
Fast Set Bounds Propagation using BDDs
Graeme Gange and Vitaly Lagoon

Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

Peter J. Stuckey
NICTA Victoria Laboaratory

Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

Abstract.

Set bounds propagation is the most popular approach to solving
constraint satisfaction problems (CSPs) involving set variables.
The use of reduced ordered Binary Decision Diagrams (BDDs)
to represent and solve set CSPs is well understood and brings
the advantage that propagators for arbitrary set constraints can
be built. This can substantially improve solving. The disadvan-
tages of BDDs is that creating and manipulating BDDs can
be expensive. In this paper we show how we can perform set
bounds propagation using BDDs in a much more efficient man-
ner by generically creating set constraint predicates, and using
a marking approach to propagation. The resulting system can
be significantly faster than competing approaches to set bounds
propagation.

1 Introduction
It is often convenient to model a constraint satisfaction problem
(CSP) using finite set variables and set relationships between them.
A common approach to solving finite domain CSPs is using a combi-
nation of a global backtracking search and a local constraint propaga-
tion algorithm. The local propagation algorithm attempts to enforce
consistency on the values in the domains of the constraint variables
by removing values from the domains of variables that cannot form
part of a complete solution to the system of constraints. The most
common level of consistency is set bounds consistency [4] where the
solver keeps track for each set of which elements are definitely in
or out of the set. Many solvers use set bounds consistency including
ECLiPSe, Gecode, and ILOG SOLVER.

Set bounds propagation is supported by solvers since stronger no-
tions of propagation such as domain propagation require represent-
ing exponentially large domains of possible values. However, [8]
demonstrated that it is possible to use reduced ordered binary de-
cision diagrams (BDDs) as a compact representation of both set do-
mains and of set constraints, thus permitting set domain propagation.
A domain propagator ensures that every value in the domain of a set
variable can be extended to a complete assignment of all of the vari-
ables in a constraint. The use of the BDD representation comes with
several additional benefits. The ability to easily conjoin and existen-
tially quantify BDDs allows the removal of intermediate variables,
thus strengthening propagation, and also makes the construction of

propagators for global constraints straightforward.
Given the natural way in which BDDs can be used to model set

constraint problems, it is therefore worthwhile utilising BDDs to
construct other types of set solver. Indeed it has been previously
demonstrated [5, 6] that set bounds propagation can be efficiently
implemented using BDDs to represent constraints and domains of
variables. A major benefit of the BDD-based approach is that it frees
us from the need to laboriously construct set bounds propagators for
each new constraint by hand. Moreover, correctness and optimality
of such BDD-based propagators follow by construction. The other
advantages of the BDD-based representation identified above still
apply, and the resulting solver performs very favourably when com-
pared with existing set bounds solvers.

But set bounds propagation using BDDs still constructs BDDs dur-
ing propagation, which is a considerable overhead. In this paper we
show how we can perform BDD-based set bounds propagation us-
ing a marking algorithm that perform linear scans of the BDD rep-
resentation of the constraint without constructing new BDDs. The
resulting set bounds propagators are substantially faster than those
using BDDs. We can use the same linear pass to detect elements of
the set which can make further difference in propagation, and con-
struct a filter on the propagator to prevent invoking it unless one of
the variables that can make a difference changes.

To summarize, the benefits of the approach of this paper are:

• efficiency, no new BDDs are constructed during propagation, so it
is very fast;

• reuse, we can reuse a single BDD for multiple copies of the same
constraint, and hence handle larger problems;

• ordering, we are not restricted to a single global ordering of
Booleans for constructing BDDs; and

• filtering, we can keep track of which parts of the set variable can
really make a difference, and reduce the amount of propagation.

We illustrate a prototype solver using the approach on well-known set
problems, comparing against the state of the art Gecode set bounds
propagation solver.

2 Preliminaries
Propagation based approaches to solving set constraint problems rep-
resent the problem using a domain storing the possible values of each
set variable, and propagators for each constraint, that remove values

from the domain of a variable that are inconsistent with values for
other variables. Propagation is combined with backtracking search
to find solutions.

A domain D is a complete mapping from the fixed finite set of
variables V to finite collections of finite sets of integers. The domain
of a variable v is the set D(v). A domain D1 is said to be stronger
than a domain D2, written D1 v D2, if D1(v) ⊆ D2(v) for all
v ∈ V . A domain D1 is equal to a domain D2, written D1 = D2,
if D1(v) = D2(v) for all variables v ∈ V . A domain D can be
interpreted as the constraint

V
v∈V v ∈ D(v).

For set constraints we will often be interested in restricting vari-
ables to take on convex domains. A set of setsK is convex if a, b ∈ K
and a ⊆ c ⊆ b implies c ∈ K. We use interval notation [a, b] where
a ⊆ b to represent the (minimal) convex set K including a and b.
For any finite collection of sets K = {a1, a2, . . . , an}, we define
the convex closure of K: conv(K) = [∩a∈xa,∪a∈xa]. We extend
the concept of convex closure to domains by defining ran(D) to be
the domain such that ran(D)(x) = conv(D(x)) for all x ∈ V .

A valuation θ is a set of mappings from the set of variables V to
sets of integer values, written {x1 7→ d1, . . . , xn 7→ dn}. A valua-
tion can be extended to apply to constraints involving the variables
in the obvious way. Let vars be the function that returns the set of
variables appearing in an expression, constraint or valuation. In an
abuse of notation, we say a valuation is an element of a domain D,
written θ ∈ D, if θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

Constraints, Propagators and Propagation Solvers A constraint
is a restriction placed on the allowable values for a set of variables.
We shall use primitive set constraints such as (membership) k ∈ v,
(equality) u = v, (subset) u ⊆ w, (union) u = v ∪ w, (intersection)
u = v ∩w, (cardinality) |v| = k, (upper cardinality bound) |v| ≤ k,
(lexicographic order) u < v, where u, v, w are set variables, k is an
integer. We can also construct more complicated constraints which
are (possibly existentially quantified) conjunctions of primitive set
constraints. We define the solutions of a constraint c to be the set of
valuations θ on vars(c) that make the constraint true.

We associate a propagator with every constraint. A propagator f
is a monotonically decreasing function from domains to domains,
so D1 v D2 implies that f(D1) v f(D2), and f(D) v D. A
propagator f is correct for a constraint c if and only if for all domains
D: {θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

A propagation solver solv(F,D) for a set of propagators F and
a domain D repeatedly applies the propagators in F starting from
the domain D until a fixpoint is reached. solv(F,D) is the weakest
domain D′ v D where f(D′) = D′ for all f ∈ F .

Domain and Bounds Consistency A domain D is domain con-
sistent for a constraint c if D is the smalest domain containing all
solutions θ ∈ D of c. We define the domain propagator for a con-
straint c as

dom(c)(D)(v) =

(
{θ(v) | θ ∈ solns(D ∧ c)} if v ∈ vars(c)

D(v) otherwise

Then dom(c)(D) is always domain consistent with c.
A domain D is (set) bounds consistent for a constraint c if for

every variable v ∈ vars(c) the upper bound of D(v) is the union
of the values of v in all solutions of c in D, and the lower bound of
D(v) is the intersection of the values of v in all solutions of c in D.

We define the set bounds propagator for a constraint c as

sb(c)(D)(v) =

(
conv(dom(c)(ran(D))(v)) if v ∈ vars(c)
D(v) otherwise

Then sb(c)(D) is always bounds consistent with c.

BDDs We assume a set B of Boolean variables with a total order-
ing ≺. We make use of the following Boolean operations: ∧ (con-
junction), ∨ (disjunction), ¬ (negation), → (implication), ↔ (bi-
implication) and ∃ (existential quantification). We denote by ∃V F
the formula ∃x1 · · · ∃xnF where V = {x1, . . . , xn}, and by ∃̄V F
we mean ∃V ′F where V ′ = vars(F) \ V .

Reduced Ordered Binary Decision Diagrams are a well-known
method of representing Boolean functions on Boolean variables us-
ing directed acyclic graphs with a single root. Every internal node
n(v, f, t) in a BDD r is labelled with a Boolean variable v ∈ B, and
has two outgoing arcs — the ‘false’ arc (to BDD f) and the ‘true’
arc (to BDD t). Leaf nodes are either F (false) or T (true). Each
node represents a single test of the labelled variable; when travers-
ing the tree the appropriate arc is followed depending on the value of
the variable. Define the size |r| as the number of internal nodes in a
BDD r, and VAR(r) as the set of variables v ∈ B appearing in some
internal node in r.

Reduced Ordered Binary Decision Diagrams (BDDs) [1] require
that the BDD is: reduced, that is it contains no identical nodes (that
is, nodes with the same variable label and identical then and else
arcs) and has no redundant tests (no node has both then and else arcs
leading to the same node); and ordered, if there is an arc from a node
labelled v1 to a node labelled v2 then v1 ≺ v2. A BDD has the nice
property that the function representation is canonical up to variable
reordering. This permits efficient implementations of many Boolean
operations.

BDDs can represent an arbitrary Boolean formula over variables
B. We shall be interested in stick BDDs where for every internal node
n(v, f, t) exactly one of f or t is the constant F node. Stick BDDs
represent exactly the formulae of the form

V
v∈T v∧

V
v∈F ¬v where

T and F are disjoint subsets of B.
A Boolean variable v is said to be fixed in a BDD r if either for

every node n(v, t, e) ∈ r t is the constant F node, or for every node
n(v, t, e) e is the constant F node. Such variables can be identified
in a linear time scan over the domain BDD. For convenience, if φ is a
BDD, we write JφK to denote the BDD representing the conjunction
of the fixed variables of φ. Note JφK is a stick BDD.

3 Set Propagation using BDDs
The key step in building set propagation using BDDs is to realize that
we can represent a finite set domain using a BDD.

Representing domains If v is a set variable ranging over subsets
of {1, . . . , N}, then we can represent v using the Boolean variables
V (v) = {v1, . . . , vN} ⊆ B, where vi is true iff i ∈ v. We will order
the variables v1 ≺ v2 · · · ≺ vN . We can represent a valuation θ
using a formula

R(θ) =
^

v∈vars(θ)

0@ ^
i∈θ(v)

vi ∧
^

i∈{1,...,N}−θ(v)

¬vi

1A .

Then a domain of variable v, D(v) can be represented asW
a∈D(v)R({v 7→ a}). This formula can be represented by a BDD.

Representing constraints We can similarly model any set con-
straint c as a BDD B(c) using the Boolean variable representation
V (v) of its set variables v. By ordering the variables in each BDD
carefully we can build small representations of the formulae. The
pointwise order of Boolean variables is defined as follows. Given set
variables u ≺ v ≺ w ranging over sets from {1, . . . , N} we order
the Boolean variables as u1 ≺ v1 ≺ w1 ≺ u2 ≺ v2 ≺ w2 ≺
· · ·un ≺ vn ≺ wn.

The representation B(c) is simply ∨θ∈solns(c)R(θ). For primitive
set constraints (using the pointwise order) this size is linear in N .
For more details see [6]. The BDD representation of x = y ∪ z is
shown in Figure 2(a).

BDD-based Set Bounds Propagation We can build a set bounds
propagator, more or less from the definition, since we have BDDs to
represent domains and constraints.

φ = B(c) ∧
^

v′∈vars(c)

D(v′)

sb(c)(D)(v) = ∃V (v) JφK

We simply conjoin the domains to the constraint obtaining φ, then
extract the fixed variables from the result, and then project out the
relevant part for each variable v. The set bounds propagation can be
improved by removing the fixed variables as soon as possible. The
improved definition is given in [5]. Overall the complexity can be
made O(|B(c)|).

The updated set bounds can be used to simplify the BDD repre-
senting the propagator. Since fixed variables will never interact fur-
ther with propagation they can be projected out of B(c), so we can
replace B(c) by ∃VAR(JφK)φ.

4 Faster Set Bounds Propagation
While set bounds propagation using BDDs is much faster than set
domain propagation and often better than set domain propagation (or
other variations of propagations for sets) it still creates new BDDs.
This is not necessary as long as we are prepared to give up the sim-
plifying of BDDs that is possible in set bounds propagation.

We do not represent domains of variables as BDD sticks, but rather
as arrays of integer values. A domain D is an array where, for vari-
able v ranging over subsets of {1, . . . , N}: D[vi] = 0 indicates
i /∈ v, D[vi] = 1 indicates i ∈ x, and D[vi] = 2 means we
don’t know whether i is in or not in v. Hence D(v) = [{i|D[vi] =
1}, {i|D[vi] 6= 0}].

The BDD representation of a constraint B(c) is built as before.
A significant difference is that since constraints only communicate
through the set bounds of variables we do not need them to share a
global variable order hence we can if necessary modify the variable
order used to construct B(c) for each c, or use automatic variable
reordering (which is available in most BDD packages) to construct
B(c). Another advantage is that we can reuse the BDD for a con-
straint c(x̄) on variables x̄ for the constraint c(ȳ) on variables ȳ (as
long as they range over the same initial sets), that is, the same con-
straint on different variables. Hence we only have to build one such
BDD, rather than one for each instance of the constraint.

The set bounds propagator sb(c(x̄) for constraint c(x̄) is now im-
plemented as follows. A generic BDD representation r of the con-
straint c(ȳ) is constructed. The propagator copies the domain de-
scription of the actual parameters x1, . . . , xn onto a domain descrip-
tion E for formal parameters y1, . . . , yn. It constructs an array E

where E[yji] = D[xji]. Let V = {yji | 1 ≤ j ≤ n, 1 ≤ i ≤ N}
be the set of Boolean variables occurring in the constraint c(ȳ). The
propagator executes the code bddprop(r, V,E) shown in Figure 1
which returns (r′, V ′, E′). If r′ = F the propagator returns a false
domain, otherwise the propagator copies back the domains of the for-
mal parameters to the actual parameters so D[xji] = E[yji]. We will
come back to the V argument in the next subsection.

The procedure bddprop(r, V,E) traverses the BDD r as follows.
We visit each node n(v, f, t) in the BDD in a top-down memoing
manner. We record if, under the current domain, the node can reach
theF node, and if it can reach the T node. If the f child can reach the
T node we add support for the variable v taking value 0. Similarly
if the t child can reach T we add support for the variable v taking
1. If the node can reach both F and T we record that the variable
v matters to the computation of the BDD. After the visit we reduce
the variable set for the propagator to those that matter, and remove
values with no support from the domain. The procedure assumes a
global time variable which is incremented between each propagation,
which is used to memo the marking phase. The top(n, V) function
returns the variable in the root node of n or the largest variable (under
≺) in V if n = T or n = F .

Example 1 Consider the BDD for the constraint x = y ∪ z when
N = 2 shown in Figure 2(a). Assuming a domain E where E[y1] =
1 (1 ∈ y) and E[z2] = 1 (2 ∈ z), and the remaining variables
take value 2, the algorithm traverses the edges shown with double
lines in Figure 2(b). No path from x1, or x2 following the f arc
reaches T hence alive[x1,0] and alive[x2,0] are not marked with the
current time. As a resultE[x1] andE[x2] are set to 1. Hence we have
determined 1 ∈ x and 2 ∈ x.

Also, no nodes for z1 are actually visited, and the left node for y2
only reachesF and the right node only reaches T . Hence matters[z1]
and matters[y2] are not marked with the current time. The set of
vars collected by bddprop is empty, since the remaining variables
are fixed. 2

4.1 Waking up less often

In practice a bounds propagation solver does not blindly apply each
propagator until fixpoint, but keeps track of which propagators must
still be at fixpoint, and only executes those that may not be. For set
bounds this is usually managed as follows. To each set variable v is
attached a list of propagators c that involve v. Whenever v changes,
these propagators are rescheduled for execution.

We can do better than this with the BDD based propagators. The
algorithm bddprop collects the set of Boolean variables that matter
to the BDD, that is can change the result. If a variable is fixed that
does not matter, then set bounds propagation cannot learn any new
information. We modify the wakeup process as follows. Each vari-
able xj stores a list of pairs (f, S) of propagator f with the subset
S of variables xji which matter to the propagator with the current
domain. When the variable changes we traverse the list of propaga-
tors and wake those propagators where the change intersects with S.
On executing a propagator we revise the set S stored in the list for
variable xj to be {xji | y

j
i ∈ vars}where vars is the the set of “inter-

esting” variables returned by bddprop. Note the same optimization
could be applied to the standard approach, but requires the overhead
of computing VAR(r′) which here is folded into bddprop.

bddprop(r,V ,E) {
(reachf , reacht) = bddp(r, V,E);
if (¬reacht) return (F , ∅, E);
vars = ∅;
for (v ∈ V) {

for (d ∈ {0, 1})
if (alive[v,d] < time) E[v] = 1− d;

if (E[v] = 2 ∧ matters[v] ≥ time) vars = vars ∪ {v}; }
return (r, vars, E); }

bddp(node,V ,E) {
switch node {
F : return (1,0);
T : return (0,1);
n(v, f, t):

if (visit[node] ≥ time) return save[node];
reachf = 0; reacht = 0;
if (E[v] 6= 1) {

(rf0 , rt0) = bbdp(f, V,E);
reachf = reachf ∧ rf0 ;
reacht = reacht ∧ rt0 ;
if (rt0) {

for (v′ ∈ V, v ≺ v′ ≺ top(f, V)})
alive[v′,0] = alive[v′,1] = time;

alive[v,0] = time; } }
if (E[v] 6= 0) {

(rf1 , rt1) = bbdp(t, V, E);
reachf = reachf ∧ rf1 ;
reacht = reacht ∧ rt1 ;
if (rt1) {

for (v′ ∈ V, v ≺ v′ ≺ top(t, V)})
alive[v′,0] = alive[v′,1] = time;

alive[v,1] = time; } }
if (reachf ∧ reacht) matters[v] = time;
save[node] = (reachf , reacht);
visit[node] = time;
return (reachf , reacht); } }

Figure 1. Pseudo-code for BDD propagation.

5 Experimental Results
We have built a prototype set bounds solver implementing the algo-
rithms described. Currently a Prolog engine takes the definition of
the problem, and used an interface to the BDD package CUDD [10]
to construct the generic BDDs. It then creates a C file for backtrack-
ing solver with data structures for the BDDs. This prototype is very
expensive in terms of compilation time, ranging from 0.36–4.65s for
Steiner and 0.52–2.42s for golfers, but the actual BDD creation time
is a tiny proportion of this, at most 30ms and usually unmeasurable
(0ms). In a direct implementation the compilation time will effec-
tively shrink to the BDD creation time.

Experiments were conducted on a 2.66GHz Core2 Duo with 2 Gb
of RAM running Ubuntu GNU/Linux 7.04. We compare against the
state of the art set bounds propagators of Gecode 2.0 [3].

Steiner Systems A commonly used benchmark for set constraint
solvers is the calculation of small Steiner systems. A Steiner system
S(t, k,N) is a set X of cardinality N and a collection C of subsets
of X of cardinality k (called ‘blocks’), such that any t elements of

/.-,()*+x1

}}{
{

{

!!CCCCCC

/.-,()*+y1
���
�

��

/.-,()*+y1
���
�

��

/.-,()*+z1
!!C

C
C

����������������������
/.-,()*+z1

}}{{{{{{

uu

�
�

�
�

�

�
{

tqol

/.-,()*+x2

}}{
{

{

!!CCCCCC

/.-,()*+y2
���
�

��
/.-,()*+y2

���
�

��

/.-,()*+z2
!!C

C
C

~~|||||
/.-,()*+z2

}}{{{{{

tti i i i i i i i

F T

/.-,()*+x1

y� {
{

{
{

{
{

�%
CCCCC

CCCCC

/.-,()*+y1
���
�

�

/.-,()*+y1
���
�

�

/.-,()*+z1
!!C

C
C

����������������������
/.-,()*+z1

}}{{{{{{

uu

�
�

�
�

�

�
{

tqol

/.-,()*+x2

y� {
{

{
{

{
{

�%
CCCCC

CCCCC

/.-,()*+y2
��

�
�

�
�

�

/.-,()*+y2

��
�
�

�
�

�

/.-,()*+z2
!!C

C
C

z� |||||
|||||

/.-,()*+z2
y� {{{{{

{{{{{

tti i i i i i i i

F T
(a) (b)

Figure 2. (a) The BDD representing x = y ∪ z where N = 2. A node
n(v, f, t) is shown as a circle around v with a dashed arrow to f and full

arrow to t. (b) The edges traversed by bddprop, when E[y1] = 1 and
E[z2] = 1 and E[v] = 2 otherwise, are shown doubled.

X are in exactly one block. Any Steiner system must have exactly
m =

`
N
t

´
/
`
k
t

´
blocks (Theorem 19.2 of [9]).

We use the same modelling of the problem as [8], extended for the
case of more general Steiner Systems. We model each block as a set
variable s1, . . . , sm, with the constraints:

m̂

i=1

(|si| = k) ∧

m−1̂

i=1

m̂

j=i+1

(∃uij .uij = si ∩ sj ∧ |uij | ≤ (t− 1)) ∧ (si < sj)

To compare the raw performance of the bounds propagators we
performed experiments using a model of the problem with primitive
constraints and intermediate variables uij directly as shown above
equivalent to the Gecode model. The results are shown in “Split Con-
straints” section of Table 1. Gecode has slightly better search be-
haviour than our solver because its set bounds propagators take into
account cardinality information. Clearly the raw propagation speed
of the BDD solver is better than Gecode except for the case where
the N is large. Note that the BDD solver of [6] cannot handle the
largest four Steiner problems with split constraints, because there are
too many Boolean variables for the BDD package.

Of course, the BDD representation permits us to merge primitive
constraints and remove intermediate variables, allowing us to model
the problem as

`
m
2

´
binary constraints (containing no intermediate

variables uij) corresponding to second line above conjoined with
the cardinality constraints for si and sj . Results for this improved
model are shown in the “Merged Constraints” section of Table 1.
Here the search is reduced and propagation speed usually signifi-
cantly increased, though filtering is less beneficial.

Social Golfers Another common set benchmark is the “Social
Golfers” problem, which consists of arranging N = g × s golfers
into g groups of s players for each of w weeks, such that no two
players play together more than once. Again, we use the same model
as [8], using aw×g matrix of set variables vij where 1 ≤ i ≤ w and
1 ≤ j ≤ g. Gecode is restricted to use separate constraints, while the
BDD solver uses merged constraints.

Table 1. Performance results on Steiner Systems: first solution (F) and all solutions (A). Time in seconds for 1000 runs (first solution problems) and one run
(all solutions) and number of failures are given for Gecode and the BDD solver for split constraints and the BDD solver for merged constraints. Two times for
the BDD set bounds solver are shown: time without filtering and time+f with filtering. A first-fail “element-in-set” labelling strategy is used in all cases. “—”

denotes failure to complete a test case within 240 minutes. × denotes a case where our naive trailing implementation for filtering runs out of space.

Problem
Gecode Split Constraints Merged Constraints

time fails time time+f fails time time+f fails
S(2,3,7) F 0.41 2 0.30 0.24 2 0.12 0.11 0
S(3,4,8) F 5.43 14 1.70 1.56 14 0.96 0.90 2
S(2,3,9) F 47.98 395 37.04 14.50 542 5.05 5.69 121
S(2,4,13) F 3.33 4 3.58 1.98 4 2.24 2.17 2
S(2,3,15) F 19.86 6 29.01 16.54 6 15.61 15.66 3
S(3,4,16) F 1688.81 90 431.53 × 90 474.22 530.52 58
S(2,5,21) F 14.97 4 20.50 19.68 4 19.38 19.68 3
S(3,6,22) F 495.9 118 271.14 243.27 142 554.44 668.509 96
S(2,3,31) F 1098.82 14 1659.71 1891.04 14 1198.95 1301.64 11
S(2,3,7) A 0.27 6.10×103 0.29 0.22 1.17×104 0.01 0.02 1.07×103

S(3,4,8) A 1018.84 6.36×106 10108.89 7875.12 1.44×107 58.93 58.95 4.32×105

S(2,3,9) A 2593.03 3.15×107 — — — 287.05 324.10 8.81×106

Table 2. First-solution performance results on the Social Golfers problem.
Time in seconds for 100 runs and number of failures are given for both

solvers. A first-fail “element-in-set” labelling strategy is used in all cases.

Problem Gecode Merged Constraints
time fails time time+f fails

2-5-4 0.33 14 0.21 0.14 30
2-6-4 7.71 860 5.77 2.55 2036
2-7-4 34.30 2935 19.58 8.9 4447
3-5-4 0.81 14 0.46 0.44 30
3-6-4 18.57 863 22.91 11.82 2039
3-7-4 93.42 2974 64.06 41.77 4492
4-5-4 0.65 1388 0.30 0.26 2886
4-6-5 225.92 5355 298.43 209.22 12747
4-7-4 142.58 2979 137.80 103.25 4498
4-9-4 10.52 54 7.8 5.49 71
5-5-4 149.73 2495 50.73 28.29 2758
5-7-4 308.61 3062 218.58 190.9 4582
5-8-3 5.07 10 3.29 2.36 14
6-5-3 102.84 1621 35.93 17.05 1615
6-6-3 3.06 4 1.74 1.23 5

Experimental results are shown in Table 2. Interestingly the
merged constraints here are not enough to compete with the set
bounds propagators of Gecode that include cardinality considera-
tions. Not withstanding the greater search space, the BDD set solver
is still substantially faster than Gecode. For these examples filtering
is always beneficial, sometimes 2 times faster. If we compare against
the BDD solver of [6] on these examples, our new solver is around
30 times faster (although the machines used are not identical).

6 Related Work

BDD based set solvers were introduced by [8] originally for domain
propagation, and then extending to bounds, split and lex and cardi-
nality propagation [6]. The combination of BDD based set bounds
propagation with nogoods was introduced in [7]. Another approach
automatically constructing set bounds propagators is defined in [12].

A similar approach to using BDDs in propagation was previously
defined for solving SAT problems in [2]. This approach informally
defines a marking approach to BDD propagation, but does not con-
sider sets, generic constraints, or filtering.

7 Conclusion
In this paper we have improved the BDD-based technique of set
bounds propagation. The traversal approach to propagation we pre-
sented is at least an order of magnitude faster than the previous tech-
nique utilizing BDD operations. The prototype implementation of
our method is significantly faster than the state of the art set con-
straint solver of Gecode. As demonstrated by [7], further improve-
ments in the solver performance can be straightforwardly achieved
by incorporating nogoods generation [11].

REFERENCES
[1] Randal E. Bryant, ‘Graph-based algorithms for Boolean function ma-

nipulation’, IEEE Trans. Comput., 35(8), 677–691, (1986).
[2] R.F. Damiano and J.H. Kukula, ‘Checking satisfiability of a conjunction

of BDDs’, in Proceedings of Design Automation Conference, pp. 818–
823, (2003).

[3] Gecode. www.gecode.org. Accessed Jan 2008.
[4] Carmen Gervet, ‘Interval propagation to reason about sets: Definition

and implementation of a practical language’, Constraints, 1(3), 191–
246, (1997).

[5] P. Hawkins, V. Lagoon, and P.J. Stuckey, ‘Set bounds and (split) set do-
main propagation using ROBDDs’, in 17th Australian Joint Conference
on Artificial Intelligence, volume 3339 of LNCS, pp. 706–717, (2004).

[6] P. Hawkins, V. Lagoon, and P.J. Stuckey, ‘Solving set constraint sat-
isfaction problems using ROBDDs’, Journal of Artificial Intelligence
Research, 24, 106–156, (2005).

[7] P. Hawkins and P.J. Stuckey, ‘A hybrid BDD and SAT finite domain
constraint solver’, in Proceedings of the 8th International Symposium
on Practical Aspects of Declarative Languages, volume 3819 of LNCS,
pp. 103–117, (2006).

[8] V. Lagoon and P.J. Stuckey, ‘Set domain propagation using ROBDDs’,
in Proceedings of the 10th International Conference on Principles and
Practice of Constraint Programming, volume 3258 of LNCS, pp. 347–
361, (2004).

[9] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cam-
bridge University Press, 2nd edn., 2001.

[10] Fabio Somenzi. CUDD: Colorado University Decision Diagram pack-
age. Accessed May 2004. http://vlsi.colorado.edu/ fabio/CUDD/.

[11] S. Subbarayan, ‘Efficent reasoning for nogoods in constraint solvers
with BDDs’, in Proceedings of Tenth International Symposium on
Practical Aspects of Declarative Languages, volume 4902 of LNCS,
pp. 53–57, (2008).

[12] G. Tack, C. Schulte, and G. Smolka, ‘Generating propagators for finite
set constraints’, in Twelfth International Conference on Principles and
Practice of Constraint Programming, volume 4204 of LNCS, pp. 575–
589, (2006).

