers.

In the next section, we introduce a framework for extended algebraic types
which unifies the concepts of type classes with existential types and GADTs.
GADT and type class programs show a uniform behavior, e.g. functions eval
and eval2 are both accepted in our system.

4 Extended Algebraic Data Types

We start off by considering a few examples to show the benefit of extended alge-
braic data types (Section 4.1). Then, we describe the formal syntax of programs
(Section 4.2) before we define the set of well-typed programs (Section 4.3).

4.1 Overview

Extended algebraic data types (EADTs) are introduced by declarations

data T a1 ... am = forall b1,...,bn. D => K t1 ... tl | ...

where constraint D may consist of type class and type equality constraints. As we
will see next, GHC-style GADTs are represented via EADTs where D contains
type equations.

Here is a re-formulation of the eval example from the previous section in
terms of our syntax. Additionally, we add a new case that deals with division
among terms motivated by a similar example suggested on the GHC-users mail-
ing list [Mor05].

data Term a = (a=Int) => Zero
| forall b c.(a=(b,c)) => Pair (Term b) (Term c)
| Fractional a => Div (Term a) (Term a)

eval :: Term a -> a
eval Zero = 0
eval (Pair t1 t2) = (eval t1, eval t2)
eval (Div t u) = (eval t) / (eval u)

Type equations (a=Int) and (a=(b,c)) exactly correspond to the type equal-
ity assumption “implied” by GHC-style GADT constructors. The additional case
makes use of the method (/) which is part of the Fractional type class. Hence,
the program text (eval t) / (eval u) gives rise to Fractional a. This con-
straint is satisfied by Fractional a which arises out of the pattern Div t u.
We conclude that the program type checks.
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The above shows that we can specify EADTs which combine GADTs and
type classes with existential types. In our next example, we require the com-
bination of GADTs with type classes with extensions. Our goal is to refine the
type of the append function to state that appending two lists yields a lists whose
length is the sum of the two input lists.

First, we introduce a EADT where the extra parameter keeps track of the
length of the list. Type constructors Zero and Succ are used to represent numbers
on the level of types.

data Zero
data Succ n
data List a n = (n=Zero) => Nil | forall m. (n=Succ m) => Cons a m

Then, we define a type class and instances to define addition among our (type)
number representation.

class Add l m n | l m -> n
instance Add Zero m m -- (1)
instance Add l m n => Add (Succ l) m (Succ n)

Note that the functional dependency [Jon00] l m->n states that the first two
parameters uniquely determine the third parameter. Hence, the Add type class
behaves like a function. E.g., in case we encounter Add Zero m n the type n will
be improved [Jon95] to m. We make use of the Add type class to refine the type
of the append function. Thus, we can state the desired property that the length
of the output list equals the sum of the length of the two input lists.

append :: Add l m n => List a l -> List a m -> List a n
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

The above program type checks in our system. E.g, consider the first clause.
When pattern matching over Nil and ys we encounter the constraint l=Zero
and find that ys has type List a m. From the annotation, we obtain Add l m
n. In combination with the functional dependency imposed on Add and instance
(1) both constraints imply that m=n. Hence, the function body ys satisfies the
annotation. A similar observation applies to the second clause.

The above examples show that EADTs are a natural generalization of GADTs
and types classes with extensions. By employing some type programming we
can even mimic type properties which previously required special-purpose sys-
tems [Zen99]. Next, we take a look at the formal underpinnings of EADTs.

4.2 Expressions, Types and Constraints

The syntax of programs can be found in Figure 1. We assume that K refers
to constructors of user-defined data types. As usual patterns are assumed to be
linear, i.e., each variable occurs at most once. In examples we will use pattern
matching notation for convenience.

For simplicity, we assume that type annotations are closed, i.e. in f::C=>t
we will quantify over all variables in fv(C, t) when building f’s type. Though,
the straightforward extension to lexically scoped annotations may be necessary
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Expressions e ::= K | x | λx.e | e e | let g = e in e |

let
g :: C ⇒ t
g = e

in e | case e of
[pi → ei]i∈I

Patterns p ::= x | K p...p
Types t ::= a | t → t | T t̄
Primitive Constraints at ::= t = t | TC t
Constraints C ::= at | C ∧ C
Type Schemes σ ::= t | ∀ā.C ⇒ t
Data Decls ddec ::= data T a1...am = forall b1, ..., bn.D ⇒ K t1...tl

Type Class Decls tcdec ::= class TC ā where m :: C ⇒ t | instance C ⇒ TC t̄
CHRs R ::= rule TC1 t1, ..., TCn tn ⇐⇒ C |

rule TC1 t1, ..., TCn tn =⇒ C

Fig. 1. Syntax of Programs

to sufficiently annotate programs [SW05]. We also omit un-annotated recursive
function definitions, another straightforward extension.

Our type language is standard. We assume that T t̄ refer to user-definable
data types. We use common Haskell notation for writing function, pair, list types
etc. We assume that constructor and destructor functions are recorded in some
initial environment Γinit, e.g. (·, ·) : ∀a, b.a → b → (a, b), fst : ∀a, b.(a, b) → a,
snd : ∀a, b.(a, b)→ b ∈ Γinit etc.

A primitive constraint (a.k.a. atom) is either an equation t = t′ (a.k.a. type
equality) or an n-ary type class constraint TC t̄. We assume a special (always
satisfiable) constraint True representing the empty conjunction of constraints,
and a special (never satisfiable) constraint False. Often, we treat conjunctions
of constraints as sets and abbreviate Boolean conjunction ∧ by “,”. We generally
use symbols C and D to refer to sets of constraints.

Type schemes have an additional constraint component which allows us to
restrict the set of type instances. We often refer to a type scheme as a type for
short. Note that we consider ∀ā.t as a short-hand for ∀ā.T rue ⇒ t. The pres-
ence of equations makes our system slightly more general compared to standard
Hindley/Milner. E.g., types ∀a, b.a = b ⇒ a → b and ∀a.a → a are equiva-
lent. Equations will become interesting once we allow them to appear in type
assumptions of constructors.

We assume that data type declarations

data T a1 ... am = forall b1,...,bn. D => K t1 ... tl | ...

are preprocessed and the types of constructors K : ∀ā, b̄.D ⇒ t1 → ... → tl →
T ā are recorded in the initial environment Γinit. We assume that ā ∩ b̄ = ∅.
Note that ā and b̄ can be empty.

Similarly, for each class declaration class TC āwhere m :: C ⇒ t we find m :
∀fv(C, t, ā).(TC ā, C) ⇒ t ∈ Γinit. Super-classes do not impose any challenges
for typing and translation programs. Hence, we ignore them for brevity.

We also ignore the bodies of instance declarations. Details of how to type
and translate instance bodies can be found elsewhere [SWP05].
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In our source syntax, there is no explicit support for type improvement mech-
anisms such as functional dependencies [Jon00] or associated types [CKJ05]. Im-
provement conditions are encoded via CHRs as we will see shortly. Though, we
may make use of the functional dependency notation in example programs.

Following our earlier work [SS05,DJSS04] we employ Constraint Handling
Rules (CHRs) [Frü95] as the internal formalism to describe the valid type class
relations. E.g., each declaration instance C ′ ⇒ TC t̄ is described by the simpli-
fication rule TC t̄ ⇐⇒ C ′ whereas type improvement conditions are specified
by the second kind of CHRs which are referred to as propagation rules.

Here are the CHRs describing the instance and functional dependency rela-
tions of the Add type class from the previous section.

rule Add Zero m m <==> True (A1)
rule Add (Succ l) m (Succ n) <==> Add l m n (A2)
rule Add l m n1, Add l m n2 ==> n1=n2 (A3)
rule Add Zero m n ==> m=n (A4)
rule Add (Succ l) m n’ ==> n’=Succ n (A5)

How to systematically derive such CHRs from source programs can be found
here [SS05,DJSS04]. For a given program we assume a fixed set P of CHRs to
which we refer to as the program logic.

For the description of the set of well-typed expressions in the next section we
apply the logic interpretation of CHRs which is as follows: Symbol ==> denotes
Boolean implication and <==> denotes Boolean equivalence. Variables in the rule
head (left-hand side) are universally quantified whereas all remaining variables on
the right-hand side are existentially quantified. E.g., the CHR (A5) is interpreted
as the formula ∀l,m, n′.(Add (Succ l) m n′ ⊃ ∃n.n′ = Succ n).

4.3 Type System

To describe well-typing of expressions we make use of judgments of the form
C,Γ ` e : t where C is a constraint, Γ refers to the set of lambda-bound
variables, predefined and user-defined functions, e is an expression and t is a
type. Note that we leave the program logic P implicit. None of the typing rules
affect P , hence, we can assume that P is fixed for a given expression. We say a
judgment is valid iff there is a derivation w.r.t. the rules found in Figure 2. Each
valid judgment implies that the expression is well-typed.

Let us take a look at the typing rules in detail. In rule (Var-∀E), we build a
type instance if we can verify that the instantiated constraint is logically con-
tained by the given constraint under the given program logic. This is formally
expressed by the side condition P |= C ⊃ [t/a]D.

In rule (Eq) we can change the type of expressions.6 Note that the set C
of constraints may not necessarily be the same in all parts of the program (see
upcoming rule (Pat)). Therefore, this rule plays a crucial role. Recall function
append from Section 4.1 where in case of the second clause we find Add l m n, l =

6 Some formulations allow us to change the type of (sub)patterns [SP05]. This may
matter if patterns are nested. For brevity, we neglect such an extension. Note that in
case patterns are evaluated in a certain order, say from left-to-right, we can simply
translate a nested pattern into a sequence of shallow patterns. This is done in GHC
and our Chameleon implementation.
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(Var-∀E)

(x : ∀ā.D ⇒ t′) ∈ Γ

P |= C ⊃ [t/a]D

C, Γ ` x : [t/a]t′
(Eq)

C, Γ ` e : t1

P |= C ⊃ t1 = t2

C, Γ ` e : t2

(Abs)
C, Γ ∪ {x : t1} ` e : t2

C, Γ ` λx.e : t1 → t2
(App)

C, Γ ` e1 : t1 → t2

C, Γ ` e2 : t1

C, Γ ` e1e2 : t2

(Let)

C1, Γ ` e1 : t1 ā = fv(C1, t1)− fv(C2, Γ )

C2, Γ ∪ {g : ∀ā.C1 ⇒ t1} ` e2 : t2

C2, Γ ` let g = e1 in e2 : t2

(LetA)

ā = fv(C1, t1) C2 ∧ C1, Γ ∪ {g : ∀ā.C1 ⇒ t1} ` e1 : t1

C2, Γ ∪ {g : ∀ā.C1 ⇒ t1} ` e2 : t2

C2, Γ ` let
g :: C1 ⇒ t1

g = e1
in e2 : t2

(Case)

C, Γ ` e : t1

C, Γ ` pi → ei : t1 → t2 for i ∈ I

C, Γ ` case e of [pi → ei]i∈I : t2

(Pat)

p : t1 ` ∀b̄.(D Γp)

fv(C, Γ, t2) ∩ b̄ = ∅
C ∧D, Γ ∪ Γp ` e : t2

C, Γ ` p → e : t1 → t2

(Pat-Var) x : t ` (True {x : t})

(Pat-K)

K : ∀ā, b̄.D ⇒ t′1 → ... → t′l → T ā b̄ ∩ ā = ∅
pk : [t/a]t′k ` ∀b̄′k.(D′

k Γpk ) for k = 1, ..., l

K p1...pl : T t̄ ` ∀b̄′1, ..., b̄′l, b̄.(D
′
1 ∧ ...D′

l ∧ [t/a]D Γp1 ∪ ...Γpl)

Fig. 2. Typing Rules

Zero in the constraint component and variable ys has type List a m. Here, P
consists of rules (A1-5) from the previous section. We find that P |= Add l m n, l =
Zero ⊃ m = n. Hence, we can change the type of ys to List a n. Thus, we can
verify that append’s annotation is correct.

Rules (Abs) and (App) are straightforward. In rule (Let), we include the
rule for quantifier introduction. Note that we could be more efficient by only
quantifying over the “affected” constraints. Further note that satisfiability of
the “final” constraint C2 does not imply that C1 is satisfiable. E.g., consider the
situation where g is not used. Hence, our formulation is more “lazy” compared to
other schemes. We refer to [OSW99,Sul00] for a detailed discussion of different
formulations of quantifier introduction.

Rule (LetA) deals with a closed annotation. Variables in C1 ⇒ t1 are assumed
to be universally quantified. Note that via this rule we can support polymorphic
recursive functions (for simplicity, we omit the rule to deal with monomorphic
recursive functions).
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Rules (Case) and (Pat) deal with pattern matching. Rule (Pat) is in par-
ticular interesting. For convenience, we consider p → e as a (special purpose)
expression only appearing in intermediate steps. We make use of an auxiliary
judgment p : t ` ∀b̄.(D Γp) to establish a relation among pattern p of type
t and the binding Γp of variables in p. Constraint D arises from constructor
uses in p. Variables b̄ are not allowed to escape which is captured by the side
condition fv(C,Γ, t2) ∩ b̄ = ∅. Note that we type the body of the pattern clause
under the “temporary” type assumption D and environment Γp arising out of
p. Consider again function append from Section 4.1 where we temporarily make
use of l = Zero in the first clause and l = Succ l′ in the second clause.

The rules for the auxiliary judgment are as follows. In rule (Pat-K) we assume
that variables ā and b̄ are fresh. Hence, w.l.o.g. there are no name clashes between
variables b̄′1,...,b̄

′
l. Rule (Pat-Var) is standard.

The description of the semantic meaning of programs and its type soundness
proof had to be sacrificed due to space restrictions. Details can be found in an
accompanying technical report [SWP06]. Here, we only consider type checking
which we discuss next.

5 Type Checking

The problem we face is as follows. Given a constraint C, an environment Γ , a
type t and an expression e where all let-defined functions are type annotated,
we want to verify that C,Γ ` e : t holds. This is known as type checking as
opposed to inference where we compute C and t given Γ and e.

It is folklore knowledge that type checking can be turned into a entailment
test among constraints. The path we choose is to translate in an intermediate step
the type checking problem to a set of implication constraints [SP05]. A program
type checks if the implication constraint holds. We then show how to reduce the
decision problem for checking implication constraints to standard CHR solving.
Thus, we obtain a computationally tractable type checking method.

5.1 Type Checking via Implication Constraints

The syntax of implication constraints is as follows.

Constraints C ::= t = t | TC t̄ | C ∧ C
ImpConstraints F ::= C | ∀b̄.(C ⊃ ∃ā.F ) | F ∧ F

The actual translation to implication constraints follows the description of [SP05].
We employ a deduction system in style of algorithm W where we use judgments
of the form Γ, e `W (F t) to denote that under input environment Γ and ex-
pression e we obtain the output implication constraint F and type t. The rules
can be found in Figure 3. Recall that let-defined functions are type annotated.

We briefly review the individual rules. We write ≡ to denote syntactic equal-
ity. In rules (Var) and (Pat-K) we assume that the bound variables ā and b̄ are
fresh. We assume that dom(φ) computes the variables in the domain of φ. In rule
(Pat) we make use of the implication constraint ∀b̄.(D ⊃ ∃̄fv(Γ,b̄,te).Fe) which
states that under the temporary assumptions D arising out of the pattern p we
can satisfy the implication constraint Fe arising out of e. The ∀ quantifier en-
sures that no existential variables b̄ escape. Formula ∃̄fv(Γ,b̄,te).Fe is a short-hand
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(LetA)

ā = fv(C1, t1) b1,b
′
1 fresh

Γ ∪ {g : ∀ā.C1 ⇒ t1}, e1 `W (F1 t′1) Γ ∪ {g : ∀ā.C1 ⇒ t1}, e2 `W (F2 t2)

F ≡ F2 ∧ ∀ā.((C1 ∧ t1 = b1 ∧ b1 = b′1) ⊃ ∃̄fv(Γ,b′
1)

.F1 ∧ b′1 = t′1)

Γ, let
g :: C1 ⇒ t1

g = e1
in e2 `W (F t2)

(App)

Γ, e1 `W (F1 t1)

tenv, e2 `W (F2 t2)

t fresh

F ≡ F1 ∧ F2 ∧ t1 = t2 → t

Γ, e1 e2 `W (F t)

(Var)
(x : ∀ā.C ⇒ t) ∈ Γ

Γ, x `W (C t)

(Abs)

a fresh

Γ ∪ {x : a}, e `W (F t)

Γ, λx.e `W (F a → t)

(Case)

Γ, pi → ei `W (Fi t′i) for i ∈ I Γ, e `W (Fe te) t1, t2 fresh

F ≡ Fe ∧ t1 = te → t2 ∧
V

i∈I(Fi ∧ t1 = t′i)

Γ, case e of [pi → ei]i∈I `W (F t2)

(Pat)

p ` ∀b̄.(D Γp t1) Γ ∪ Γp, e `W (Fe te) t fresh

F ≡ ∀b̄.(D ⊃ ∃̄fv(Γ,b̄,te)
.Fe) ∧ t = t1 → te

Γ, p → e `W (F t)

(Pat-Var)
t fresh

x ` (True {x : t} t)

(Pat-K)

K : ∀ā, b̄.D ⇒ t1 → ... → tl → T ā b̄ ∩ ā = ∅
pk ` ∀b̄′k.(D′

k Γpk tpk ) φ m.g.u. of tpk = tk for k = 1, ..., l dom(φ) ∩ b̄ = ∅
K p1...pl ` ∀b̄′1, ..., b̄′l, b̄.(φ(D′

1) ∧ ...φ(D′
l) ∧ φ(D) φ(Γp1) ∪ ... ∪ φ(Γpl) T φ(ā))

Fig. 3. Translation to Implication Constraints

for ∃ā.Fe where ā = fv(Fe) − fv(Γ, b̄, te). That is, we existentially quantify over
all variables which are strictly local in Fe. In the special case of (existential)
algebraic data types the constraint D equals True and Fe is a constraint. In rule
(LetA), we generate a formula to check that the type of the body e1 subsumes
the annotated type of function f . In logical terms, the subsumption condition
is expressed by the formula ∀ā(C1 ⊃ ∃̄fv(Γ,t1)

.F1 ∧ t1 = t′1). However, this form
is not suitable for the upcoming checking procedure because we would need to
guess the possible assignments under which t1 = t′1 holds. Therefore, we push the
constraint t1 = t′1 into the assumption part (left-hand side of ⊃). For technical
reasons, we need to ensure that type schemes ∀ā.C ⇒ t are in the (equivalent)
normalized form ∀ā, b.C ∧ b = t⇒ b where b is fresh. Details are in [SS05]. Note
that there is no (Let) rule because we assume that all let-defined functions must
be annotated with a type.

The type checking problem says that for a given constraint C, environment Γ ,
expression e and type t we need to verify that C,Γ ` e : t holds. We can reduce

11



this problem to testing whether constraint C implies the implication constraint
generated from Γ and e

Theorem 1 (Type Checking via Implication Checking). Let P be a pro-
gram logic. Let Γ be an environment, e an expression, C a constraint and t a
type. Let Γ, e `W (F t′) such that P |= (C, t = t′) ⊃ ∃̄fv(Γ,t′).F holds where
w.l.o.g. t and t′ are variables. Then, C,Γ ` e : t.

Note that (C, t = t′) ⊃ ∃̄fv(Γ,t′).F is itself again a implication constraint
(we leave the outermost universal quantifier implicit). Hence, the type checking
problem boils down to testing whether a implication constraint holds w.r.t. the
program logic P . We neglect here the “opposite” task of finding C which corre-
sponds to type inference.

5.2 Checking Implication Constraints

First, we review some background material on CHR solving. The operational
reading of constraint rules (CHRs) is simple. In case of propagation rules we
add the right-hand side if we find a matching copy of the lhs in the constraint
store. In case of simplifications rules we remove the matching copy and replace
it by the right-hand side. The formal definition is as follows [Frü95].

Definition 1 (CHR Semantics). Let P be a set of CHRs.

Propagation: Let (R) c1, ..., cn =⇒ d1, ..., dm ∈ P and C be a constraint. Let
φ be the m.g.u. of all equations in C. Let c′1, ..., c

′
n ∈ C such that there exists

a substitution θ on variables in rule (R) such that θ(ci) = φ(c′i) for i = 1...n,
that is user-defined constraints c′1,...,c

′
n match the left-hand side of rule (R).

Then, C �R C, θ(d1), ..., θ(dm).

Simplification: Let (R) c1, ..., cn ⇐⇒ d1, ..., dm ∈ P and C be a constraint.
Let φ be the m.g.u. of all equations in C. Let c′1, ..., c

′
n ∈ C such that there

exists a substitution θ on variables in rule (R) such that θ(ci) = φ(c′i) for
i = 1, ..., n. , Then, C �R C − {c′1, ..., c′n}, θ(d1), ..., θ(dm).

Often, we perform some equivalence transformations (e.g. normalize equa-
tions by building the m.g.u. etc) which are either implicit or explicitly denoted
by ←→. A derivation, denoted C �∗

P C ′ is a sequence of derivation steps using
rules in P such that no further derivation step is applicable to C ′. CHRs are
applied exhaustively, being careful not to apply propagation rules twice on the
same constraints (to avoid infinite propagation). For more details on avoiding
re-propagation see e.g. [Abd97]. We say a set P of CHRs is terminating if for
each C there exists C ′ such that C �∗

P C ′.
We repeat the CHR soundness result [Frü95] which states that CHR rule

applications perform equivalence transformations.

Lemma 1 (CHR Soundness [Frü95]). Let C �∗
P C ′. Then P |= C ↔

∃̄fv(C).C
′.

Recall the CHRs for the Add type class.
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rule Add Zero m m <==> (A1)
rule Add (Succ l) m (Succ n) <==> Add l m n (A2)
rule Add l m n1, Add l m n2 ==> n1=n2 (A3)
rule Add Zero m n ==> m=n (A4)
rule Add (Succ l) m n’ ==> n’=Succ n (A5)

We have that

Add (Succ Zero) m n,Add (Succ Zero) m n′,m = Zero
�A3 Add (Succ Zero) m n,m = Zero, n = n′

←→ Add (Succ Zero) Zero n,m = Zero, n = n′

�A5 Add (Succ Zero) Zero (Succ n′′), n = Succ n′′,m = Zero, n = n′

�A1 Add Zero Zero n′′, n = Succ n′′,m = Zero, n = n′

�A4 Add Zero Zero Zero, n = Succ Zero, n′′ = Zero, m = Zero, n = n′

�A2 n = Succ Zero, n′′ = Zero, m = Zero, n = n′

We show how to lift the (primitive) constraint solver �∗
P to the domain of

implication constraints. We write F �∗
P C to denote that checking of implication

constraint F yields (after some n number of steps) solution C. Our idea is to
turn the implication checking problem into an equivalence checking problem
by making use of the fact that C1 ⊃ C2 iff C1 ↔ C1, C2. Then, we can use
the primitive constraint solver and execute C1 �∗

P D1 and C1, C2 �∗
P D2.

Next, we check for logical equivalence by testing whether D1 and D2 share the
same m.g.u. and their user-defined constraints are renamings of each other. If
equivalence holds, then C1 ⊃ C2 is solved and True is the solution. The exact
checking details are as follows.

Definition 2 (CHR-Based Implication Checker). Let P be a set of CHRs
and F an implication constraint.

Primitive: We define F �P C ′ where C �∗
P C ′ if F ≡ ∃ā.C.

General: Otherwise F ≡ C0, (∀ā.D ⊃ ∃b̄.F1), F2 where C0 is a conjunction of
primitive constraints, D is a set of assumptions and F1 and F2 are implica-
tion constraints.
We compute (1) C0, D �∗

P D′ and (2) C0, D, F1 �∗
P C ′ for some D′ and

C ′. We distinguish among the following cases.
Solved: We define F �P C0, F2 if |= (∃̄V .D′) ↔ (∃̄V .C ′) where V =

fv(C0, D, ā).
Failure: We define F �P False in all other cases.

We assume that�∗
P denotes the exhaustive application of CHR implication solv-

ing steps.

In the Primitive step we apply standard CHR solving. No surprises here.
In the General step, we split the constraint store into C0 containing sets of
primitive constraints, a single implication constraint (∀ā.D ⊃ ∃b̄.F1) and F2 con-
taining the remaining implication constraints. Strictly speaking, F2 itself could
be a set of primitive constraints. Silently, we assume that all sets of primitive
constraints are collected in C0. Also note that we inductively solve nested im-
plication constraints, see (2).
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The Solved step applies if the equivalence check succeeds. Hence, the con-
straint (∀ā.D ⊃ ∃b̄.F1) is removed from the store. Note that w.l.o.g. we assume
that b̄ = fv(F2) − fv(ā, C0). Any variable not bound by a universal quantifier is
(implicitly) existentially bound. The CHR Soundness result immediately yields
that this step is sound, hence, the overall procedure is correct (see upcoming
Lemma 2).

For example, the append function from Section 4.1 gives rise to the following
(simplified) implication constraint.

∀a, l, m, n. (Add l m n, t = List a l → List a m → List a n) ⊃„
(l = Zero ⊃ t = List a l → List a m → List a m), (1)
∃l′.(l = Succ l′ ⊃ (Add l′ m n′, t = List a l → List a m → List a (Succ n′))

«
Based on our implication checking procedure, we can verify that the above

formula F holds, i.e. F �∗
P True. E.g., in an intermediate step, we find that

Add l m n, t = List a l→ List a m→ List a n, l = Zero
�∗ t = List a Zero→ List a m→ List a n, l = Zero, m = n

and thus we can verify the inner implication (1). A similar reasoning applies to
the remaining part. Hence, from Theorem 1 and Lemma 2 we can conclude that
the append function type checks.

Lemma 2 (Implication Checking Soundness). Let P be a set of CHRs, F
be an implication constraint and C be a set of primitive constraints such that
F �∗

P C. Then, P |= C ↔ F .

Our implication checking procedure is terminating if the underlying primitive
constraint solver is terminating. Thus, we obtain decidable type checking. There
are plenty of criteria (imposed on source EADT programs) such as the Haskell
type class [Pey03] and Jones’s functional dependency restrictions [Jon00] which
ensure termination of the resulting CHRs. We refer to [DJSS04] for more details.

Though, termination does not ensure that type checking is complete. The
problem is that type constraints arising out of the program text may be “am-
biguous” which requires us to guess types. The solution is to reject such programs
or demand further user assistance in form of type annotations.

Yet another source of incompleteness is our primitive constraint solver which
we use for equivalence checking. We will elaborate on such issues and how to
obtain complete type checking in an extended version of this paper.

6 Discussion and Related Work

Peyton Jones, Washburn and Weirich [JWW04] have added GADTs to GHC.
However, GADTs and type classes do not seem to interact well in GHC. E.g.,
the examples from Section 4.1 are not typable.

Sheard [She05] and Chen/Xi [CX05] have extended GADTs to allow users to
specify their own program properties which previously required external proof
systems such as [PS99,BBC+96]. An interesting question is to what extent “ex-
tended GADTs” can be expressed in terms of EADTs. E.g., consider the append
function from Section 4.1 which appears in very similar form in [CX05]. One
difference is that the works in [She05,CX05] use type functions to specify type
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data Exp = ... -- resource automaton --
-- resource EADT data S0 -- states
data Cmd p q = data S1

forall r. Seq (Cmd p r) (Cmd r q) data Open -- alphabet
| ITE Exp (Cmd p q) (Cmd p q) data Close
| (p=q) => While Exp (Cmd p q) data Write
-- while state is invariant -- valid transition
| Delta p Open q => OpenF rule Delta S0 Open x <==> x=S1
| Delta p Close q => CloseF rule Delta S1 Close x <==> x=S0
| Delta p Write q => WriteF rule Delta S1 Write x <==> x=S1

-- improvement
rule Delta a b c, Delta a b d ==> c=d
rule Delta x Open y ==> x=S0, y=S1
rule Delta x Close y ==> x=S1, y=S0 -- (Imp)
rule Delta S1 Open x ==> False
-- failure
rule Delta S0 Close x ==> False
rule Delta S0 Write x ==> False -- (Fail)

Fig. 4. Resource EADT

properties whereas we use CHRs. We claim that CHRs allow us to specify more
complex type properties than specifiable via type functions as shown by the
EADT in Figure 4.

We introduce a EADT to represent a while language which satisfies a resource
usage analysis specified in terms of a DFA. The DFA relations are specified via
CHRs. Type parameters p and q represent the input and output state, before
and after execution of the command. Notice how we constrain states p and q by
the constraint Delta which represents the DFA state transition function delta
(see the last three cases).

The CHRs encode a specific automaton for a resource usage policy where we
may open a file, write an arbitrary number of times to the file and close the file.
The improvement and failure rules are particularly interesting here. They allow
us to aggressively enforce the resource automaton. E.g., after closing a file we
must return to the start state S0 (see (Imp)). We are not allowed to write if we
are in the start state (see (Fail)) etc. We cannot see how to model this behavior
via type functions in the systems described in [She05,CX05].

Simonet and Pottier [SP05] have also employed implication constraints for
type inference in an extension of Hindley/Milner with GADTs but did not give
any checking method in the general form as stated here. In some subsequent
work, Pottier and Régis-Gianas [PRG06] showed how to perform complete type
checking for GADTs without implication constraints on the expense of demand-
ing an excessive amount of type annotations. These annotations are inferred by
an elaboration phase. E.g., they show how to successfully elaborate the following
program based on a heuristic algorithm Ibis.

data T = (a=Int) => I
double::T a->[a]->[a]
double t l = map (\x-> case t of I -> x+x) l
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We also successfully accept the above program based on our type checking
method. We consider this as an indication that implication constraints are an
interesting approach to describe the elaboration of programs to achieve complete
type checking.

7 Conclusion

We have formalized the concept of extended algebraic data types which unifies
type classes with extensions and GADTs. We could provide evidence that the
extension is useful and extends the expressiveness of languages such as Haskell
significantly. We have introduced a novel method to support type checking for
all instances of our framework.

For practical reasons, we also want to look into type inference to relieve
the user from the burden of providing annotations. In this context, it is also
important to consider how to give feedback in case of type errors. We have
already started work in this direction which we plan to report in the near future.

Acknowledgments

We thank the reviewers for their constructive comments.

References

[Abd97] S. Abdennadher. Operational semantics and confluence of constraint prop-
agation rules. In Proc. of CP’97, LNCS, pages 252–266. Springer-Verlag,
1997.

[BBC+96] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, H. Herbelin,
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