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Abstract. Size-change termination analysis is a simple and powerful
technique successfully applied for a variety of programming paradigms.
A main advantage is that termination for size-change graphs is decidable
and based on simple linear ranking functions. A main disadvantage is
that the size-change termination problem is PSPACE-complete. Proving
size change termination may have to consider exponentially many size
change graphs. This paper is concerned with the representation of large
sets of size-change graphs. The approach is constraint based and the nov-
elty is that sets of size-change graphs are represented as disjunctions of
size-change constraints. A constraint solver to facilitate size-change ter-
mination analysis is obtained by interpreting size-change constraints over
a sufficiently large but finite non-negative integer domain. A Boolean k-
bit modeling of size change graphs using binary decision diagrams leads
to a concise representation. Experimental evaluation indicates that the
2-bit representation facilitates an efficient implementation which is guar-
anteed complete for our entire benchmark suite.

1 Introduction

Size-change termination analysis [8] is a simple and powerful technique to verify
program termination. First, the transition relation of a program is approximated
by a set of size-change graphs. Then, termination is guaranteed if all of the
idempotent size change graphs in the closure of this set under a composition
operation have (possibly different) ranking functions.

A typical example is the analysis of the Prolog program depicted in Fig-
ure 1(a) which computes Ackermann’s function. The size-change graphs in the
figure describe all transitions in computations of this program. Between subse-
quent function calls, either the first argument decreases in size (Figure 1(b)), or
else it does not increase and the second argument decreases in size (Figure 1(c)).
As formalised below, these graphs are idempotent, closed under composition and
have as ranking functions f(ū) = u1 and f ′(ū) = u2 respectively.

A major strength of the technique is that for a given set of size-change graphs
termination is decidable. An idempotent size-change graph has a ranking func-
tion if and only if it has one which indicates that a specific single argument
? Research performed at the University of Melbourne



ackerman(0, N, s(N)).
ackerman(s(M), 0, Res)←

ackerman(M, s(0), Res).
ackerman(s(M), s(N), Res)←

ackerman(s(M), N, Res1),
ackerman(M, Res1, Res).
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Fig. 1. Ackermann’s function with size-change graphs

decreases in size. A major weakness is that size change termination is complete
for PSPACE. While in practice this rarely occurs, closure under composition
may introduce exponentially many additional size-change graphs.

This paper is concerned with the representation of large sets of size-change
graphs and supporting operations for closing these representations under com-
position and testing all graphs in the closure for the existence of ranking func-
tions. The key idea in our approach is to view sets of size-change graphs as
constraints. For individual size-change graphs this idea is not new. The Ter-
minWeb [9] analyser maintains sets of size-change graphs, each graph repre-
sented as a conjunction of constraints. The novelty in this paper is to illustrate
how sets of size-change graphs can be represented accurately through disjunc-
tion. For example the two graphs in Figure 1 are captured by the constraint
(x1 > y1) ∨ (x1 ≥ y1 ∧ x2 > y2). Given this view, a set of size change graphs
is equivalent to its set of solutions over the domain of non-negative integers,
much the same as a Boolean function is equivalent to its set of models. We draw
on the motivation that representing large sets of models for Boolean functions
is a well studied problem with readily available off-the-shelf tools. The main
difficulty is to provide set-based operations for size change termination which
operate accurately on these representations.

To support an operation to compose disjunctions of size-change graphs we
introduce a non-standard interpretation of the binary size-relations > and ≥.
This enables us to model composition of sets of size-change graphs as conjunc-
tion. To determine if each of the graphs in a set has a ranking function we apply
a previous result [3] to design a suitable test.

Another difficulty is to provide a constraint solver for size-change graphs and
their operations. This is achieved by interpreting constraints over a sufficiently
large but finite domain (of non-negative integers). Finite domain constraints are
then represented as Boolean functions as proposed in [6]. This Boolean repre-
sentation for finite domain constraints and operations leads to an efficient im-
plementation using binary decision diagrams. Experimental evaluation indicates
that the 2-bit representation is guaranteed complete for our entire extensive
benchmark suite. Of course the approach we describe does not ameliorate the
PSPACE hardness of the termination problem for size change graphs, the re-
sulting binary decision diagrams can require exponential space and time.
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Fig. 2. Size-change graphs

2 Size-change termination

This section presents the standard definitions and results for size change graphs.
Our definitions are similar to those given in [8] except that they are given in
a language of constraints. The constraint representation naturally provides a
notion of ordering not present in the original definition [8].

Definition 1 (size-change graphs - I). A size-change graph is a binary clause
of the form p(x̄) ← c(x̄, ȳ), q(ȳ) where x̄ and ȳ are the disjoint vectors of argu-
ments and c(x̄, ȳ) is a conjunction of constraints of the form x �b y with x ∈ x̄,
y ∈ ȳ and b ∈ {0, 1}. A constraint x �b y corresponds to an edge and is inter-
preted as x ≥ y + b: strict (x > y) or non-strict (x ≥ y) when respectively b = 1
or b = 0.

Size-change graph notation: Consider a size-change graph g = p(x̄) ←
c(x̄, ȳ), q(ȳ) with x̄ = 〈x1 . . . , xn〉 and ȳ = 〈y1 . . . , ym〉. We sometimes write g
in the form p/n(x̄) ← c(x̄, ȳ), q/m(ȳ) to make explicit the arities of x̄ and ȳ.
The parameter set of g, is denoted Par(g) = {p〈1〉, . . . , p〈n〉, q〈1〉, . . . , q〈m〉}. For
a set of size-change graphs G, we denote Par(G) = ∪

{
Par(g)

∣∣g ∈ G
}
. A

size change graph of the form p/n(x̄) ← c(x̄, ȳ), p/n(ȳ) is called a recursive size
change graph. When p and q are clear from the context we refer to g = c(x̄, ȳ) as
the size-change graph. In the examples, edges are depicted by solid and dashed
arrows corresponding to strict and non-strict edges. For each pair of nodes x ∈ x̄
and y ∈ ȳ the unique strictest constraint between x and y is depicted.

Example 1. The following size-change graphs are depicted in Figure 2 as c1(x̄, ȳ),
c2(x̄, ȳ) and c3(x̄, ȳ) respectively.

g1 = p(x1, x2, x3)← x1 > y2, x2 ≥ y2, x3 > y3, p(y1, y2, y3).
g2 = p(x1, x2, x3)← x1 > y1, x2 ≥ y1, p(y1, y2, y3).
g3 = p(x1, x2, x3)← x1 > y2, x2 > y2, p(y1, y2, y3).

Note that by Definition 1 the size-change graph
g′
2 = p(x1, x2, x3)← x1 > y1, x1 ≥ y1, x2 ≥ y1, p(y1, y2, y3).

is also depicted as c2(x̄, ȳ).

Definition 2 (size-change graph solution). A solution θ for a size-change
graph c(x̄, ȳ) is a valuation on the variables x̄ and ȳ, θ = {x1/a1, . . . , xn/an,
y1/b1, . . . , ym/bm} which is a solution of c(x̄, ȳ), i.e. c(ā, b̄) is valid.



Solutions can be written as two rows (ā, b̄) in a matrix, as illustrated in the
following example.

Example 2. Consider the following 8 solutions and the size-change graphs c1(x̄, ȳ),
c2(x̄, ȳ) and c3(x̄, ȳ) of Figure 2.

s1 =
[

8, 7, 3
9, 7, 2

]
s2 =

[
4, 3, 8
3, 7, 9

]
s3 =

[
8, 7, 2
9, 6, 3

]
s4 =

[
8, 7, 2
5, 6, 3

]
s′1 =

[
1, 0, 1
1, 0, 0

]
s′2 =

[
1, 0, 0
0, 1, 1

]
s′3 =

[
1, 1, 0
1, 0, 1

]
s′4 =

[
1, 1, 1
0, 0, 0

]
s1 and s′1 are solutions only for c1(x̄, ȳ), s2 and s′2 are solutions only for c2(x̄, ȳ),
s3 and s′3 are solutions only for c3(x̄, ȳ), s4 is a solution for c2(x̄, ȳ) and c3(x̄, ȳ)
but not for c1(x̄, ȳ) and s′4 is a solution for all three of the size-change graphs.

Definition 3 (order on size-change graphs). Size-change graphs on the
same parameter set are ordered by constraint entailment. A size change graph
c1(x̄, ȳ) is more general than c2(x̄, ȳ) if the solutions of c1 are a superset of the
solutions of c2, i.e., c2(x̄, ȳ) |= c1(x̄, ȳ). Size-change graphs are equivalent if they
have the same sets of solutions, i.e. c1(x̄, ȳ)↔ c2(x̄, ȳ).

Definition 4 (composition and idempotence of size-change graphs). Let
p(x̄)← c1(x̄, ȳ), q(ȳ) and q(x̄)← c2(x̄, ȳ), r(ȳ) be size-change graphs. Their com-
position is the size-change graph p(x̄)← c1(x̄, ȳ) ◦ c2(x̄, ȳ), r(ȳ) given by

c1(x̄, ȳ) ◦ c2(x̄, ȳ) =
∧ {

x �b y

∣∣∣∣x ∈ x̄, y ∈ ȳ,
c1(x̄, z̄) ∧ c2(z̄, ȳ) |= x �b y

}
.

Recursive size-change graph p(x̄) ← c(x̄, ȳ), p(ȳ) is idempotent if and only if
c(x̄, ȳ) ◦ c(x̄, ȳ) = c(x̄, ȳ). The pairwise composition of sets of size-change graphs
G1 and G2, respectively of the form p(x̄)← c(x̄, ȳ), q(ȳ) and q(x̄)← c(x̄, ȳ), r(ȳ)
is: G1 ◦G2 =

{
g1 ◦ g2

∣∣g1 ∈ G1, g2 ∈ G2

}
.

Definition 5 (closure under composition). Let G be a set of size-change
graphs. We denote by G∗ the closure of G under composition. This is the smallest
superset of G such that if p(x̄)← c1(x̄, ȳ), q(ȳ) ∈ G∗ and q(x̄)← c2(x̄, ȳ), r(ȳ) ∈
G∗ then also p(x̄)← c1(x̄, ȳ) ◦ c2(x̄, ȳ), r(ȳ) ∈ G∗.

Example 3. The set of size-change graphs depicted in Figure 1 is closed under
composition. Both graphs are idempotent. The graphs in Figure 2 are also idem-
potent. The graphs in Figure 3 are not idempotent.

Lee et al.[8] introduce the property of size change termination and prove that
a set of size-change graphs G has this property if and only if each idempotent size-
change graph p/n(x̄) ← c(x̄, ȳ), p/n(ȳ) in G∗ has a strict “vertical down arrow”
of the form xi > yi. Each individual idempotent graph has a strict vertical down
arrow if and only if the following condition holds:

n∨
i=1

(c(x̄, ȳ) |= xi > yi) . (1)
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Fig. 3. Non-idempotent size change graphs.

For any (recursive) size change graph c(x̄, ȳ), a function f mapping tuples of
non-negative integers to a well founded domain and such that c(x̄, ȳ) |= f(x̄) >
f(ȳ) is called a ranking function for c(x̄, ȳ). Equation 1 implies that c(x̄, ȳ) has
a ranking function of the form f(u1, . . . , un) = ui.

The result of [8] is generalized in [3] where the authors show that a set of
size-change graphs G satisfies size-change termination if and only if the follow-
ing condition holds: for every recursive (not necessarily idempotent) size-change
graph p/n(x̄)← c(x̄, ȳ), p/n(ȳ) in G∗, each solution of c(x̄, ȳ) has a strict “verti-
cal down arrow” of the form xi > yi. In other words, each individual recursive
c(x̄, ȳ) in G∗ must satisfy the condition below:

c(x̄, ȳ) |=
n∨

i=1

(xi > yi). (2)

Equation 2 implies that c(x̄, ȳ) has a ranking function of the form f(u1, . . . , un) =
Σaiui with all coefficients ai ∈ {0, 1}. The distinction between the tests in
Equations 1 and 2 is exemplified by the size change graph c1(x̄, ȳ) of Figure 3
which is not idempotent and which has no strict vertical down arrow of the form
xi > yi. However, any solution of c1(x̄, ȳ) is also a solution of c2(x̄, ȳ) or of c3(x̄, ȳ)
(in the same figure) which do have vertical down arrows. Note that the function
f(ū) = u1 + u2 is a ranking function for c1(x̄, ȳ). Sidestepping the restriction to
idempotent graphs turns out to be important to facilitate the specification of a
set-based test for termination given in Section 3. In the following we refer to the
implicant in Equation 2 as the ranking constraint.

Definition 6 (size-change ranking constraint). Let p/n(x̄)← c(x̄, ȳ), p/n(ȳ)
be a recursive size-change graph. The corresponding ranking constraint is denoted

R(x̄, ȳ) =
n∨

i=1

xi �1 yi.

The application of size-change termination to proving termination is based
on the observation that if a set of size-change graphs G is a safe approximation of
the transition relation for a program P , and G satisfies size-change termination,
then P terminates.



3 Set based size-change termination

In this section we propose a set based approach to size-change termination. The
basic idea is that sets of size-change graphs can be represented as disjunctions of
constraints with no loss of information for termination analysis. The contribution
is in the design of the set-based operations for size-change termination analysis.
The following definition provides the basic representation for a set of size-change
graphs as a disjunction of constraints.

Definition 7 (disjunctive representation). Let Gp,q be a set of size-change
graphs of the form p(x̄) ← c(x̄, ȳ), q(ȳ) (p and q are fixed). The disjunctive
representation of Gp,q is the binary clause denoted G∨

p,q = p(x̄) ← C(x̄, ȳ), q(ȳ)
where C(x̄, ȳ) = ∨

{
c(x̄, ȳ)

∣∣p(x̄)← c(x̄, ȳ), q(ȳ) ∈ Gp,q

}
. When clear from the

context we refer to C(x̄, ȳ) as the disjunctive representation.

This definition is easily extended to apply to sets of graphs with different
source and target (p and q). In this case the result is a set of disjunctive con-
straints, (at most) one for each p and q.

Definition 8 (order on disjunctive size-change graphs). Disjunctive size-
change graphs with the same source and target are ordered by entailment. A
disjunctive size-change graph G1 is more general than G2 if the solutions of G1

include those of G2. Two disjunctive size-change graphs are equivalent if they
have the same sets of solutions.

Example 4. Consider the size-change graphs p(x̄)← ci(x̄, ȳ), p(ȳ) for i ∈ {1, 2, 3}
depicted in Figure 3. The sets of graphs {c1(x̄, ȳ)} and {c2(x̄, ȳ), c3(x̄, ȳ)} are
equivalent. In one direction, graph c1(x̄, ȳ) is more general than each of the
graphs c2(x̄, ȳ) and c3(x̄, ȳ) which have fewer solutions (more constraints). In the
other direction, observe that c1(x̄, ȳ) |= x1 + x2 > y1 + y2 |= x1 > y1 ∨ x2 > y2

and so any solution of c1(x̄, ȳ) is either a solution of c2(x̄, ȳ) or of c3(x̄, ȳ).

When composing disjunctions of constraints we can no longer consider the
original disjuncts as these are not maintained as sets. However we may consider
all disjuncts that entail a given constraint. The following definition is intended
only as the specification of set-based composition. We do not propose to imple-
ment the operation based on this definition. That would be very inefficient.

Definition 9 (composing disjunctive representations). Let Gp,q and Gq,r

be sets of size-change graphs with disjunctive representations G∨
p,q = p(x̄) ←

C1(x̄, ȳ), q(ȳ) and G∨
q,r = q(x̄) ← C2(x̄, ȳ), r(ȳ) respectively. Their disjunctive

composition is the size-change graph G∨
p,q ◦G∨

q,r = p(x̄)← C(x̄, ȳ), r(ȳ) where

C(x̄, ȳ) =
∨ {

c1(x̄, ȳ) ◦ c2(x̄, ȳ)
∣∣∣∣ c1(x̄, ȳ) |= C1(x̄, ȳ),
c2(x̄, ȳ) |= C2(x̄, ȳ)

}
.

The following two lemmata justify viewing sets as disjunctions.
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Fig. 4. Constraints of Example 5: (a-b) c1(x̄, ȳ) ◦ c2(x̄, ȳ) = ∃z̄.c1(x̄, z̄) ∧ c2(z̄, ȳ);
(c-d) c2(x̄, ȳ)◦c1(x̄, ȳ) 6= ∃z̄.c2(x̄, z̄)∧c1(z̄, ȳ). (since ∃z1.(x1>z1)∧(z1>y2) ≡ x1+1 > y2)

Lemma 1 (disjunctive termination). Consider a set of size-change graphs
Gp,p of the form p(x̄)← c(x̄, ȳ), p(ȳ) Then, all graphs in Gp,p satisfy the ranking
constraint of Definition 6 if and only if G∨

p,p |= R(x̄, ȳ).

Proof. Follows from (a ∨ b) |= c if and only if a |= c and b |= c.

Lemma 2 (disjunctive composition). Let Gp,q and Gq,r be sets of size-
change graphs. Then, (Gp,q ◦Gq,r)∨ ↔ G∨

p,q ◦G∨
q,r.

Proof. Let s be a solution of (Gp,q ◦ Gq,r)∨. So there are graphs g1 ∈ Gp,q and
g2 ∈ Gq,r such that s is a solution of g1 ◦ g2. But g1 and g2 respectively entailed
G∨

p,q and G∨
q,r and hence s is also a solution for G∨

p,q ◦G∨
q,r. The other direction

is similar.

From here on we will not distinguish sets from disjunctions. We will view sets
of constraints modulo disjunction. We now proceed to provide a more practical
way to implement the composition of sets of size-change graphs. The following
example provides the intuition and motivation.

Example 5. Figure 4(a-b) illustrates the composition of individual size change
graphs c1(x̄, ȳ) ◦ c2(x̄, ȳ) = c2(x̄, ȳ) for the size change graphs of Figure 2. The
result of the composition is equivalent to the projected conjunction of the orig-
inal constraints: ∃z̄. c1(x̄, z̄) ∧ c2(z̄, ȳ). This correspondence follows because the
relations > and ≥ satisfy > ◦ ≥ = > and ≥ ◦ ≥ = ≥. This gives hope that
we might define the composition of size change graphs in terms of renaming,
conjunction and projection: c1(x̄, ȳ) ◦ c2(x̄, ȳ) = ∃z̄. c1(x̄, z̄) ∧ c2(z̄, ȳ), and lift
the resulting operations to sets defined by disjunctions. However the correspon-
dence does not hold when considering the composition of strict relations such as
in c2(x̄, ȳ) ◦ c1(x̄, ȳ) = c3(x̄, ȳ) as depicted in Figure 4(c-d). The corresponding
conjunction is ∃z̄. c2(x̄, z̄)∧ c1(z̄, ȳ) which is equivalent to x1 > y2 +1∧x2 > y2.
The problem is with the constraint x1 > y2 +1 which is not of the form xi �b yj

and the source of the problem is that > ◦> 6= >.

We now refine the interpretation of the constraints in a size-change graph
so that composition as well as set based composition can be defined in terms
of renaming, conjunction and projection. The key is to weaken the greater than
relation.



Definition 10 (weak greater-than). The binary relation � over the non-
negative integers is given by � = > ∪ {(a, a) | a is even}.

The intuition behind� is the follows: It is stronger than≥ yet weaker than >.
The projected conjunction ∃z.(x > z ∧ z > y) is not equivalent to x > y because
it misses the tuples (n + 1, n). But one of n + 1 or n is even. Hence, using � we
can assign z to the even value, and we have that x� y ↔ ∃z.(x� z ∧ z � y).

Definition 11 (size-change graphs - II). Reconsider Definition 1 of a size-
change graph and Definition 6 of the ranking constraint. But this time the rela-
tions �1 and �0 are interpreted as � and ≥.

Lemma 3. Lemma 1 is not influenced when �1 is interpreted as � instead of
as > in Definitions 8 and 6.

Proof. (Sketch) For an individual graph c(x̄, ȳ) |= R(x̄, ȳ) is equivalent to show-
ing there are no solutions of c(x̄, ȳ) ∧ ∧n

i=1(¬xi �1 yi). For �1≡>, this means
finding a loop including a strict arc in the size change graph c(x̄, ȳ) with ≥ arcs
added from each yi to xi (since ¬xi > yi ↔ yi ≥ xi). For �1≡� this amounts
to the same thing except the upwards arcs are � ≡ > ∪{(a, a) | a is odd}.
Clearly a loop including a � arc and � arc is not satisfiable since values taken
by variables in a solution must be nonincreasing, and hence identical around the
loop, but then the � arc requires that the value is even while � requires it is
odd.

In the remainder of the paper, size-change graphs and termination constraints
are to be interpreted in terms of � and ≥ unless stated otherwise. We are now
in position to obtain set-based composition as conjunction.

Lemma 4 (set based composition). Let C1(x̄, ȳ) and C2(x̄, ȳ) be the dis-
junctive representations of sets of size-change graphs G1 and G2 respectively of
the forms p(x̄)← c(x̄, ȳ), q(ȳ) and q(x̄)← c(x̄, ȳ), r(ȳ). Then,

C1(x̄, ȳ) ◦ C2(x̄, ȳ) = ∃z̄.(C1(x̄, z̄)) ∧ (C2(z̄, ȳ)).

Proof. After distributing ∧ over ∨ it is left to show that the claim holds for
individual disjuncts c1(x̄, ȳ) and c2(x̄, ȳ). This follows because � ◦ � =� and
� ◦ ≥ = ≥ ◦ � = �.

Example 6. Consider the composition of the graphs depicted in Figure 4(c). We
have c1(x̄, ȳ) = (x1 � y1) ∧ (x2 ≥ y1) and c2(x̄, ȳ) = (x1 � y2) ∧ (x2 ≥ y2) ∧
(x3 � y3). Consider the problematic (renamed) pair of relations (x1 � z1) from
c1 and (z1 � y2) from c2. The projected conjunction ∃z1.(x1 � z1) ∧ (z1 � y2)
in the composition c1(x̄, ȳ) ◦ c2(x̄, ȳ) now results in x1 � y2 as required.

This completes the theoretical specification of all of the components required
to perform set-based size change termination analysis. To make this practical we
still have to provide an adequate data structure to represent sets of size-change
graphs and support the set-based operations.



4 Finite domain size change graphs

We proceed to design an analyzer which computes the closure under composition
of the given set of size-change graphs and then tests each disjunctive constraint
C(x̄, ȳ) in the closure for the existence of a ranking function using the test
C(x̄, ȳ) |= R(x̄, ȳ) as provided by Lemma 1.

One idea is to apply a general-purpose constraint solver such as CLP(R) [7].
This is the choice taken in TerminWeb [4]. The problem is that CLP(R) does
not handle natively the disjunctions found in size-change constraints. TerminWeb
represents the disjunctions of size change graphs as sets of binary clauses, and
implements set-based operations by considering individual disjuncts.

The alternative approach presented in this paper is based on modeling (dis-
junctive) size-change graphs by finite-domain constraints. All atomic operations
of the analyzer take sets as objects.

To obtain a representation based on finite domain constraints we define the
restriction of a constraint to a finite non-negative integer domain.

Definition 12 (domain restriction). The restriction of a (size-change) con-
straint C(x̄, ȳ) to the first d non-negative integers [0 . . . d − 1] is denoted by
[C(x̄, ȳ)]d and given by:

[C(x̄, ȳ)]d ≡ C(x̄, ȳ) ∧
∧

i=1...n

xi, yi ∈ [0 . . . d− 1]

For all practical purposes there is no loss of information when restricting
sets of size change graphs to a sufficiently large domain. The intuition is that
for any solution of a set of size change graphs with d nodes, the same ordering
between the values can be represented with only d different non-negative inte-
gers. However, there are subtleties. The next three lemmata illustrate that the
representation and operations are preserved.

Lemma 5. Let C1(x̄, ȳ) and C2(x̄, ȳ) be disjunctive size-change constraints with
|x̄| = m and |ȳ| = n. Then C1(x̄, ȳ) is equivalent to C2(x̄, ȳ) if and only if
[C1(x̄, ȳ)]m+n is equivalent to [C2(x̄, ȳ)]m+n.

Proof. If the constraints are equivalent then clearly the corresponding restric-
tions are as well. Consider the opposite direction and assume for the purpose
of contradiction that C1(x̄, ȳ) and C2(x̄, ȳ) define the same sets of solutions
over the domain of m + n values, but differ in at least one solution over the
infinite non-negative integer domain. Assume without loss of generality that
θ = {x1/v1, . . . , xm/vm, y1/vm+1, . . . , yn/vm+n} is a solution of C1(x̄, ȳ) but
not of C2(x̄, ȳ). Consider first the case where size change graphs are interpreted
in terms of the binary relations > and ≥. Define a solution θ′ which maps each
variable of x̄ and ȳ to its index in the ascending order induced on the corre-
sponding values {v1, . . . , vm+n}. We also make sure that two (or more) variables
mapped by θ to the same value v are mapped to the same index by θ′. Clearly,
all pairwise relations imposed on x̄ and ȳ by θ are preserved intact by θ′. Thus,



θ′ is a solution of C1(x̄, ȳ) but not of C2(x̄, ȳ) in contradiction to the assumption
that they define the same set of solutions over the domain of m + n values.

Now consider the case where size change graphs are interpreted over the
relations � and ≥. We have an additional requirement on θ′ from the previous
case. If for a pair of variables x, y ∈ x̄ ∪ ȳ we have θ(x) = θ(y) = v and the
corresponding θ′(x) = θ′(y) = v′ then we require that v′ is even if and only if
v is even. Note that the domain of m + n distinct values is still sufficient for
defining θ′.

Lemma 6 (finite-domain termination test). Let p/n(x̄) ← C(x̄, ȳ), p/n(ȳ)
be a disjunctive (recursive) size change graph. Then,

C(x̄, ȳ) |= R(x̄, ȳ) ⇔ [C(x̄, ȳ)]2n |= [R(x̄, ȳ)]2n

Proof (sketch). We need to show that C(x̄, ȳ) ∧ ¬R(x̄, ȳ) is satisfiable if and
only if [C(x̄, ȳ) ∧ ¬R(x̄, ȳ)]2n is satisfiable. The constraint C(x̄, ȳ) ∧ ¬R(x̄, ȳ) =
C(x̄, ȳ) ∧

∧n
i=1 ¬(xi � yi) is a constraint based on pairwise order relations be-

tween the elements of x̄ and ȳ. We assume a solution θ of that constraint and
show using the same mapping as in the proof of Lemma 5 that the constraint
is satisfiable if and only if it is satisfiable over the domain of 2n elements.4 The
claim follows by observing (through the straightforward transformation) that
[C(x̄, ȳ)]2n |= [R(x̄, ȳ)]2n is equivalent to [C(x̄, ȳ) |= R(x̄, ȳ)]2n.

Lemma 7 (finite domain composition). Let C1(x̄, z̄) and C2(z̄, ȳ) be dis-
junctive size-change constraints with |x̄| = m and |ȳ| = n. Then

[C1(x̄, z̄)]m+n ◦ [C2(z̄, ȳ)]m+n = [C1(x̄, z̄) ◦ C2(z̄, ȳ)]m+n

Proof (sketch). The proof technique is similar to that of Lemma 5. We assume
a solution φ on x̄ ∪ ȳ of C1(x̄, z̄) ◦ C2(z̄, ȳ). By definition there exist c1(x̄, z̄) |=
C1(x̄, z̄) and c2(z̄, ȳ) |= C2(z̄, ȳ) and solution

θ = {x1/vx1, . . . , xm/vxm, y1/vy1, . . . , yn/vyn, z1/vz1, . . . , zl/vzl}

of the conjunction c1(x̄, z̄) ∧ c2(z̄, ȳ) extending φ (i.e. φ(v) = θ(v), v ∈ x̄ ∪ ȳ)
and thus, of each of c1(x̄, z̄) and c2(z̄, ȳ) individually. We show that this solution
can be transformed to another solution θ′ with at most m + n distinct values in
the range, yet preserving the “�”-order relations for each pair (x, z) ∈ (x̄ × z̄)
and (z, y) ∈ (z̄ × ȳ). So θ′ is a solution of [C1(x̄, z̄)]m+n and [C2(z̄, ȳ)]m+n. The
transformation starts by ordering the variables in x̄, ȳ and z̄ with respect to
their assigned values vi. Then we “shift” the values for the variables of x̄ and ȳ
until each variable of z̄ shares its assigned value with either a variable of x̄ or
a variable of ȳ. The transformation is always possible and thus, it is sufficient
to prove the claim only for the solutions with at most m + n distinct values in
the range of the substitution. In that case the operation of domain restriction
[·]m+n degenerates to an identity, and the two parts of the formula in the claim
become the same.
4 Note that C(x̄, ȳ) ∧ ¬R(x̄, ȳ) is not a size-change graph and thus, it is not always

satisfiable. However, the proof technique of Lemma 5 applies to any constraints based
on pairwise order relations.



5 Size change termination with k bits

To facilitate efficient size change termination analysis we observe that in practice
it is often sufficient to interpret size change constraints over a finite domain with
a smaller number of values than nodes in the graphs. As our implementation is
based on a Boolean representation of finite domain constraints we will consider
values in binary form and typically chose a number of values d of the form d = 2k.
Experimental results indicate that all of the size change termination problems
in our benchmark suite are guaranteed to be analysed correctly using a 2-bit
representation. The following example illustrates the main idea.

Example 7. Consider the disjunctive representation for the graphs in Figure 2:

(x1 � y2 ∧ x2 ≥ y2 ∧ x3 � y3) ∨ (x1 � y1 ∧ x2 ≥ y1) ∨ (x1 � y2 ∧ x2 � y2).

From the results of the previous section we know that for termination analysis
we can consider solutions over 6 values. However, note that the constraints in
this example are “partitioned” in two blocks of nodes: I = {x1, x2, y1, y2} and
J = {x3, y3}. There are no constraints linking the nodes of I and J . As we shall
see we can interpret the constraint over the domain of 4 elements i.e., the size
of the larger partition.

Definition 13 (partitioning size-change constraints). We say that a (dis-
junctive) size-change constraint C(x̄, ȳ) can be partitioned if the set of arguments
x̄ ∪ ȳ can be partitioned into two disjoint non-trivial subsets I and J such that
C(x̄, ȳ) ≡ (∃I.C(x̄, ȳ)) ∧ (∃J.C(x̄, ȳ)).

We proceed to formalize the intuition of Example 7.

Lemma 8. Let C1(x̄, ȳ) and C2(x̄, ȳ) be size-change graphs that admit the same
partitioning induced by the sets I and J of nodes. Then C1(x̄, ȳ) is equivalent to
C2(x̄, ȳ) if and only if [C1(x̄, ȳ)]max(|I|,|J|) is equivalent to [C2(x̄, ȳ)]max(|I|,|J|).

Proof. Assume for the purpose of contradiction that C1(x̄, ȳ) and C2(x̄, ȳ) are
not equivalent while [C1(x̄, ȳ)]max(|I|,|J|) and [C2(x̄, ȳ)]max(|I|,|J|) are. That means
that either ∃I.C1(x̄, ȳ) is not equivalent to ∃I.C2(x̄, ȳ) or ∃J.C1(x̄, ȳ) is not equiv-
alent to ∃J.C2(x̄, ȳ). By Lemma 5 the equivalence of ∃I.C1(x̄, ȳ) and ∃I.C2(x̄, ȳ)
can be tested using a finite domain of at most |J | elements. Similarly, the equiv-
alence of ∃J.C1(x̄, ȳ) and ∃J.C2(x̄, ȳ) can be tested using a finite domain of at
most |I| elements. Thus, if C1(x̄, ȳ) and C2(x̄, ȳ) are not equivalent, then there
must be a substitution over the domain of (at most) max(|I|, |J |) elements which
distinguishes between the two constraints. Hence, we have a contradiction.

In a similar way we can tighten the bounds of Lemma 6 and Lemma 7 which
show distributivity of domain restriction and the operations (composition and
testing for termination). Moreover, for correctness of the analysis there is now
an additional operation to consider: partitioning.



Lemma 9. Let size-change constraint C(x̄, ȳ) admit a partition (I, J) of argu-
ments such that max(|I|, |J |) = m > 2. Then the size-change graph [C(x̄, ȳ)]m
admits the same partition.

Lemma 9 does not hold for m = 2 because a constraint x � y for x, y ∈ I in
the two-value domain implies y = 0 and hence, x′ � y for any x′, including
x′ ∈ J (and vice versa). Hence, the restriction to two values introduces new
dependencies between the elements of I and J . For m > 2 and without loss of
generality for x ∈ I and y ∈ J , we can assign values to x and y so that either
x� y or ¬(x� y) holds.

In a recent paper [1] Ben-Amram and Lee provide the following definitions
which we will make use of.

Definition 14 (size relation graph [1]). Let G be a set of size change graphs.
The corresponding size-relation graph, denoted srg(G), is the annotated digraph
with vertex set Par(G) and an edge from p〈i〉 to q〈j〉 labelled by 〈b, g〉 if
g = p/n(x̄)← c(x̄, ȳ), q/m(ȳ) is a graph in G and xi �b yj an edge in g.

p〈1〉
�� ** p〈2〉

�� �
?r

RRjj g_W p〈3〉
��

Fig. 5. Size relation graph for the graphs of Figure 2.

Definition 15 (clean(G) [1]). For a set G of size change graphs, clean(G)
is the set of graphs G minus every arc not belonging to a strongly connected
component of srg(G) that contains a label b = 1. If G = clean(G) we say that
G is clean.

Example 8. Consider the set of graphs G from Figure 2. The corresponding size-
relation graph srg(G) is depicted as Figure 5. Observe that G is clean.

The following lemma enables us to restrict attention to sets of cleaned size-
change graphs.

Lemma 10 ([1]). A set of size change graphs G satisfies size change termina-
tion if and only if clean(G) does.

To determine the number of bits required to perform size change termination
analysis for a set of graphs it is sufficient to check the size of the largest strongest
connected component in srg(clean(G)).

Definition 16 (diameter). Let G be a set of size change graphs. The diameter
of G is the largest number of parameters with the same predicate symbol in a
strongly connected component of srg(clean(G)).

Example 9. The diameter of the set of graphs depicted in Figure 2 is 2.

For a set of size-change graphs G, the strongly connected components of
srg(clean(G)) indicate a partitioning of the nodes of G. This provides a safe
bound on the number of values required to represent G.



6 Implementation and experimentation

Boolean encoding: We first illustrate how the binary relations ≥ and � are
modelled for k-bit non-negative integers. Let 〈vk−1, . . . , v0〉 denote the k-bit bi-
nary representation of non-negative integer variable v with left most significant
binary digit. The k-bit relation v ≥ w is standardly modelled inductively by the
following Boolean function:

〈〉 ≥ 〈〉 ≡ 1 (true)
〈vk−1, . . . , v0〉 ≥ 〈wk−1, . . . , w0〉 ≡ (vk−1 ∧ ¬wk−1)

∨
((vk−1 ↔ wk−1) ∧ 〈vk−2, . . . , v0〉 ≥ 〈wk−2, . . . , w0〉)

The non-standard relation v � w of Definition 10 is modelled as

v � w ≡ v ≥ w ∧ ((v 6= w) ∨ even(v))

where (v 6= w) ≡ ¬
∧n

i=1(vi ↔ wi) and even(v) ≡ ¬v0 (the least significant bit
is 0). Note that the above formula is equivalent to Definition 10.

Example 10. For k = 2 the relation x ≥ y is modelled by (x1 ∧ ¬y1) ∨ ((x1 ↔
y1)∧(x0 → y0)). Note that the models of this formula correspond to the solutions
of the constraint x ≥ y on the set of four values {0, . . . , 3}.

The Boolean encodings of sets of size-change graphs and their set-based op-
erations are obtained from the encoding of the binary relations given above and
the set-based definitions of Sections 2 and 3. Size-change graphs are modelled
as conjunctions of binary relations. Sets of size-change graphs are modelled as
disjunctions of the models of individual size-change graphs. Composition of sets
of size-change graphs is modelled through renaming, conjunction and projection.
Finally, testing a set of size-change graphs for termination amounts to checking
the entailment on two Boolean formula.

A key strength of our approach is that all of the components of the size-
change termination analysis can be represented as Boolean formula and standard
Boolean operations. This facilitates an implementation based on well-studied
data structures and well-engineered tools for representing and manipulating
Boolean formulæ.

Prototype Implementation: To validate our ideas, we have constructed a
prototype size-change termination analyser. We use Reduced Ordered Binary De-
cision Diagrams [2] (ROBDDs, often just called BDDs) to represent size-change
graphs. ROBDDs are a standard — perhaps the standard — representation of
Boolean formulae for many applications. They have been applied successfully
to representation of sets of constraints over a finite domain [6]. In the context
of this work we apply ROBDDs to represent sets of size-change graphs and the
respective set-based operations.

Our analyzer comprises about 500 lines of Prolog code and is implemented in
SWI-Prolog [10]. It utilizes the freely available CUDD [5] package as a back-end
for manipulating BDDs and a previously developed module interfacing CUDD
with SWI-Prolog (around 650 lines of C-code.)
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Fig. 6. one-to-one, fan-in and fan-out

Results: The analyzer has been applied to a benchmark suite consisting of 339
size-change termination problems. These problems have been generated from
the benchmark suite of TerminWeb [9]. The problems can be obtained from
http://www.cs.bgu.ac.il/~mcodish/TerminWeb/scg.tgz. All 339 problems
have diameter two or less. The total analysis time for the benchmarking suite
and a 2-bit representation is 1.2 CPU seconds on a 1GHz machine running
GNU/Linux 2.4. The longest running single test takes 70 milliseconds. Prelimi-
nary comparison indicates that the performance of our analyzer is far superior
to the corresponding components of TerminWeb (orders of magnitude).

We note that our analyzer can also handle hard instances of the underly-
ing PSPACE-complete problem. For instance, the example used in the proof of
PSPACE-hardness in Theorem 5 of [8] takes 0.4 second to analyze. Unlike the
benchmarks of TerminWeb this example has a diameter of 5 and thus, 3-bit
encodings of graph nodes are required for its analysis.

7 Related work

Ben-Amram and Lee introduce a polynomial algorithm (termed SCP) which cov-
ers many instances of size-change termination [1]. SCP is shown to be complete
for sets of size-change graphs which are “one-to-one” (the in- and out-degree
of all nodes is not more than 1). Their basic SCP algorithm is correct but not
complete for sets of graphs which are “fan-in free” (the in-degree of all nodes
is not more than 1) and several techniques to handle certain kinds of graphs
with “fan-in” are also proposed. Experimental evaluation indicates that SCP is
complete for their benchmark suite (circa 90 SCT problems).

The set of graphs depicted as Figure 6(a) is one-to-one. The SCP algorithm
will detect that these graphs satisfy size change termination in polynomial time
without computing the expensive closure operation. The graphs in Figure 6(b)
have fan-in and SCP does not detect that they are terminating. The graph in
Figure 6(c) has both fan-in and fan-out. Its termination also cannot be detected
using SCP.

In contrast, our k-bit representation is always complete for any set of size
change graphs with diameter 2k−1 or less. Experimental evaluation indicates that
for our benchmark suite (which extends the one used by Ben-Amram and Lee
and consists of 339 SCT problems) all of the examples have diameter 2 or less
(after cleanup). Hence the 2-bit size-change termination analysis is guaranteed



to be complete. For the examples of Figure 6 our technique requires a 3-bit
analysis for (a) and (c) and a 2-bit analysis for (b).

8 Conclusion

This paper proposes a constraint-based approach to size-change termination
analysis. We model size-change graphs, sets of size-change graphs and operations
for size-change termination using Boolean functions. We draw on experience
from Boolean functions where representing large sets of models is well studied.
A key step in our design is the non-standard interpretation of size-change rela-
tions “>” and “≥”. This enables us to encode union and composition of sets of
size-change graphs by disjunction and conjunction. The proposed approach has
been implemented using BDD-based modeling and BDD operations. The initial
performance indicators are highly encouraging.
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