
Explaining flow-based propagation

Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey

National ICT Australia? and the University of Melbourne, Victoria, Australia
{ndowning@students.,tfeydy@,pjs@}csse.unimelb.edu.au

Abstract. Lazy clause generation is a powerful approach to reducing
search in constraint programming. For use in a lazy clause generation
solver, global constraints must be extended to explain themselves. In this
paper we present two new generic flow-based propagators (for hard and
soft flow-based constraints) with several novel features, and most impor-
tantly, the addition of explanation capability. We discuss how explana-
tions change the tradeoffs for propagation compared with the previous
generic flow-based propagator, and show that the generic propagators
can efficiently replace specialized versions, in particular for gcc and se-
quence constraints. Using real-world scheduling and rostering problems
as examples, we compare against a number of standard Constraint Pro-
gramming implementations of these contraints (and in the case of soft
constraints, Mixed-Integer Programming models) to show that the new
global propagators are extremely beneficial on these benchmarks.

1 Introduction

Lazy clause generation [16] is a hybrid approach to constraint solving that uses a
traditional DPLL or ‘propagation and search’ constraint solver as the outer layer
which guides the solution process, plus an inner layer which lazily decomposes
the Constraint Program (CP) to a Boolean satisfiability problem (SAT) and
applies the latest SAT solver technology to prune the search [15].

gcc and sequence are two of the most important global constraints. They
occur frequently in scheduling and rostering problems.

The gcc constraint takes the form gcc([x1, . . . , xn], [c1, . . . , cm]) and says that
each value v ∈ 1..m occurs cv times in the list of x-values. If only the domains
of the c are interesting, we write their intervals directly e.g. 1..2 instead of c1.

The sequence constraint takes the form sequence(l, u, w, [y1, . . . , yn]) and says
that every consecutive w-window of y-variables sums to l..u.

Earlier work has shown flow-based propagation can be used to efficiently
implement these constraints [4, 18]. The previous generic flow-based propagator
by Steiger et al. [22] is promising but does not incorporate the work on gcc
and nor does it produce explanations for use in a learning solver. Ideas on flow-
based explanations have been proposed for generic flow networks [20] and for
the special cases of alldifferent and gcc [12].
? NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council.

In this paper we present a new generic flow-based propagator which replaces
all specialized flow-based propagators, supports soft constraints, and produces
explanations for use in a lazy clause generation solver.

We take a fairly different approach to the previous work [22] because the
previous propagator relied on a form of lookahead, which is not advantageous
in a learning context, since simply searching on the lookahead value will add a
nogood which will have the same effect for the remainder of search. This effect
is well understood for SAT solvers [10] and confirmed by our early experiments.

The contributions of this paper are:
– We implement for the first time explanations for flow-based propagation.
– We give a systematic approach to pruning flow bounds, as opposed to the

existing previous methods [22] which relied on explicit testing.
– We give a specialized method for deriving infeasibility from a spanning tree

solution which is simpler and more efficient than the existing method for
general linear programs [1] applied to network flow.

– We give new flow network encodings for sequence and gsc constraints.
– We define a new search strategy for CP optimization problems with flow

networks, combining pseudocost [7] and reduced cost.
– We provide experiments showing that flow propagators with explanation can

produce state-of-the-art results for problems encodable using flow networks.
– We show that learning is advantageous for flow propagation, even though

explanations (particularly for soft constraints) can be large.

2 Lazy clause generation

We give a brief description of propagation-based solving and lazy clause gen-
eration, for more details see [16]. We consider constraint satisfaction problems,
consisting of constraints over integer variables x1, . . . , xn, each with a given
finite domain Dorig(xi). A feasible solution is a valuation to the variables such
that each xi is within its allowable domain and all constraints are satisfied.

A propagation solver maintains a domain restriction D(xi) ⊆ Dorig(xi) for
each variable and considers only solutions that lie within D(x1) × · · · ×D(xn).
Solving interleaves propagation, which repeatedly applies propagators to remove
unsupported values, and search which splits the domain of some variable and
considers the resulting sub-problems. This continues until all variables are fixed
(success) or failure is detected (backtrack and try another subproblem).

Lazy clause generation is implemented by introducing Boolean variables for
each potential value of a CP variable, named [xi = j] and [xi ≥ j]. Negating
them gives [xi 6= j] and [xi ≤ j−1]. Fixing such a literal modifies D(xi) to make
the corresponding fact true, and vice versa. Hence the literals give an alternate
Boolean representation of the domain, which can support SAT reasoning.

In a lazy clause generation solver, the actions of propagators (and search) to
change domains are recorded in an implication graph over the literals. Whenever
a propagator changes a domain it must explain how the change occurred in terms
of literals, that is, each literal l that is made true must be explained by a clause
L→ l where L is a conjunction of literals. When the propagator detects failure it

must explain the failure as a nogood, L→ false, with L a conjunction of literals
which cannot hold simultaneously. Then L is used for conflict analysis [15].

3 Flow networks

A flow network is a graph (N,A) which models a system where flow is conserved,
e.g. the pipes in a refinery, or the truck routes in a distribution network. It
consists of nodes N and arcs A = {(u, v) : there is a directed arc u→ v}. Flow
in the graph is represented by a vector f with bounds vectors l,u such that
luv ≤ fuv ≤ uuv for all arcs (u, v). Flow conservation at each node requires that
outflows− inflows = supply, or more technically

∀n ∈ N,
∑

v∈N :(n,v)∈A

fnv −
∑

u∈N :(u,n)∈A

fun = sn, (1)

where the supply (sn > 0) or demand (sn < 0) is a constant taken from a
vector s whose entries sum to 0. The network may also have a cost vector c
which associates a cost per unit flow with each arc, such that cT f is the cost of
solution f . Further discussion of the cost vector is deferred to Section 5. Note
that there may be parallel arcs of different cost (Section 7) but we only discuss
the case without parallel arcs because the notation is much simpler.

Example 1. Figure 1 shows a simple flow network with nodes representing nurses
(x = Xavier, y = Yasmin), shifts (d = day, n = night), and a sink t. A feasible
(integer) assignment to f gives a solution to a nurse rostering problem:
– 1 or 2 nurses on day shift,
– 0 or 1 nurses on night shift,
– fij = 1 if nurse i works shift j, 0 otherwise.

Flow conservation ensures the validity of the solution, for
– nurse i works only one of the shifts, because fid + fin = 1 at node i,
– the number of nurses on shift j is fjt, because fxj + fyj = fjt at node j, and
– the staffing requirement for shift j is expressed as the bounds on fjt.

This illustrates Régin’s [18] encoding of the constraint gcc([x, y], [1..2, 0..1]), with
x, y = 1 (day) or 2 (night) being the shift worked by Xavier (x) and Yasmin
(y). Using the coercion function bool2int , the ‘working arc’ flows are expressed
directly as domain literals which are intrinsic in a Lazy Clause Generation solver,
e.g. fxd = bool2int([x = 1]), where bool2int(false) = 0 and bool2int(true) = 1.

3.1 Ford and Fulkerson’s algorithm
We define the residual graph as summarizing, based on some current solution
f , the allowable neighbouring solutions. Where an arc (u, v) ∈ A appears in the
residual graph it means fuv < uuv and can be increased. Where the reverse arc
(v, u) appears in the residual graph it means fuv > luv and can be decreased. If
neither arc appears, fuv is fixed. If both arcs appear, fuv is at neither bound.

From a solution f which respects the bounds but not the flow conservation
constraints (hence certain nodes have an excess of flow and certain nodes a
deficit), we can approach feasibility using Ford and Fulkerson’s algorithm [6]. We

0 ≤ fxd ≤ 1

0 ≤ fyn ≤ 1

= 1

0 ≤ fyd ≤
 1

0 ≤ fxn ≤ 1
Xavier

Yasmin

day

night

sink = -2
0 ≤ fnt ≤

 1

1 ≤ fdt ≤ 2

= 1

Fig. 1: Example flow network encoding a gcc constraint

augment, that is, increase the flow, along paths of the residual graph (each time
updating the solution and corresponding residual graph). The augmenting path
chosen is always from a node in excess to a node in deficit, which systematically
reduces the infeasibility until feasibility is achieved. The only paths considered
are those in the residual graph, ensuring that flows stay within their bounds.

Example 2. Continuing Example 1, Figure 2 shows the residual graph of the
feasible solution which has Xavier on night shift and Yasmin on day shift, that
is fxn = 1, fyd = 1, and so on. Since this is the graph of a gcc constraint, for
simplicity we label certain arcs directly with their Boolean literals, understanding
that false is a flow of 0 and true is a flow of 1. The bounds l,u are as illustrated
in the earlier Figure 1, so the false arcs are drawn in a forward orientation (can
be increased to true) whereas the true arcs are drawn reverse (can be decreased
to false). The staffing-level arcs fit are also re-oriented as appropriate.

Suppose the flow bound uyd is externally tightened to 0, that is Yasmin is
no longer available for day shift (this could occur through search or as a result
of side constraints). Before applying Ford and Fulkerson’s algorithm we have to
put flows into range, so fyd is reduced to 0, equivalently [y = 1] is set to false,
creating an excess at node y and a deficit at node d, shown in Figure 3. fyd is
now fixed so removed from the residual graph, shown as the dotted line from
node y to d. An appropriate augmenting path is identified in Figure 4. After
augmenting along this path, feasibility is restored as shown in Figure 5.

4 Network flow propagator

We define the new constraint network flow(N,A, s, f) which enforces the flow
conservation constraints (1) on f according to the graph (N,A) and supplies
s, where luv, uuv = min,maxD(fuv). The propagator maintains a (possible)
solution to the flow graph at all times. It wakes up with low priority when any
flow bound is tightened and attempts to repair its solution for the new bounds.

4.1 Explaining failure
Suppose there is no feasible solution. Let C, the ‘cut’, be the set of nodes searched
for an augmenting path. It contains node(s) in excess but none in deficit. Then
according to the current flow bounds, more flow enters C than can leave it, taking

.5

t

dx

y n
[y = 2] = false

sx = 1

sy = 1

st = -2

sd = 0

sn = 0

[x = 2] = true

[y = 1] = tru
e

[x = 1] = false
fdt = 1

fnt =
 1

Fig. 2: Residual graph (x = 2, y = 1)

.5

t

dx

y n
[y = 2] = false

sx = 1

sy = 1

st = -2

sd = 0

sn = 0

[x = 2] = true

excess

deficit

[y = 1] = fals
e

[x = 1] = false
fdt = 1

fnt =
 1

Fig. 3: After an external pruning

.5

t

dx

y n
[y = 2] = false

sx = 1

sy = 1

st = -2

sd = 0

sn = 0

[x = 2] = true

excess

deficit

[y = 1] = fals
e

[x = 1] = false
fdt = 1

fnt =
 1

Fig. 4: Found an augmenting path

.5

t

dx

y n
[y = 2] = true

sx = 1

sy = 1

st = -2

sd = 0

sn = 0

[x = 2] = false

[y = 1] = fals
e

[x = 1] = true
fdt = 1

fnt =
 1

Fig. 5: Feasibility restored

Fig. 6: Ford and Fulkerson’s algorithm to find feasible flows

into account the arcs crossing C and the net supply/demand of C. Summing the
equations (1) over n ∈ C gives flow conservation for the cut,∑

(u, v) leaves C

fuv −
∑

(u, v) enters C

fuv =
∑
n∈C

sn. (2)

Given C that proves infeasibility, we explain equation (2) as a linear constraint,
using a standard linear explanation for LHS ≤ RHS [16]. Even if outflows are
at minimum for outgoing arcs and inflows are at maximum for incoming arcs,
minimizing the net flow leaving the cut, the net flow is still greater than the
net supply/demand of the cut. The explanation of failure is the conjunction of
literals [fuv ≥ luv] for outflows and [fuv ≤ uuv] for inflows, using current l,
u. Similar explanations were proposed by Rochart [20]. For the special case of
gcc they reduce to those proposed by Katsirelos [12]. We can improve the base
explanation by using lifting methods [1, 5, 16] to create a stronger explanation.

Example 3. Continuing Example 2, suppose search sets fxd = fyd = 0, equiva-
lently x, y 6= 1, so that insufficient nurses are available for day shift. Figure 7
shows the residual graph of a partial solution with flows in range but not con-
served. Attempting to resolve the excess, breadth-first search explores nodes
C = {x, n, y}. Cut-conservation (2) requires bool2int([x = 1]) + bool2int([y =
1]) + fnt = 2, unachievable since both literals are false and fnt ≤ 1. Hence the
network flow propagator fails with nogood [x 6= 1] ∧ [y 6= 1] ∧ [fnt ≤ 1]→ false.

fdt = 1

fnt =
 1

t

dx

y n
[y = 2] = true

sx = 1

sy = 1

st = -2

sd = 0

sn = 0

[x = 2] = false
excess deficit

[y = 1] = fals
e

[x = 1] = false

Fig. 7: Example residual graph showing infeasibility of the gcc constraint

4.2 Explaining pruning
Suppose that, on wakeup, there is a feasible solution to the network under
the tightened bounds. Pruning is possible, if some fuv can no longer reach its
minimum or maximum due to the externally-tightened bounds that caused the
wakeup. Régin describes a method based on Strongly Connected Components
(SCCs) for gcc constraints [18], which we generalize to any flow network to find
all arcs fixed at a bound, that is fuv = luv (resp. uuv) which cannot increase
(resp. decrease). For Boolean flow variables, bound-tightening implies fixing at
a bound and vice versa, giving bounds-consistency on Boolean-valued arcs.

It is easy to see that the flow along an arc can only increase/decrease if an
augmenting cycle can be found in the residual graph, that passes through the

arc in the appropriate direction (and does not pass back through the same arc).
To check this we compute the SCCs of the residual graph, which can be done in
linear time by Tarjan’s algorithm [23]. An arc u→ v with u, v in different SCCs
can never be augmented since by definition u is not reachable again from v.

The explanation for pruning is the same as for failure, except that an SCC is
used as the cut-set C instead of an infeasible set. Once again we treat equation (2)
as a linear ‘≤’ constraint. This relies on the SCC acting as a ‘trap’ for incoming
flow, to prune an incoming flow the bounds on outgoing flows must be tight.

Example 4. Consider alldifferent(x1, x2, x3), expressed as the usual gcc network
of gcc([x1, x2, x3], [c1, c2, c3, c4]) where ci ∈ 0..1. If x1 ∈ {1, 2}, x2 ∈ {2, 3},
x3 ∈ {2, 3, 4}, then a solution is x1 = 1, x2 = 2, x3 = 3, as shown in Figure 8.
The residual graph of this solution is shown in Figure 9. Due to the cycle t →
1 → x1 → 2 → x2 → 3 → x3 → 4 → t every node is reachable from each other,
the entire graph is a single SCC, and no pruning is possible.

Now suppose x3 6= 4, that is, the arc x3 → 4 is pruned externally, as shown
in Figure 10. Tarjan’s algorithm executes starting from node t and proceeds
through nodes 1 and x1 before discovering SCC #1. Then the arc x1 → 2 may
be pruned due to cut-conservation (2) for SCC #1: bool2int([x3 = 4])+c2 +c3−
bool2int([x1 = 2]) = 2 and hence bool2int([x1 = 2]) = 0 since [x3 = 4] = false,
c2 ≤ 1, and c3 ≤ 1. The explanation is [x3 6= 4] ∧ [c2 ≤ 1] ∧ [c3 ≤ 1] → [x1 6= 2]
or after removing redundant bounds [x3 6= 4] → [x1 6= 2]. Having pruned all
arcs leaving SCC #2, that SCC is closed, allowing the arc x1 → 1 to be fixed to
true using [x1 6= 2] as justification and so on.

5 Minimum cost flow networks

When there is a cost vector c for the network, instead of just solving for any
feasible flow we have to solve the following optimization problem,

min cT f s.t. Af = s, f ≥ l, f ≤ u, (3)

where each row of A corresponds to a flow conservation equation (1). This is a
Linear Program (LP) and may be solved by the well-known Simplex method.
Since the column of A corresponding to a flow fuv consists of a difference of
unit vectors eu− ev, this LP is a network LP and may equivalently be solved by
Network Simplex, which is usually faster, because operations on general matrices
reduce to a series of operations on spanning trees and augmenting paths.

In a network flow problem a basic solution is a spanning tree of the graph
(N,A), directed in the sense that the root is distinguished and all tree-arcs point
upwards to the root (requiring us to correct for the current tree-direction of an
arc when referring to its flow variable). Non-tree arcs are set to a fixed flow value,
which may be either the lower or upper bound of the associated flow variable.
This gives the tree-arc flows, as the outgoing (i.e. upwards) flow of a node is its
supply plus incoming flows (i.e. Af = s has |A| − |N | degrees of freedom).

Each node n is assigned a potential gn which is the cost of taking a unit of
flow from that node to the root (via the tree). Then the reduced cost huv for

each arc says how much the overall cost would change if a unit of flow from u to
the root at cost gu, were re-routed via the arc (u, v), i.e. from u to v and then
to the root at cost cuv + gv. Taking the difference in cost, huv = cuv + gv − gu.

5.1 Dual Network Simplex
Since we use the (lesser known) Dual Network Simplex method we cannot avoid
a brief discussion of duality. Let y be a vector with one entry per constraint
called the row costs, indicating the local change in the objective per unit change
in the right-hand side of the constraint. For problem (3) this is simply the node
potentials (row costs generalize this concept). Now rewrite the primal (3) as

min cT f s.t.

A
−A
I
−I

 f ≥

s
−s
l
−u

 , row costs y =

g+

g−

h+

h−

 . (4)

Then the node potentials and reduced costs discussed earlier become g = g+−g−

and h = h+ − h−. The standard dual is an LP over the row costs vector y,
obtained by transposing the constraint matrix, costs, and right-hand sides,

max
[
sT −sT lT − uT

]
y s.t.

[
AT −AT I −I

]
y = c, y ≥ 0, row costs f . (5)

Solving the dual problem to optimality yields variables y and row costs f which
also solve the primal and vice versa. After bound tightenings as in the earlier
Examples 2 to 4, the previous solution resident in the dual solver remains feasible
(since modifying l,u only changes the objective) so allows a warm start.

Dual Network Simplex, as opposed to the Ford and Fulkerson method, takes
a solution where flows are conserved but may violate flow bounds, and ‘pivots’
to reduce the bounds violation while maintaining dual feasibility, that is, arcs at
their lower (resp. upper) bounds have positive (resp. negative) reduced costs.

The dual pivot consists of choosing an arc to leave the spanning tree whose
flow violates its bounds, then choosing the appropriate entering arc that main-
tains dual feasibility. The subtree or ‘cut’ under the leaving arc has its potentials
updated and all arcs crossing the cut have their reduced costs updated accord-
ingly. The entering arc must cross the cut, its reduced cost must have the correct
sign, and when added to the other reduced costs it must not cause them to cross
0, hence its absolute value must be minimal among the possible arcs.

Example 5. Figure 12 shows a simplified underground mining network, which is
convenient since all flows are naturally upwards, otherwise the example is more
complicated. Supplies/demands are shown in bold beside the nodes, the mining
areas at the leaf nodes supply one tonne of ore each (se = sf = sg = si = sj =
sk = 1) which has to be moved to the mine portal (sa = −6). Beside each arc is
shown in lightweight italic the cost cuv per tonne moved through the arc.

Figure 13 shows a dual feasible tree for the network, with potentials in bold,
flows and reduced costs in italics, and non-tree arcs dotted, of which fhg is at
its upper bound uhg = 3, others are at their lower bounds. fhd violates its lower
bound and will leave the tree. The cut shows nodes under the leaving arc.

The leaving arc must be augmented by 1 tonne to leave the tree at its lower
bound, so the entering arc must provide 1 extra tonne into the cut, while the
objective either increases or stays the same (the dual is a maximization problem).
So we can either increase an inflow with reduced cost ≥ 0, or decrease an outflow
with reduced cost ≤ 0. Then the possibilities are fhg or fej, we have to choose
the former because |hhg| < |hej|. Figure 14 shows the result of the pivot.

6 Minimum cost network flow propagator

We define the new constraint min cost network flow(N,A, s, f , c, z) which is the
same as network flow except that minD(z) increases to track the objective,
hence fathoming occurs when cT f > maxD(z). The propagator wakes up with
low priority upon bound tightening, re-optimizes from warm-start, and may
fail/fathom, or perform its normal pruning plus additional pruning based on the
objective. Explaining failure/fathoming depends on the fact that any solution
to the dual gives an upper bound on the primal objective (weak duality).

6.1 Explaining failure

If the dual is unbounded then eventually after choosing a leaving arc no entering
arc will have the correctly signed or zero reduced cost. Because huv > 0 implies
fuv = luv and huv < 0 implies fuv = uuv, the leaving arc cannot be augmented
because all other arcs crossing the cut (i.e. the subtree under the leaving arc) are
tight at the appropriate bound, so there is too much flow attempting to cross
the cut, and we can simply explain failure as in Section 4.1.

Example 6. Continuing Example 5, suppose uba = 3. Then fba violates its upper
bound and is selected as the leaving arc. Figure 15 shows the resulting cut. To
reduce the outflow on fba in a favourable way we look for inflows with huv ≤ 0
or outflows with huv ≥ 0 but find none. Increasing the potentials inside the cut
by α > 0 gives hba = α and heb, hej, hfc = 1 + α which is dual feasible. The
objective would increase by 4α. So the cut encodes an unbounded dual ray.

6.2 Explaining fathoming

Given flow bounds l, u, and an optimal flow f with reduced costs h and objective
value m, the explanation for fathoming is∧

huv>0

[fuv ≥ luv] ∧
∧

huv<0

[fuv ≤ uuv]→ [z ≥ m], (6)

which causes a conflict when maxD(z) < m. This is after all intuitive because
the flows being tight against their lower (resp. upper) bounds when reduced costs
are positive (resp. negative) is what prevents us improving the solution.

To see this algebraically take also the potential vector g from the optimal
solution considered above, and substitute g, h into the linear constraint

gT s + hT f ≤ z, (7)

which is best considered as constraining the bounds l, u on f rather than f itself,

gT s +
∑

huv>0

huvluv +
∑

huv<0

huvuuv ≤ maxD(z).

when this is violated we know that

primal objective ≥ dual objective =
[
−sT sT −lT uT

]
y > maxD(z),

where y is any feasible solution of (5). Upon backtracking and trying a new
subproblem, the feasible region of problem (5) is unaffected by any changes to
l, u, hence y remains dual feasible even though its dual objective may change.
By weak duality the new dual objective still provides a lower bound on cT f .

So when (7) is violated we can fathom with the usual explanation of the
linear constraint, essentially the clause (6), but treating as a linear constraint
confers some advantages, (i) we can use a lifting algorithm [1, 5, 16], which in our
implementation is naive but nevertheless effective, and (ii) we can propagate (7)
to bounds consistency in the usual way each time the propagator executes, an
idea known to the MIP community as reduced-cost variable fixing.

Whilst the dual optimal y provides the tightest bound and the most like-
lihood of detecting failure or pruning, we do not necessarily need the tightest
bound. Explanations of fathoming from optimizing earlier subproblems have a
good chance of being applicable on a new subproblem if it is similar enough.

Similar schemes for explaining failure and fathoming in general linear pro-
grams were given by Davey et al. [5] for problems involving 0-1 variables, and
later by Achterberg [1] for general integer variables.

7 New sequence and gsc encodings

We give a new flow-based encoding for sequence, as a flow network, similar to [14]
but simpler and using fewer arcs. Referring to Figure 17, a flow fi along the spine
corresponds to a sum of yj over the w-window i ≤ j < i + w, which we may
show by a series of cuts, e.g. the cut illustrated shows by cut-conservation (2)
that f3 = y3 +y4 +y5. Constraining the fi-flows to l ≤ fi ≤ u enforces sequence.
Tarjan’s algorithm propagates the y to domain consistency if they are 0..1 valued
(the common case). The f are only opportunistically pruned, but this does not
matter as they are only introduced for the sake of the decomposition.

Régin and Puget’s gsc(l, u, w, [x1, . . . , xn], [(v1, c1), . . . , (vm, cm)]) says that
xi ∈ {v1, . . . , vm} occurs l..u times per w-window and that xi = vj occurs cj
times overall [19]. In their experiments they reduced gsc to gcc for which a flow
based propagator was available, at the expense of adding side constraints. Our
network is equivalent but modifies the gcc instead of needing side constraints.

Referring to Figure 18, nodes xi, vj represent variables and values as in
a standard gcc network. Nodes wk ensure that xk, . . . , xk+w−1 meet the l..u
constraint by setting the flow from the overall source s to those variable nodes.
As windows wk do not overlap, there are w different window alignments, hence
w network flow propagator instances.

We encode a soft version of each constraint as min cost network flow by
adding in parallel to each arc of capacity l..u, two additional ‘violation arcs’, one
with capacity −∞..0 and cost −1, the other with capacity 0..∞ and cost 1.

8 Experiments

We implemented the network flow and min cost network flow propagators in
Chuffed , a state-of-the-art lazy clause generation solver. We used the MCF 1.3
Dual Network Simplex code [13]. We evaluated the new propagators on car
sequencing and nurse rostering problems. Hardware was a Dell PowerEdge R415
cluster with dual-processor 2.8GHz AMD 6-Core Opteron 4184 nodes. Timeouts
were 3600s and memory limit was 1.5Gb per core. Minizinc models and instances
are available from http://www.csse.unimelb.edu.au/~pjs/flow.

Car sequencing. Car sequencing (prob001 in CSPLib [9]) is a problem of
scheduling a day’s production in an assembly plant. We consider instance set
1 consisting of 9 ‘classic’ instances which are extremely difficult, some feasible
and some infeasible, based on real data from Renault, and set 2 consisting of 70
randomly generated instances of increasing difficulty, all feasible. The first set is
somewhat of a stress test, at least one instance has never been solved by CP or
MIP methods to our knowledge [8]. The second set, although random, may be
more realistic, as the usefulness of our technology in practice is defined by its
ability to produce solutions to feasible problems in a reasonable time.

Nurse rostering. Nurse rostering is a problem of assigning shifts to nurses
on consecutive days such that each shift has at least the required number of
nurses (a gcc constraint per day) and that each individual nurse has an accept-
able work pattern (sequence and clausal constraints). Symmetries are broken
by lexicographic ordering (using a clausal decomposition). We use a version of
models 1 and 2 described by Brand et al. [4], which are simple but plausible.
Unlike those authors we keep the (clausal) ‘no isolated shifts’ constraints as well
as adding sequence; their model was less realistic, and also less interesting for a
propagation solver since sequence was essentially the only constraint.

The first 50 instances from NSPLib [24] (disregarding nurse preferences) were
solved with each model. Model 1 is over-constrained, because we kept the ‘no
isolated shifts’ rule, and all instances are infeasible, but since infeasibility forces
a complete search, model 1 is the most useful for measuring the pruning power
of each propagation method. Model 1 is also useful for testing soft-sequence and
hence min cost network flow , since any solution will be a compromise. Model 2
is more realistic and checks that we can find a useful roster in practice.

In the first experiment we compare the network flow encoding of gcc and
sequence with traditional approaches. We ran each combination of gcc imple-
mentation, sequence implementation, and search strategy chosen from static:
an appropriate fixed variable order for each problem [21], dom/wdeg: domain
size / weighted degree [3], impact: impact-based search similar that of Refalo [17]
but using log-impacts, and vsids: activity based search from SAT [15]. We try
with and without learning, except for vsids which requires learning. We use
geometric restarts, except with static where restarting is not sensible.

set 1: 2 sat, 0 unsat, 7 ? set 2: 70 sat, 0 unsat, 0 ?

not learning learning not learning learning
gcc=lin flow gcc=lin flow gcc=lin flow gcc=lin flow

static seq=dps — — 3456.2s1 — 1758.5s38 1782.4s37 1466.5s43 1646.4s40

reg 3292.0s1 3294.4s1 3263.7s1 3321.4s1 1362.9s46 1357.4s47 1252.0s47 1442.8s44

flow 3257.1s1 3244.7s1 3250.1s1 3273.6s1 1284.9s49 1217.8s50 1173.0s49 1449.8s44

gsc=flow 2800.1s2 2800.0s2 244.3s66 206.3s66

dom/ seq=dps — — — — 3139.9s9 3139.8s9 181.5s67 122.2s68

wdeg reg — — — — 622.5s58 623.9s58 87.4s69 2.6s70

flow — — — — 892.3s53 888.3s53 114.0s68 143.5s68

gsc=flow 3200.0s1 2800.1s2 215.7s66 0.8s70

impact seq=dps — — — — — — 3533.6s2 3550.1s2

reg — — — — 1685.8s39 1109.1s52 1496.9s45 1563.3s44

flow — — — — 1581.2s42 1645.4s41 1302.7s48 1610.0s42

gsc=flow 3324.1s1 3515.2s1 1150.0s53 951.3s55

vsids seq=dps — — 3504.1s2 —
reg — — 1097.3s51 2191.0s29

flow — — 2493.2s24 2908.0s14

gsc=flow 2885.3s2 1522.2s47

Table 1: Car sequencing results

model 1: 0 sat, 50 unsat, 0 ? model 2: 37 sat, 10 unsat, 3 ?

not learning learning not learning learning
gcc=lin flow gcc=lin flow gcc=lin flow gcc=lin flow

static seq=dps 3364.0s4 3351.1s4 9.7s50 103.0s50 3458.4s3 3464.3s2 1435.3s32 1489.4s32

reg 3350.7s4 3346.0s4 6.5s50 23.3s50 3427.3s3 3438.5s3 1389.5s32 1403.3s33

flow 3216.2s6 3237.2s6 0.6s50 11.0s50 3326.9s5 3314.5s5 1269.9s34 1211.5s36

dom/wdeg seq=dps 799.9s39 79.3s49 0.9s50 0.8s50 3528.8s1 3050.0s8 1656.3s30 1543.7s30

reg 2125.3s22 2132.7s22 8.5s50 91.8s49 — — 1774.2s28 1842.3s26

flow 72.1s49 0.1s50 0.2s50 0.0s50 — — 1441.8s34 1532.1s30

impact seq=dps 2498.4s17 2504.7s19 8.3s50 10.3s50 2176.6s22 1942.8s25 1045.7s37 1106.6s36

reg 1693.5s31 1932.0s30 7.9s50 8.1s50 2079.5s24 1555.8s31 1095.5s36 1034.5s36

flow 2084.5s25 724.7s47 3.1s50 1.1s50 1535.9s32 1596.9s29 834.7s39 748.9s41

vsids seq=dps 1.0s50 0.7s50 620.7s43 753.6s41

reg 0.8s50 0.4s50 575.1s44 512.4s45

flow 0.0s50 0.1s50 468.5s44 432.7s47

Table 2: Nurse rostering results

gcc([x1, . . . , xn], [c1, . . . , cm]) is implemented as lin: decomposition into linear
constraints

∑n
i=1 bool2int([xi = j]) = cj ∀j ∈ 1..m, or flow: Régin’s domain-

consistent flow-based encoding using our new network flow propagator.
sequence(l, u, w, [y1, . . . , yn]) is implemented as dps: difference of partial sums,

where si =
∑i

j=1 yj ∀i ∈ 0..n and l ≤ si+w − si ≤ u ∀i ∈ 0..n− w (both imple-
mented as linear constraints), reg: regular decomposition into table constraints
over allowable state change tuples (qi−1, yi, qi) and thence to SAT, or flow: the
new domain-consistent flow-based encoding described in Section 7.

On car sequencing, as well as the standard gcc+sequence+table model, we
evaluate Régin and Puget’s specialized gsc constraint [19], which is applied once
per option instead of sequence and subsumes all other constraints.

Tables 1 and 2 report the number of instances solved and the mean of the
runtime (or timeout). ‘—’ indicates all instances timed out. The heading shows
how many solved instances were unsatisfiable or satisfiable and how many were
indeterminate as not solved by any solver. The solver which solves the most
instances is highlighted, falling back to comparing runtimes.

set 1: 9 sat, 0 unsat, 0 ? set 2: 70 sat, 0 unsat, 0 ?

not learning learning not learning learning
opt,sol,s,obj,inf opt,sol,s,obj,inf opt,sol,s,obj,inf opt,sol,s,obj,inf

seq SCIP=mip 4,9,2441s, 5.2,0 4,9, 2245s, 3.7,0 69, 70, 350s, 0.0,0 70,70, 301s, 0.0,0
CPLEX=mip 5,9,1995s, 1.7,0 70, 70, 8s, 0.0,0
Chuffed=lin — 0,9, 3600s,87.6,0 — 0,70,3600s,118.5,0

flow 0,9,3600s,63.2,0 0,9, 3600s,66.4,0 10, 70,3208s,50.9,0 21,70,2597s, 44.0,0

gsc SCIP=mip 4,9,2194s, 1.7,0 5,9,1763s, 1.7,0 70, 70, 33s, 0.0,0 70,70, 35s, 0.0,0
CPLEX=mip 4,9,2038s, 1.7,0 70,70, 3s, 0.0,0
Chuffed=lin 0,9,3600s,73.1,0 0,9, 3600s,68.3,0 5, 70,3394s,69.4,0 27,70,2335s, 48.2,0

flow 0,9,3600s,57.0,0 0,9, 3600s,58.0,0 9, 70,3412s,39.9,0 13,70,3285s, 38.1,0

Table 3: Car sequencing with soft-sequence and soft-gsc

model 1: 45 sat, 5 unsat, 0 ? model 2: 45 sat, 5 unsat, 0 ?

not learning learning not learning learning
opt,sol,s,obj,inf opt,sol,s,obj,inf opt,sol,s,obj,inf opt,sol,s,obj,inf

SCIP=mip 0,12,3242s,516.0,5 0, 18, 3242s, 475.0,5 1,33,3240s,178.2,5 1, 39, 3237s,115.9,5
CPLEX=mip 0, 6,3241s,456.0,5 14,37,2485s, 10.6,5
Chuffed=lin — 0, 0, 3407s, —,3 — 0,43, 3460s,250.5,2

flow 0,45,3528s,383.0,1 0,45,3348s,327.0,4 9,45,3102s, 56.1,3 35,45,1135s, 4.8,3

Table 4: Nurse rostering with soft-sequence

The results for car sequencing show that flow based propagators are almost
always preferable to other approaches for propagating sequence and gcc. While
reg is better than flow for propagating sequence overall, the gsc approach is
clearly the best on this problem, showing the benefit of a generic propagator.

These results clearly show that learning is strongly beneficial, even though
explanations from flow networks can be large (usually hundreds of literals for
nurse rostering, more for car sequencing). The only counter example is impact
which does not create reuseable nogoods, since the search is driven by domain
reductions instead of failure. For the difficult problems the programmed search
is preferable, while for the easier problems dom/wdeg is clearly the best.

vsids was not the best strategy for this problem which we think is because it
pays no attention to locality in the schedule so has trouble when partially filled
areas meet, whereas dom/wdeg tends to propagate outwards from partially
filled areas since these are where the domain sizes are smallest.

The results for nurse rostering again reinforce that flow based approaches
are preferable to other methods of propagating sequence and gcc. Learning is
even more important on these examples regardless of the search strategy. The
best approach overall is vsids with sequence and gcc encoded using flow, though
dom/wdeg was also competitive, at least on model 1.

In the second experiment we consider the same problems with the sequence
constraints relaxed to soft-sequence, optimizing over the sum of violations. Un-
fortunately we could not obtain the instances used by Steiger et al. in their
previous work on soft constaints, precluding a proper comparison with their ex-
plicit arc-testing algorithm. Since these are optimization problems we compare
against MIP solvers: CPLEX 12.2 which does not use learning (although it does
use other cutting plane methods) and SCIP 2.1.1 with or without learning.

Starting with the flow-based encodings of the hard-gcc and soft-sequence con-
straints, we prepared three different models, mip: an Integer Program with all

constraints decomposed to linear , lin: a Constraint Program with (min cost)
network flow constraints decomposed to linear , and flow: a Constraint Pro-
gram utilizing the new (min cost)network flow global propagators.

The MIP solvers use their default search strategy. For the CP-optimization
problems we use a novel search strategy pseudoredcost inspired by Gauthier
and Ribière [7]. None of the strategies used on the satisfaction problems com-
pete with pseudoredcost on these problems. Pseudocosts are computed by
sampling minD(z) before and after each decision (the latter sample takes into
account the resulting propagation but is not re-sampled after backtracking to
the same decision level later on), and averaging the differences with period 25.
Failure counts as 25 objective units (a manual setting for now). Here z is the
model objective and need not be associated with any min cost network flow .

We compute the variable ordering based on pseudocosts plus reduced costs
rather than pseudocosts alone. Higher (absolute) reduced cost indicates a more
important variable. If multiple min cost network flow propagators can provide
a reduced cost (e.g. on soft-gsc) then their absolute values are summed.

Tables 3 and 4 give the results showing number of instances where an optimal
solution was proved, number for which at least one solution was found, mean of
elapsed time or timeout, mean objective of the best solution found (using only
those instances for which data was available from all solvers that solved > 0
instances), and finally the number of instances proved unsatisfiable.

For Chuffed , the flow-based propagator was typically better, or much better,
than linear constraints (gsc is an exception), and learning was clearly beneficial,
in some cases highly beneficial. For SCIP , learning gave only a modest improve-
ment. Our understanding is that SCIP is not optimized to propagate nogoods
quickly. Also, their conflicts involve the entire LP rather than a network sub-
problem, probably resulting in longer and less reuseable explanations.

For car sequencing the results show that the MIP model, particularly with
CPLEX ’s excellent cutting plane methods and heuristics, is unbeatable, perhaps
unsurprising since excellent results were reported earlier with MIP [11]. The
results for nurse rostering are quite different. On model 1 the MIP solvers can
only prove unsatisfiability and they (particularly SCIP) also have difficulty with
model 2. The CP approach is far superior in finding good solutions quickly,
and with both learning and the new propagators enabled, it clearly improves on
CPLEX in the number of solutions proved optimal (35 vs 14).

We can explain the difference between car sequencing and nurse rostering
by considering the clausal side constraints that accompany the flow networks.
For car sequencing there are typically 10000 binary clauses and 1000 longer
clauses. For nurse rostering there are typically 50000 binary clauses and 10000
long clauses. Having more clauses altogether, and in a greater ratio of long to
binary, weakens the LP relaxation of nurse rostering. Binary clauses are easy for
MIP as they have a special encoding x ≥ y whereas long clauses have a relatively
weak encoding e.g. x+ y + z ≥ 1 (consider setting all variables to 0.5).

Another experiment confirmed the importance of using the most specialized
algorithm for the flow subproblems. Over the suite of satisfaction problems, at

least where ratios could be calculated in the absence of timeouts, and using a
static search to reduce measurement noise: Replacing Ford and Fulkerson’s al-
gorithm by Network Simplex caused a mean 7.8× slowdown, disabling Tarjan’s
algorithm cost another 17× slowdown, then replacing Network Simplex by Sim-
plex cost a further 3.0× slowdown (noting that we haven’t implemented Tarjan’s
for the general LP propagator since it requires network structure).

9 Conclusions

It is by now established that learning changes the tradeoffs for propagation and
search. Despite the fact that learning tends to favour decomposition into smaller
constraints (even if they propagate to a weaker consistency), we found that
our monolithic network flow propagator worked extremely well on the problems
considered here, in particular problems which decompose into flow networks over
equality literals [x = k], where our methods enforce domain consistency.

This research aimed at drawing together the previous work on flow-based alld-
ifferent and gcc constraints [18], generic flow networks [2, 22] and explanations
for flows [12, 20] and general LPs [1, 5], into a unified, state-of-the-art, propa-
gator. Our results show that enabling all features together gives improvement
on problems which are good for CP. Our methods are also more competitive
than traditional CP on problems good for MIP, and in some cases execute faster
and/or produce better solutions than the best MIP solver.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Opti-
mization 4(1), 4–20 (2007)

2. Bockmayr, A., Pisaruk, N., Aggoun, A.: Network Flow Problems in Constraint
Programming. In: Walsh, T. (ed.) Proc. CP01, LNCS, vol. 2239, pp. 196–210 (2001)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by
Weighting Constraints. In: Proc. ECAI04. pp. 146–150 (2004)

4. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of
the Sequence Constraint. In: Bessière, C. (ed.) Proc. CP07, LNCS, vol. 4741, pp.
210–224 (2007)

5. Davey, B., Boland, N., Stuckey, P.: Efficient Intelligent Backtracking Using Linear
Programming. IJOC 14(4), 373–386 (2002)

6. Ford, L., Fulkerson, D.: Maximal flow through a network. Canad. J. Math. 8, 399–
404 (1956)

7. Gauthier, J.M., Ribière, G.: Experiments in mixed-integer linear programming
using pseudo-costs. Mathematical Programming 12, 26–47 (1977)

8. Gent, I.P.: Two Results on Car-sequencing Problems. Technical report APES-02-
1998, Dept. of CS, University of Strathclyde, UK (1998)

9. Gent, I.P., Walsh, T.: CSPLIB: A Benchmark Library for Constraints. In: Princ.
and Prac. of CP. pp. 480–481 (1999)

10. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of Look-Ahead Tech-
niques in a Modern SAT Solver. In: Rossi, F. (ed.) Proc. CP03, LNCS, vol. 2833,
pp. 842–846 (2003)

11. Gravel, M., Gagné, C., Price, W.L.: Review and Comparison of Three Methods for
the Solution of the Car Sequencing Problem. J.O.R.Soc. 56(11), 1287–1295 (2005)

12. Katsirelos, G.: Nogood processing in CSPs. Ph.D. thesis, University of Toronto,
Canada (2008)

13. Löbel, A.: MCF 1.3 - A network simplex implementation (2004), available free of
charge for academic use. http://www.zib.de/loebel

14. Maher, M., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-Based Propagators
for the SEQUENCE and Related Global Constraints. In: Stuckey, P. (ed.) Proc.
CP08, LNCS, vol. 5202, pp. 159–174 (2008)

15. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proc. DAC01. pp. 530–535 (2001)

16. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14, 357–391 (2009)

17. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) Proc. CP04. LNCS, vol. 3258, pp. 557–571 (2004)

18. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proc.
AAAI96. pp. 209–215 (1996)

19. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) Proc. CP97, LNCS, vol. 1330, pp. 32–46 (1997)

20. Rochart, G.: Explications et programmation par contraintes avancée (in French).
Ph.D. thesis, Université de Nantes, France (2005)

21. Smith, B.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering.
In: Proc. PACT97. pp. 321–330 (1997)

22. Steiger, R., van Hoeve, W.J., Szymanek, R.: An efficient generic network flow
constraint. In: Proc. SAC11. pp. 893–900 (2011)

23. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Com-
puting 1(2), 146–160 (1972)

24. Vanhoucke, M., Maenhout, B.: NSPLib – A Nurse Scheduling Problem Library: A
tool to evaluate (meta-)heuristic procedures. In: Proc. ORAHS05 (2005)

.33

[x1 = 1] = true

true

false

false

false
true

false

c
1 = 1

c2 = 1

c3 = 1

c4
 = 0x3

x2

x1 1

2

3

v44

t

1

1

1 -3

Fig. 8: alldifferent network

.33

x3

x2

x1 1

2

3

v44

t

1

1

1 -3

Fig. 9: Residual graph

.33
SCC #5

#1

#2 #3

x3

x2

x1 1

2

3

v44

t

#4

1

1

1 -3

Fig. 10: SCCs after a pruning

Fig. 11: Pruning flow bounds using Tarjan’s SCC-algorithm

.33

j

2

k

2

1

1

cea = 4

e
2

3

1 1

sa = -6

g

dc

hf

b

31

22 2
1

a

2

i

2

1

∞

1

3

Fig. 12: Underground network

.33

j k

1;0

9

4

fea;hea = 2;0

e
1;0

0;1

6 5

ga = 0

g

dc

hf

b

0;04;0

4;00;1 -1;0
3;-1

a

4;0

7
i

1;0

7

0;∞

3 5

2

1;0

9

0;2

objective = 37

Fig. 13: Choices of entering arc

.33

j k

1;0

8

4

fea;hea = 2;0

e
1;0

0;1

6 5

ga = 0

g

dc

hf

b

1;03;0

3;00;1 0;1
2;0

a

4;0

6
i

1;0

7

0;∞

3 5

2

1;0

8

0;1

objective = 38

Fig. 14: Result of the pivot

.33

j k

1;0

8

4

fea;hea = 2;0

e
1;0

0;1

6 5

ga = 0

g

dc

hf

b

1;03;0

3;00;1 0;1
2;0

a

4;0

6
i

1;0

7

0;∞

3 5

2

1;0

8

0;1

objective = 38

Fig. 15: Next pivot (unbounded)

Fig. 16: Solving minimum-cost flow using Dual Network Simplex

y1

f1 f2

y2

f3 f4 f5

y3 y4 y5 y6 y7

0 1 2 3 4 5

Fig. 17: Flow network encoding a w = 3, n = 7 sequence constraint

0..1

0..10..1

0..1

x3

s

w1

x4

x2

x1 v1

v2

w3

x3

s w2

x4

x2

x1 v1

v2w4

w0

[xi = vj]

svj = -cj

ss = Σjcj

svj = -cj

ss = Σjcj

[xi = vj]

l..u

l..u

0..1

0..1 l..u
l-1..u

l-1
..u

0..1

0..1

Fig. 18: The w flow networks encoding a w = 2, n = 4,m = 2 gsc constraint

