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Abstract Many constraint problems exhibit dominance relations which can be ex-
ploited for dramatic reductions in search space. Dominance relations are a gen-
eralization of symmetry and conditional symmetry. However, unlike symmetry
breaking which is relatively well studied, dominance breaking techniques are not
very well understood and are not commonly applied. In this paper, we present
formal definitions of dominance breaking, and a generic method for identifying
and exploiting dominance relations via dominance breaking constraints. We also
give a generic proof of the correctness and compatibility of symmetry breaking
constraints, conditional symmetry breaking constraints and dominance breaking
constraints.

1 Introduction

In a constraint satisfaction or optimization problem, dominance relations describe
pairs of assignments where one is known to be at least as good as the other with
respect to satisfiability or the objective function. When such dominance relations
are known, we can often prune off many of the solutions without changing the
satisfiability or the optimal value of the problem. Many constraint problems exhibit
dominance relations which can be exploited for significant speedups (e.g., [19,33,
2,24,32,28,7,15]).

Dominance relations are a generalization of symmetry and conditional sym-
metry and offer similar or greater potential for reductions in search space. Unlike
symmetries however, dominance relations are not widely exploited. Dominance re-
lations can be hard to identify, and there are few standard methods for exploiting
them. It is also often hard to prove that a particular method is correct, especially
when multiple dominance relations are being exploited simultaneously. These is-
sues have been overcome in the case of symmetry, which is why symmetry breaking
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is now standard and widely used. Dominance relations have been successfully ap-
plied in a number of problems, but their treatment is often highly problem specific
and yields little insight as to how they can be generalized. In this paper, we seek to
advance the usage of dominance relations by making the following contributions:

– We describe a generic method for identifying and exploiting a large class of
dominance relations using dominance breaking constraints.

– We show that our method naturally produces symmetry breaking and con-
ditional symmetry breaking constraints as well (since they are simply special
cases of dominance breaking).

– We give a generic theorem proving the correctness and compatibility of all
symmetry breaking, conditional symmetry breaking and dominance breaking
constraints defined by our method.

The layout of the paper is as follows. In Section 2, we give our definitions.
In Section 3, we describe our method of identifying and exploiting dominance
relations using dominance breaking constraints. In Section 4, we describe how our
method can be extended to generate symmetry and conditional symmetry breaking
constraints as well. In Section 5 we discuss how dominance breaking interacts with
search. In Section 6, we discuss related work. In Section 7, we provide experimental
results. In Section 8, we conclude and discuss future work.

2 Definitions

In this section, we present our notations and definitions.

2.1 Constraint Programming

To facilitate rigorous proofs in the later sections, we will give our own definitions
of variables, domains, constraints, constraint problems and dominance relations.
These are slightly different from the standard definitions but are equivalent to
them in practice.

Let ≡ denote syntactical identity, ⇒ denote logical implication and ⇔ denote
logical equivalence. We define variables and constraints in a problem independent
way. A variable v is a mathematical quantity capable of assuming any value from
a set of values called the default domain of v. Each variable is typed, e.g., Boolean
or Integer, and its type determines its default domain, e.g., {0, 1} for Boolean
variables and Z for Integer variables. Given a set of variables V , let ΘV denote
the set of valuations over V where each variable in V is assigned to a value in
its default domain. A constraint c over a set of variables V is defined by a set of
valuations solns(c) ⊆ ΘV . Given a valuation θ over V ′ ⊃ V , we say θ satisfies c if
the restriction of θ onto V is in solns(c). Otherwise, we say that θ violates c. A
domain D over variables V is a set of unary constraints, one for each variable in V .
In an abuse of notation, if a symbol A refers to a set of constraints {c1, . . . , cn},
we will often also use the symbol A to refer to the constraint c1 ∧ . . . ∧ cn. This
allows us to avoid repetitive use of conjunction symbols.

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D,C), where V is
a set of variables, D is a domain over V , and C is a set of n-ary constraints. A
valuation θ over V is a solution of P if it satisfies every constraint in D and C.
The aim of a CSP is to find a solution or to prove that none exist. In a Constraint



Table 1 Definitions of standard global constraints. In an abuse of notation, we consider false
as 0 and true as 1.

Name and arguments definition
at least([x1, . . . , xn], v, y) (

∑n
i=1 xi = v) ≥ y

at most([x1, . . . , xn], v, y) (
∑n
i=1 xi = v) ≤ y

among([x1, . . . , xn], v, y) (
∑n
i=1 xi = v) = y

all diff ([x1, . . . , xn]) ∀1 ≤ i < j ≤ n, xi 6= xj
inverse([x1, . . . , xn], [y1, . . . , yn]) ∀1 ≤ i, j ≤ n, xi = j ⇔ yj = i
gcc([x1, . . . , xn], [v1, . . . , vm], [y1, . . . , ym]) ∀1 ≤ k ≤ m, (

∑n
i=1 xi = vk) = yk

element([x1, . . . , xn], z, y) y = xz
table([x1, . . . , xn], [[v1,1, . . . , v1,n], . . . , [vm,1, . . . , vm,n]]) ∃k,∀1 ≤ i ≤ n, xi = vk,i

Optimization Problem (COP) P ≡ (V,D,C, f), we also have an objective function
f mapping ΘV to an ordered set, e.g., the set of integers Z or the set of real
numbers R, and we wish to minimize or maximize f over the solutions of P . In
this paper, we deal with finite domain problems only, i.e., where the initial domain
D constrains each variable to take values from a finite set of values.

Propagation based solvers (see e.g [37]) solve CSPs and COPs by interleaving
tree search with inference. A propagator pc for constraint c is a function mapping
domains to domains s.t. c ∧D ⇔ c ∧ pc(D), i.e., it performs inference based on c
and the current domain D, pruning away any variable/value pairs that cannot be
taken given c and D. Solving a CSP begins with the original problem at the root
of the search tree. At each node in the search tree, we execute all the propagators
until the domain reaches a fixed point. If some variable’s domain becomes empty,
then the subproblem has no solution and the solver backtracks. If all the variables
are assigned and no constraint is violated, then a solution has been found and
the solver can terminate. If inference is unable to detect either of the above two
cases, then the solver divides the problem into a number of more constrained
subproblems and searches each of those in turn. Typically this involves picking a
variable x and branching on its values, e.g., trying x = v for some value v in one
child node and x 6= v in the other child node, or trying x ≤ v in one child node
and x > v in the other.

CP solvers solve a minimization COP (V,D,C, f) by simply solving the CSP
(V,D,C) to find a solution θ, and then solving the CSP (V,D,C∧f < θ(f)) to find
a new (better) solution θ. They repeat this until the final CSP has no solution in
which case the last solution found is optimal.

One of the principal advantages of constraint programming is the ability to
model directly with complex global constraints, that implement efficient propaga-
tors. Table 1 gives the definitions of a number of global constraints which we will
use in this paper.

Later on we shall be interested in properties of constraints in order to simplify
their handling. A property of interest is monotonicity

Definition 1 We say that an argument xi in a constraint c(x1, . . . , xn) is mono-
tonically increasing (resp. decreasing) w.r.t. c iff increasing (resp. decreasing) its
value while keeping the other arguments fixed never cause c to go from satisfied
to unsatisfied.

Example 1 The constraint 3x1 + 4x2 − 5x3 ≤ 8 is monotonically increasing in x3
and monotonically decreasing in x1 and x2. Similarly at most([x1, . . . , xn], v, y) is



monotonically increasing in y, but neither monotonically increasing nor decreasing
on any of the xi. �

We shall be particularly interested later in the paper on COPs with lexico-
graphic objective functions. To fit this transparently into the usual COP definition
we assume a function lex : Zn → Z such that lex(v1, . . . , vn) < lex(v′1, . . . , v

′
n) ⇔

(v1 < v′1) ∨ (v1 = v′1 ∧ v2 < v′2) ∨ . . . ∨ (∧n−1
i=1 vi = v′i ∧ vn < v′n).

2.2 Dominance

We define dominance relations over full valuations. We assume that all objective
functions are to be minimized, and consider constraint satisfaction problems as
constraint optimization problems with f(θ) = 0 for all valuations θ.

Definition 2 A dominance relation ≺ for COP P ≡ (V,D,C, f) is a transitive and
irreflexive binary relation on ΘV such that if θ1 ≺ θ2, then either: 1) θ1 is a solution
of P and θ2 is a not a solution of P , or 2) both θ1 and θ2 are solutions of P and
f(θ1) ≤ f(θ2), or 3) both θ1 and θ2 are not solutions of P and f(θ1) ≤ f(θ2).

If θ1 ≺ θ2, we say that θ1 dominates θ2. Note that we require our dominance
relations to be irreflexive. This means that no loops can exist in the dominance
relation, and makes it much easier to ensure the correctness of the method. The
following theorem states that it is correct to prune all dominated assignments.

Theorem 1 Given a finite domain COP P ≡ (V,D,C, f), and a dominance relation
≺ for P , we can prune all assignments θ such that ∃θ′ s.t. θ′ ≺ θ, without changing
the satisfiability or optimal value of P .

Proof Let θ0 be an optimal solution. If θ0 is pruned, then there exists some solution
θ1 s.t. θ1 ≺ θ0. Then θ1 must be a solution with f(θ1) ≤ f(θ0), so θ1 is also an
optimal solution. In general, if θi is pruned, then there must exist some θi+1 s.t.
θi+1 ≺ θi and θi+1 is also an optimal solution. Since ≺ is transitive and irreflexive,
it is impossible for the sequence θ0, θ1, . . . to repeat. Then since there are finitely
many solutions, the sequence must terminate in some θk which is an optimal
solution and which is not pruned. ut

Theorem 1 relates to finite domain COP’s. However, the proof for Theorem 1
generalizes trivially to the case of infinite domain COP’s with finitely many so-
lutions as well. On the other hand, it does not hold for infinite domain COP’s
with infinitely many solutions. E.g., consider P ≡ ({x}, {x ∈ Z}, ∅, x). We could
define ≺ such that ∀θ1, θ2, θ1 ≺ θ2 iff θ1(x) < θ2(x). Since every possible valuation
is dominated by something, pruning all dominated valuations ends up pruning
all possible solutions. In this paper, we consider only finite domain problems, so
Theorem 1 holds for the problems we consider.

Several previous definitions of dominance (e.g., [10,22]) relate search nodes
rather than valuations. We can extend a precedence relation ≺ over valuations to
relate search nodes in the obvious way.

Definition 3 Let D1 and D2 be the domains from two different search nodes. If
∀θ2 ∈ solns(D2), ∃θ1 ∈ solns(D1) s.t. θ1 ≺ θ2, then we define D1 ≺ D2.



Clearly if D1 ≺ D2, Theorem 1 tells us that we can safely prune the search
node with D2. We call the pruning allowed by Theorem 1 dominance breaking in
keeping with symmetry breaking for symmetries.

Example 2 Consider a simple problem with domain xi ∈ {1, . . . , 10}, constraint

all diff ([x1, . . . , x10]) and objective function
∑10
i=1 i∗xi to be minimized. The search

node n given by the decisions x1 = 2, x2 = 1 dominates the search node n′ given
by the decisions x1 = 1, x2 = 2, as no matter how we label the remaining variables
in n′, the corresponding assignment in n with the same values for x3, . . . , x10 will
always have a better objective value since 1 ∗ 2 + 2 ∗ 1 < 1 ∗ 1 + 2 ∗ 2.

Dominance relations can be derived either statically before search or dynam-
ically during search in order to prune the search space. It is easy to see that
static symmetry breaking (e.g., [9,13]) is a special case of static dominance break-
ing. For example, consider the lex-leader method of symmetry breaking. Suppose
S is a symmetry group of problem P . Suppose l(θ) is the lexicographical func-
tion being used in the lex-leader method. We can define a dominance relation:
∀σ ∈ S,∀θ, σ(θ) ≺ θ if l(σ(θ)) < l(θ). Then applying Theorem 1 to ≺ gives the lex-
leader symmetry breaking constraint (i.e., prune all solutions which are not the
lex-leader in their equivalence class). Similarly, dynamic symmetry breaking tech-
niques such as Symmetry Breaking During Search [18] and Symmetry Breaking by
Dominance Detection [10,14] are special cases of dynamic dominance breaking. No-
good learning techniques such as Lazy Clause Generation [30,11] and Automatic
Caching via Constraint Projection [6] are also examples of dynamic dominance
breaking. We will discuss these two methods in more detail in Section 6.

Just as in the case of symmetry breaking (see e.g. [12]), it is generally incorrect
to simultaneously post dominance breaking constraints for multiple dominance re-
lations. This is because dominance relations only ensure that one assignment is at
least as good as the other (not strictly better than), thus when we have multiple
dominance relations, we could have loops such as θ1 ≺1 θ2 and θ2 ≺2 θ1, and post-
ing the dominance breaking constraint for both ≺1 and ≺2 would be wrong. We
have to take care when breaking symmetries, conditional symmetries and domi-
nances that all the pruning we perform are compatible with each other. As we shall
show below, one of the advantages of our method is that all the symmetry break-
ing, conditional symmetry breaking and dominance breaking constraints defined
by our method are provably compatible.

Dominance breaking constraints can be particularly useful in optimization
problems, because they provide a completely different and complementary kind of
pruning to the branch and bound paradigm. In the branch and bound paradigm,
the only way to show that a partial assignment is suboptimal is to prove a suf-
ficiently strong bound on its objective value. Proving such bounds can be highly
expensive, especially if the model does not propagate strong bounds on the objec-
tive. In the worst case, further search is required, which can take an exponential
amount of time. On the other hand, dominance breaking can prune a partial as-
signment without having to prove any bounds on its objective value at all, since
it only needs to know that the partial assignment is suboptimal. Once dominance
relations expressing conditions for suboptimality are found and proved, the only
cost in the search is to check whether a partial assignment is dominated, which can
often be much lower than the cost required to prove a sufficiently strong bound to
prune the partial assignment.



3 Identifying and Exploiting Dominance Relations

3.1 Overview of method

We now describe a generic method for identifying and exploiting a fairly large class
of dominance relations using dominance breaking constraints. The idea is to use
mappings σ from valuations to valuations to construct dominance relations. Given
a mapping σ, we ask: under what conditions does σ map a solution to a better
solution? If we can find these conditions, then we can build a dominance relation
using these conditions and exploit it by posting a dominance breaking constraint.
More formally:

Step 1 Choose a set S of mappings σ : ΘV → ΘV which are likely to map solutions
to better solutions.

Step 2 For each σ ∈ S, find a constraint scond(σ) s.t. if θ ∈ solns(C∧D∧scond(σ)),
then σ(θ) ∈ solns(C ∧D).

Step 3 For each σ ∈ S, find a constraint ocond(σ) s.t. if θ ∈ solns(C∧D∧ocond(σ)),
then f(σ(θ)) < f(θ).

Step 4 For each σ ∈ S, post the dominance breaking constraint db(σ) ≡ ¬(scond(σ)∧
ocond(σ)).
The constraints scond(σ) ensure that σ maps solutions to solutions, while ocond(σ)
ensures that σ maps valuations to better valuations. Finally db(σ) ensures that so-
lutions that are dominated are eliminated.

The following theorem proves the correctness of this method.

Theorem 2 Given a finite domain COP P ≡ (V,D,C, f), a set of mappings S, and
for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying: ∀σ ∈ S, if
θ ∈ solns(C∧D∧scond(σ)), then σ(θ) ∈ solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧D∧
ocond(σ)), then f(σ(θ)) < f(θ), we can add all of the dominance breaking constraints
db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) to P without changing its satisfiability or optimal
value.

Proof Construct a binary relation ≺ as follows. For each σ, for each θ ∈ solns(C ∧
D ∧ scond(σ) ∧ ocond(σ)), define σ(θ) ≺ θ. Now, take the transitive closure of ≺.
We claim that ≺ is a dominance relation. It is transitive by construction. Also,
by construction, θ ∈ solns(C ∧D ∧ scond(σ) ∧ ocond(σ)) guarantees that σ(θ) is a
solution and that f(σ(θ)) < f(θ). Thus ∀θ1, θ2, θ1 ≺ θ2 implies that θ1 and θ2 are
solutions, and that f(θ1) < f(θ2). This means that ≺ is irreflexive and satisfies
all the properties of a dominance relation, thus by Theorem 1, we can prune any
θ ∈ solns(C ∧D∧ scond(σ)∧ocond(σ)) for any σ without changing the satisfiability
or optimality of P . Thus it is correct to add db(σ) for any σ to P . ut

Note that there are no restrictions on σ. It does not have to be injective or
surjective. The db(σ) are guaranteed to be compatible because they all obey the
same strict ordering imposed by the objective function f , i.e., they prune a solution
only if a solution with strictly better f value exists. Of course not every db(σ) will
be valuable to add to the problem, db(σ) may be equivalent to true or a complex
constraint implemented by reification which barely prunes.

We illustrate the method with two simple examples before we go into more
details.



Example 3 Consider the Photo problem. A group of people wants to take a group
photo where they stand in one line. Each person has preferences regarding who
they want to stand next to. We want to find the arrangement which satisfies the
most preferences.

We can model this as follows. Let xi ∈ {1, . . . , n} for i = 1, . . . , n be variables
where xi represents the person in the ith place. Let p be a 2d integer array where
p[i][j] = p[j][i] = 2 if person i and j both want to stand next to each other,
p[i][j] = p[j][i] = 1 if only one of them wants to stand next to the other, and
p[i][j] = p[j][i] = 0 if neither want to stand next to each other. The only constraint
is: all diff ([x1, . . . , xn]). The objective function to be minimized is given by: f =

−
∑n−1
i=1 p[xi][xi+1].

Step 1 Since this is a sequence type problem, mappings which permute the se-
quence in some way are likely to map solutions to solutions. For simplicity, con-
sider the set of mappings which flip a subsequence of the sequence, i.e., ∀i < j, σi,j
maps xi to xj , xi+1 to xj−1, . . ., xj to xi and each other variable to itself.

Step 2 We want to find the conditions under which σ maps solutions to solutions.
Since all of these σ are symmetries of C ∧D, we do not need any conditions and
it is sufficient to set scond(σi,j) ≡ true.

Step 3 We want to find the conditions under which f(σi,j(θ)) < f(θ). If we compare
the LHS and RHS, it is clear that the only difference is the terms p[xi−1][xj ],
p[xi][xj+1] on the LHS and the terms p[xi−1][xi], p[xj ][xj+1] on the RHS. So it is
sufficient to set ocond(σi,j) ≡ p[xi−1][xj ] + p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1].

Step 4 For each σi,j , we can post the dominance breaking constraint:

¬(p[xi−1][xj ] + p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1]).

These dominance breaking constraints ensure that if some subsequence of the
assignment can be flipped to improve the objective, then the assignment is pruned.
�

Example 4 Consider the 0-1 knapsack problem maximizing the value of items cho-
sen from a set S within a weight limit W . Then xi, i ∈ S are 0-1 variables, and we
have constraint

∑
i∈S wixi ≤W and we have objective f = −

∑
i∈S vixi, where wi

is the (constant) weight of item i and vi is the (constant) price of item i.

Step 1 Consider mappings which swap the values of two variables, i.e., ∀i < j, σi,j
swaps xi and xj .

Step 2 A sufficient condition for σi,j to map the current solution to another so-
lution is: scond(σi,j) ≡ wixj + wjxi ≤ wixi + wjxj . Rearranging, we get: (wi −
wj)(xi − xj) ≥ 0.

Step 3 A sufficient condition for σi,j to map the current solution to an assignment
with a better objective value is: ocond(σi,j) ≡ vixj+vjxi > vixi+vjxj . Rearranging,
we get: (vi − vj)(xi − xj) < 0.



Table 2 Standard mappings we can try with the method.

Mapping effect
var permπ , π a permutation maps xi to xπ(i)
var swapi,j swaps xi and xj
row swapi,j swaps xi,k with xj,k for all k
col swapi,j swaps xk,i with xk,j for all k
shift sub seqi,j,k where i < k maps xm to xm+k−i for i ≤ m ≤ j, maps xm

to xm−j−1+i for j + 1 ≤ m ≤ k + j − i
flip sub seqi,j maps xk to xj+i−k for i ≤ k ≤ j
val permV ′,π , V ′ ⊆ V , π a permutation maps the value v to π(v) on all vars in V ′

shift val V ′, i increase the value of all xk ∈ V ′ by i

Step 4 For each σi,j , we can post the dominance breaking constraint: db(σi,j) ≡
¬(scond(σi,j)∧ocond(σi,j)). After simplifying, we have db(σi,j)⇔ xi ≤ xj if wi ≥ wj
and vi < vj , db(σi,j) ⇔ xi ≥ xj if wi ≤ wj and vi > vj , and db(σi,j) ⇔ true for all
other cases.

These dominance breaking constraints ensure that if one item has worse price
and greater or equal weight to another, then it cannot be chosen without choosing
the other also. �

3.2 Step 1: Finding Appropriate Mappings σ

In general, we want to find σ’s such that scond(σ) and ocond(σ) are as small and
simple as possible, as this will lead to dominance breaking constraints that are
easier to propagate and prune more. So we want σ such that it often maps a solution
to a better solution. Mappings σ which are symmetries or almost symmetries of
the problem make good candidates, since their scond(σ) will be simple, and all
else being equal, there is a 50% chance that it will map the solution to one with
a better objective value.

We can try all the common candidates for symmetries. For example, if the
variables or the values represent the same type of thing, we can try swapping
them. E.g., if xi represents truck i’s load, we could try swapping these variables.
Or if xi ∈ {1, . . . , 10} where each value represents a different room, we could try
swapping the values (rooms). Many problems are representable as 2 dimensional
matrices (see for example [12]) where each row represents one thing and each
column represent another. In such problems, we can try swapping two rows or
two columns in the matrix. Another common type of combinatorial problem is a
sequencing problem where we are trying to find an order of a certain set of things
which satisfies some constraints or optimizes some objective. In such sequence type
problems, we can try flipping or moving a subsequence.

Mappings which are likely to map an assignment to one with better objective
value are also good candidates, since their ocond(σ) will be simple. For example,
in scheduling problems minimizing makespan, we can try shifting items forward
in the schedule. There may also be problem specific σ’s that we can try. Table 2
shows a list of standard mappings we can try.



Table 3 σ and c such that σ maps c to itself.

σ c
var permπ y = (≥,≤)f(x1, . . . , xn), where π(y) = y, ∀i, ∃j, π(xi) = xj ,

f is a symmetric function, e.g., min, max, and, or, sum
val permV ′,π xi = ( 6=)xj where xi, xj ∈ V ′
val permV ′,π among([x1, . . . , xn], v, y), where xi, v ∈ V ′, y /∈ V ′
val permV ′,π element([x1, . . . , xn], z, y), where y, xi ∈ V ′, z /∈ V ′
val permV ′,π table([x1, . . . , xn], [[z1,1, . . . , z1,n], . . . , [zm,1, . . . , zm,n]]), where xi, zi,j ∈ V ′

3.3 Step 2: Finding scond(σ)

First, we need to define how constraints are mapped under arbitrary mappings
from valuations to valuations.

Definition 4 Given a mapping σ : ΘV → ΘV , we can extend σ to map constraints
to constraints as follows. Given a constraint c, σ(c) is defined as a constraint over
V such that θ satisfies σ(c) iff σ(θ) satisfies c.

While it is easy to define σ(c), σ(c) may or may not be a simple logical expres-
sion.

Example 5 We illustrate a number of constraints σ(c) that result from applying a
mapping σ to constraint c:

– Suppose c ≡ x1 + 2x2 + 3x3 ≥ 10, and σ swaps x1 and x3, then σ(c) ≡ x3 +
2x2 + 3x1 ≥ 10.

– Suppose c ≡ (x1, x2) ∈ {(1, 1), (2, 3), (3, 1)}, and σ permutes the values (1, 2, 3)
to (2, 3, 1) on x1 and x2, then σ(c) ≡ (x1, x2) ∈ {(3, 3), (1, 2), (2, 3)}.

– Suppose c ≡ x1 + 2x2 ≥ 5 and σ swaps the values 1 and 2, then σ(c) ≡ (x1 =
1∧x2 = 1)∨(x1 = 2∧x2 = 1)∨(x1 6= 1∧x1 6= 2∧x2 6= 1∧x2 6= 2∧x1+2x2 ≥ 5)
which does not simplify at all.

�

In general, σ can either map c to itself, map it to another easily expressible
constraint, or map it to something very complicated. Table 3 shows σ and c’s where
σ maps c to itself. Table 4 shows σ and c’s where σ maps c to something different
but still easily expressible. Any constraint built up from the above primitive con-
straints maps in the obvious way, i.e., σ(c1 ∧ . . . ∧ cn)⇔ σ(c1) ∧ . . . ∧ σ(cn). So for
example, we can also map at least , at most , all diff and gcc (which are built from
among), or the regular constraint [31] (which can be built from table), under arbi-
trary value permutations. Many constraints do not map to nice expressions under
value permutations, e.g., linear constraints, multiplication constraints or division
constraints. For such constraints, σ(c) cannot easily be expressed or propagated.

Example 6 The constraint c ≡ at least([x1, . . . , xn], v, y) can be defined as
among([x1, . . . , xn], v, z) ∧ z ≥ y. Hence if σ is val permV ′,π where xi ∈ V ′ and

y 6∈ V ′ we can define σ(c) as among([x1, . . . , xn], π(v), z) ∧ z ≥ y. �

We can now calculate scond(σ) with the help of the above definition. Note that
while σ(c) is uniquely defined, scond(σ) is only a sufficient condition for something
to hold, thus there is plenty of leeway for us to pick between different options. We



Table 4 σ(c) for various σ and c.

σ c σ(c)
var permπ any constraint c(xi1 , . . . , xin ) c(xπ(i1), . . . , xπ(in))
val permV ′,π xi = ( 6=)v where xi ∈ V ′ xi = ( 6=)π(v)
val permV ′,π among([x1, . . . , xn], v, y), where xi ∈ V ′, y /∈ V ′ among([x1, . . . , xn], π(v), y)
val permV ′,π element([v1, . . . , vm], z, y), where y ∈ V ′, z /∈ V ′ element([π(v1), . . . , π(vn)], z, y)
val permV ′,π table([x1, . . . , xn], [[v1,1, . . . , v1,n], . . . , table([x1, . . . , xn], [[π(v1,1), . . . , π(v1,n)],

[vm,1, . . . , vm,n]]) . . . , [π(vm,1), . . . , π(vm,n)]])

require scond(σ) to be a constraint such that scond(σ) ∧ C ∧ D ⇒ σ(C ∧ D). We
can construct scond(σ) in a piecewise fashion by considering each constraint in the
problem in turn. Let scond(σ, c) be a constraint such that C ∧ D ∧ scond(σ, c) ⇒
σ(c). Then we can construct scond(σ) as ∧c∈C∧Dscond(σ, c). Naively, we can set
scond(σ, c) = σ(c). This is clearly correct. However, we can make use of the existing
constraints C ∧D to simplify scond(σ, c) in order to get a stronger (more general)
or simpler (faster to propagate) condition. One special case is subsumption. For
each c ∈ C∧D, if σ(c) is already in C∧D, then we can simply set scond(σ, c) = true,
since C ∧D already unconditionally implies σ(c).

Example 7 Suppose C ≡ {x1 6= x2, x2 6= x3, x3 6= x1, x1 6= x4}, and σ swaps x1 and
x2. σ(x1 6= x2) = x1 6= x2, which is already in C. σ(x2 6= x3) = x1 6= x3 which is
already in C. σ(x3 6= x1) = x3 6= x2 which is already in C. σ(x1 6= x4) = x2 6= x4
which is not in C. So we can set scond(σ) = true ∧ true ∧ true ∧ x2 6= x4. �

This is the reason why σ’s which are symmetries or almost symmetries of the
problem make good candidates for the method, as most or all of the σ(c) are
already in C ∧D and thus we will have a simple scond(σ). If σ(c) is not subsumed
by C ∧D, we can still potentially simplify it using C ∧D. The simplest case here
is to use c itself to simplify scond(σ, c), i.e., we want to find scond(σ, c) such that
c ∧ scond(σ, c) ⇒ σ(c). There is a potential trade off between strength and speed.
Simpler scond(σ) could be propagated faster, but may be weaker in terms of what
can ultimately be pruned by the dominance breaking constraint.

Example 8 Consider c ≡ x1+x2+x3 ≤ 3. Suppose σ swaps x3 with x4. One possible
scond(σ, c) is simply σ(c) which is x1+x2+x4 ≤ 3. Alternatively, another sufficient
condition is x4 ≤ x3, since x1 +x2 +x3 ≤ 3∧x4 ≤ x3 ⇒ x1 +x2 +x4 ≤ 3. The first
condition is stronger (more general), but may cost more to propagate. The second
condition is weaker (less general), but may be faster to propagate. �

Simplifications are important from a practical point of view, as we may be
posting many dominance breaking constraints, and having many extra reified
propagators to propagate σ(c) may be far too costly. Table 5 gives some possi-
ble simplifications. This table is by no means exhaustive.

Note that depending on the values of the constants in the problem, the expres-
sion shown in the table will simplify even further. For example, on the sixth line,
if a1 − a2 > 0, then it simplifies to x1 ≥ x2.

3.4 Step 3: Finding ocond(σ)

We assume that the objective function f(θ) is defined over all assignments (not
just solutions). We first give a few definitions.



Table 5 Possible scond(σ, c) for various σ and c.

σ c scond(σ, c)
swap x1 and xk c(x1, . . . , xn), c an arbitrary constraint x1 = xk
swap x1 and xn+1 c(x1, . . . , xn), x1 monotonically increasing in c x1 ≤ xn+1

swap x1 and xn+1 c(x1, . . . , xn), x1 monotonically decreasing in c x1 ≥ xn+1

swap x1 and x2 c(x1, . . . , xn), x1 mono inc, x2 mono dec in c x1 ≤ x2
swap y1 and y2 y1 = f(x1, . . . , xn), f a function y1 = y2
swap x1 and x2

∑n
i=1 aixi ≤ k (a1 − a2)(x1 − x2) ≥ 0

swap x1 and xn+1 element([x1, . . . , xn], i, y) i = 1→ x1 = xn+1

swap x1 and x2 element([x1, . . . , xn], i, y) (i = 1 ∨ i = 2)→ x1 = x2

Definition 5 Given a function σ mapping assignments to assignments, we extend
σ to map functions over assignments to functions over assignments as follows:
∀θ, σ(f)(θ) = f(σ(θ)).

Definition 6 Given two functions mapping assignments to the reals f and g, we
use f < g to denote a constraint such that: θ satisfies f < g iff f(θ) < g(θ).

For each σ, we want to find a sufficient condition ocond(σ) so that if a solution
satisfied ocond(σ), then σ maps it to an assignment with a strictly better objec-
tive value. A necessary and sufficient condition is: C ∧D ∧ ocond(σ) ⇒ σ(f) < f .
For sum type objective functions, we can typically just set ocond(σ) ≡ σ(f) < f .
For example, in both the Photo and Knapsack examples above, we simplified the
constraint σ(f) < f . Depending on the mapping, many terms may be unchanged
and can be eliminated, leading to a relatively simple ocond(σ). For max/min type
objective functions, besides finding an exact condition, we can also find a suf-
ficient condition ocond(σ) by piecewise comparison of each term in the max/min
expression. For example, if f ≡ min(x1, . . . , xn), and f ′ ≡ min(x′1, . . . , x

′
n) we could

set ocond(σ) ≡ ∧(x′i < xi), or, given some mapping π from [1..n] to itself which
depended on σ, we could set ocond(σ) ≡ ∧(xπ(i) < xi).

3.5 Step 4: Posting the Dominance Breaking Constraint

Once we have found scond(σ) and ocond(σ), we can construct the dominance break-
ing constraint db(σ) ≡ ¬(scond(σ)∧ ocond(σ)) and simplify it as much as possible.
If it is simple enough to implement efficiently, we can add it to the problem. If not,
we can either weaken it into a simpler form, or simply ignore it, as it is not required
for the correctness of the method. It is quite common that the dominance breaking
constraint for different σ’s will have common subexpressions. Taking advantage of
common subexpressions improves propagation for CP [36], and we can use this
to make the implementation of the dominance breaking constraints more efficient.
For example, in the dominance breaking constraints for the Photo problem given
in Example 3, the expression p[xi−1][xi] will appear in the dominance breaking
constraint for multiple values of j, so common subexpression elimination will be
able to replace these with a single intermediate variable.

4 Generating Symmetry and Conditional Symmetry Breaking Constraints

The method described so far only finds dominance breaking constraints which
prune a solution when its objective value is strictly worse than another. We can



do better than this, as there are often pairs of solutions which have equally good
objective value and we may be able to prune many of them. Exploiting such sets
of equally good pairs of solution is called symmetry breaking and conditional sym-
metry breaking. We show that with a slight alteration, our method will generate
dominance breaking constraints that will also break symmetries and conditional
symmetries.

We modify the method as follows. We add in a Step 0, and alter Step 3 slightly.

Step 0 Choose a refinement of the objective function f ′ with the property that
∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2).

Step 3* For each σ, find a constraint ocond(σ) s.t. if θ ∈ solns(C ∧D ∧ ocond(σ)),
then f ′(σ(θ)) < f ′(θ).

The following theorem shows the correctness of the altered method.

Theorem 3 Given a finite domain COP P ≡ (V,D,C, f), a refinement of the ob-
jective function f ′ satisfying ∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2), a set of
mappings S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfy-
ing: ∀σ ∈ S, if θ ∈ solns(C ∧D ∧ scond(σ)), then σ(θ) ∈ solns(C ∧D), and: ∀σ ∈ S,
if θ ∈ solns(C ∧ D ∧ ocond(σ)), then f ′(σ(θ)) < f ′(θ), we can add all of the domi-
nance breaking constraints db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) to P without changing its
satisfiability or optimal value.

Proof The proof is almost identical to that of Theorem 2 by simply replacing f by
f ′. The critical difference arises in proving that ≺ is a dominance relation. Now
∀θ1, θ2, θ1 ≺ θ2 implies that θ1 and θ2 are solutions, and that f ′(θ1) < f ′(θ2) and
hence also f ′(θ1) ≤ f ′(θ2). By the definition of f ′, f(θ2) < f(θ1)⇒ f ′(θ2) < f ′(θ1)
and indeed also the contrapositive f ′(θ2) ≥ f ′(θ1) ⇒ f(θ2) ≥ f(θ1), and thus
f ′(θ1) ≤ f ′(θ2) ⇒ f(θ1) ≤ f(θ2). Clearly then f(θ1) ≤ f(θ2). Since f ′(θ1) < f ′(θ2)
it follows that ≺ is irreflexive and since f(θ1) ≤ f(θ2) it satisfies all the properties
of a dominance relation. ut

The db(σ) are guaranteed to be compatible because they all obey the same
strict ordering imposed by the refined objective function f ′. That is, they prune
a solution only if a solution with strictly better f ′ value exists. Theorem 3 is
useful because it is generally quite difficult to tell whether different symmetry,
conditional symmetry or dominance breaking constraints are compatible. There are
lots of examples in the literature where individual dominance breaking constraints
are proved correct, but no rigorous proof is given that they are correct when
used together (e.g., [15,7,17]). The symmetry, conditional symmetry or dominance
breaking constraints defined by our method are guaranteed to be compatible by
Theorem 3, thus the users of the method do not need to prove anything themselves.

The most common type of objective refinement is a lexicographical tie breaking
using additional properties of the solutions. We set f ′ = lex(f, p1, . . . , pn),1 where
pi : ΘV → Z are some additional properties. f ′ orders the solutions first by their
objective value, then tie breaks by the value of p1, then tie breaks by the value of p2,
etc. Clearly, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2) so it is a refinement. Recall that
we want to set ocond(σ) ≡ σ(f ′) < f ′. In general, we have σ(lex(f, p1 . . . , pn)) <

1 We write f ′ = lex(f, p1, . . . , pn) as shorthand for f ′(θ) = lex(f(θ), p1(θ), . . . , pn(θ)).



lex(f, p1, . . . , pn) ⇔ (σ(f) < f) ∨ (σ(f) = f ∧ σ(p1) < p1) ∨ . . . ∨ (σ(f) = obj ∧
∧n−1
i=1 σ(pi) = pi ∧ σ(pn) < pn). Thus ocond(σ) will be the disjunction of a number

of terms. The first of these (σ(f) < f) will result in a term in the dominance
breaking constraint expressing strict improvement in the objective. The remaining
terms (σ(f) = obj ∧ ∧k−1

i=1 σ(pi) = pi ∧ σ(pk) < pk) will result in terms expressing
(conditional) symmetry breaking.

Note that for many mappings σ and refined objectives f ′ = lex(f, p1, . . . , pn),
the symmetry breaking part is well studied and there exist standard ways to
model and propagate them. In such cases, we can just directly reuse the exist-
ing symmetry breaking constraints rather than manually recreating it. To be
more precise, if we already have a standard lex-leader symmetry breaking con-
straint sb(σ) implementing ¬(σ(lex(p1, . . . , pn)) < lex(p1, . . . , pn)), then we can
set ocond(σ) ≡ f ′ < f ∨ (f ′ = f ∧ ¬(sb(σ)). Then db(σ) ≡ ¬(scond(σ) ∧ f ′ <
f) ∧ (scond(σ) ∧ f ′ = f → sb(σ)). The first term is the strict dominance breaking
constraint. The second term is a conditional symmetry breaking constraint making
use of the standard symmetry breaking constraint. We now illustrate the altered
method with some examples.

Example 9 Consider the Photo problem from Example 3. Suppose that in Step
0, instead of setting f ′ = f , we set f ′ = lex(f, x1, . . . , xn). Now, consider what
happens in Step 3*. We have ∀i < j,

ocond(σi,j) ≡ σi,j(f ′) < f ′

⇔ σi,j(lex(f, x1, . . . , xi, . . . , xj , . . . , xn)) < lex(f, x1, . . . , xi, . . . , xj , . . . , xn)
⇔ lex(σi,j(f), x1, . . . , xj , . . . , xi, . . . , xn) < lex(f, x1, . . . , xi, . . . , xj , . . . , xn)
⇔ lex(σi,j(f), xj , xi) < lex(f, xi, xj)
⇔ σi,j(f) < f ∨ (σi,j(f) = f ∧ xj < xi) ∨ (σi,j(f) = f ∧ xj = xi ∧ xi < xj)
⇔̃ σi,j(f) < f ∨ (σi,j(f) = f ∧ xj < xi)
⇔ (p[xi−1][xj ] + p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1]) ∨

(p[xi−1][xj ] + p[xi][xj+1] = p[xi−1][xi] + p[xj ][xj+1] ∧ xj < xi)

The first equivalence follows from definition of f ′. The second holds by definition
of σi,j . The third equivalence by the properties of lex. The fourth equivalence
from the definition of lex. The fifth (pseudo-)equivalence holds since C → xi 6= xj
so the resulting constraint is still a correct ocond. The last equivalence holds by
replacing f by its definition and eliminating shared terms. Compared to the
ocond(σ) when we used f instead of f ′, there is an additional term (p[xi−1][xj ] +
p[xi][xj+1] = p[xi−1][xi] + p[xj ][xj+1] ∧ xj < xi which says that we can also prune
the current assignment if the flipped version has equal objective value but a better
lexicographical value for {x1, . . . , xn}. Thus db(σi,j) not only breaks dominances
but also includes a conditional symmetry breaking constraint. Similarly, consider
σ1,n. Because it is a boundary case, the terms in σ(f) and f all cancel and we
have ocond(σ1,n) ≡ xn < x1, so db(σ1,n) ≡ x1 ≤ xn which is simply a symmetry
breaking constraint. �

Example 10 Consider the Knapsack problem from Example 4. In Step 0, we can
tie break solutions with equal objective value by the weight used, and then lex-
icographically, i.e., f ′ = lex(f,

∑
wixi, x1, . . . , xn). In Step 3*, we have: ∀i < j,

ocond(σi,j) ≡ σ(f ′) < f ′ ⇔ ((vi − vj)(xi − xj) < 0) ∨ ((vi − vj)(xi − xj) =
0∧(wi−wj)(xi−xj) > 0)∨((vi−vj)(xi−xj) = 0∧(wi−wj)(xi−xj) = 0∧xj < xi).
In Step 4, after simplifying, in addition to the dominance breaking constraints we
had before, we would also have: db(σi,j) ⇔ xi ≤ xj if wi > wj and vi = vj ,



db(σi,j) ⇔ xi ≥ xj if wi < wj and vi = vj , and db(σi,j) ⇔ xi ≤ xj if wi = wj and
vi = vj which is a symmetry breaking constraint. �

We can also apply the altered method to satisfaction problems to generate
symmetry and conditional symmetry breaking constraints.

Example 11 The Black Hole Problem [17] seeks to find a solution to the Black Hole
patience game. In this game the 52 cards of a standard deck are laid out in 17 piles
of 3, with the Ace of spades starting in a “black hole”. Each turn, a card at the top
of one of the piles can be played into the black hole if it is numbered ±1 from the
number of the card that was played previously, with king wrapping back around
to ace. The aim is to play all 52 cards. We can model the problem as follows. Let
the suits be numbered from 1 to 4 in the order spades, hearts, clubs, diamonds.
Let the cards be numbered from 1 to 52 so that card i has suit (i− 1)/13 + 1 and
number (i− 1) mod 13 + 1, where 11 is jack, 12 is queen and 13 is king. Let li,j be
the jth card in the ith pile in the initial layout. Let xi be the turn in which card
i was played. Let yi be the card which was played in turn i. We have:

x1 = 1 (1)

inverse(x, y) (2)

xli,j < xli,j+1
∀1 ≤ i ≤ 17, 1 ≤ j ≤ 2 (3)

(yi+1 − yi) mod 13 ∈ {−1, 1} ∀1 ≤ i ≤ 51 (4)

We now apply our method. Since cards which are nearer to the top of the
piles are much more likely to be played early on, we choose a lexicographical
ordering which reflects this. We define f ′ = lex(xl1,1 , . . . , xl17,1 , . . . , xl1,3 , . . . , xl17,3).
An obvious set of mappings that are likely to map solutions to solutions is to swap
cards of the same number in the sequence of cards to be played. Consider σi,j for
i− j mod 13 = 0, i 6= 1, j 6= 1 where σi,j swaps xi and xj , and swaps the values of
i and j among {y1, . . . , y52}.

Now we construct scond(σi,j). For each constraint c in the problem, we need to
find a c′ such that C∧D∧c′ ⇒ σi,j(c) and add it to scond(σi,j). Clearly, the domain
constraints and the constraints in (1), (2) and (4) are all symmetric in σi,j , so we
do not need to add anything for them. However, there will be some constraints
in (3) which are not symmetric in σi,j . For example, suppose we wished to swap
i = 3(3♠) and j = 16(3♥), and they were in piles: (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦),
where 3♠ is in a lexicographically earlier pile than 3♥. The constraints in (3) which
are not symmetric in σi,j are those involving 3♠ or 3♥, i.e., x2♠ < x3♠, x3♠ < x5♣,
x1♦ < x3♥ and x3♥ < x6♦. Their symmetric versions are x2♠ < x3♥, x3♥ < x5♣,
x1♦ < x3♠ and x3♠ < x6♦ respectively, so we can set scond(σ3♠,3♥) ≡ x2♠ <
x3♥ ∧ x3♥ < x5♣ ∧ x1♦ < x3♠ ∧ x3♠ < x6♦. To construct ocond(σi,j), we can set
ocond(σi,j) ≡ σi,j(f ′) < f ′. For this example, we have ocond(σ3♠,3♥) ≡ x3♥ < x3♠.
Combining, we have db(σ3♠,3♥) ≡ ¬(x2♠ < x3♥ ∧ x3♥ < x5♣ ∧ x1♦ < x3♠ ∧ x3♠ <
x6♦ ∧ x3♥ < x3♠). We can use the constraints in the original problem to simplify
this further. Since x3♠ < x5♣ is an original constraint and x3♥ < x3♠ ∧ x3♠ <
x5♣ ⇒ x3♥ < x5♣, we can eliminate the second term in db(σ3♠,3♥). Since x1♦ <
x3♥ is an original constraint and x1♦ < x3♥ ∧ x3♥ < x3♠ ⇒ x1♦ < x3♠, we
can eliminate the third term in db(σ3♠,3♥). The result is db(σ3♠,3♥) ⇔ ¬(x2♠ <
x3♥ ∧ x3♠ < x6♦ ∧ x3♥ < x3♠). The other cases are similar. �

Although the conditional symmetry breaking constraints derived in Exam-
ple 11 are identical to those derived in an earlier paper on conditional symmetry



breaking [17], our method is much more generic and can be applied to other
problems as well. Also, no rigorous proof of correctness is given in that paper,
whereas Theorem 3 shows that these conditional symmetry breaking constraints
are compatible. In this problem it is quite possible to derive multiple incompat-
ible conditional symmetry breaking constraints which are individually correct.
For example, suppose in addition to (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), we had a
third pile (2♥, 3♦, 7♠), then the following conditional symmetry breaking con-
straints are all individually correct: ¬(x2♠ < x3♥ ∧ x3♠ < x6♦ ∧ x3♥ < x3♠),
¬(x2♥ < x3♠ ∧ x3♦ < x5♣ ∧ x3♠ < x3♦), ¬(x1♦ < x3♦ ∧ x3♥ < x7♠ ∧ x3♦ < x3♥),
but they are incompatible. For example, no matter which permutation of 3♠, 3♥,
and 3♦ is applied, the partial solution 1♠, 2♥, 1♦, 2♥, 3♠, 4♠, 3♥, 4♦, 3♦ is pruned
by one of the three conditional symmetry breaking constraints. Our method will
never produce such incompatible sets of dominance breaking constraints.

Example 12 The Resource Constrained Project Scheduling Problem (RCPSP) [4] is
as follows. We have n tasks and m renewable resources. Each task i has a duration
pi and consumes ri,j units of resource j per time unit during its execution. Each
resource i supplies a constant amount Ri of resource per time unit during the
planning period. There are precedence constraints between certain pairs of tasks.
The problem is to minimize the makespan of the schedule subject to the resource
constraints and precedence constraints. Let si ∈ {0, . . . , T} be the start time of
task i where T is the scheduling horizon. Let P be the set of precedences. Then
the problem can be stated as follows:

Minimize max(si + pi)

Subject to si + pi ≤ sj ∀(i, j) ∈ P
cumulative(s, p, [rj,i | 1 ≤ j ≤ n], Ri) ∀1 ≤ i ≤ m

A well known dominance rule for this problem is that each task must start at
the end time of another task, otherwise, it can be shifted forward in time for a
possibly better solution. We show that it is straightforward to derive a dominance
breaking constraint for this using our method. Let f ′ = lex(f, s1, . . . , sn), i.e.,
we tie break the objective function by the start times of the tasks, preferring
schedules where they start earlier. Consider a mapping σi, where we take task i
and shift it one time unit earlier. Clearly, f(σi) < f is always true, so we can set
ocond(σi)⇔ true.

Now we construct scond(σi). For each constraint c in the problem, we need to
find a c′ such that C ∧D∧ c′ ⇒ σi(c) and add it to scond(σi). Suppose our current
solution is θ and task i starts at si. σi maps si to si − 1. The domain constraints
are all symmetric in σi except for those on si. We have σi(si ≥ 0) ≡ si ≥ 1. Since
we already have si ≥ 0, we can simply add c′ ≡ si 6= 0 to scond(σi). Consider the
cumulative constraint for resource k. If task i does not use resource k, then σi(θ)
is always a solution of c. If task i does use resource k, then a sufficient condition
for σi(θ) to be a solution of c is that none of the tasks which use resource k
end at exactly si. So we can set c′ ≡ ∧{j|rj,k>0}si 6= sj + pj . Now consider one
of the precedence constraints. If it does not involve task i, or if task i is the
predecessor, then σi(θ) is always a solution of c. If task i is the successor, and task
j is the predecessor, then σi(θ) is a solution of c iff sj + pj 6= si. So we can set
c′ ≡ si 6= sj + pj . Let Ti be the set of tasks which either share a resource with task



i, or is a predecessor of task i. Then, collecting all the terms together, we have:
scond(σi) ≡ si 6= 0 ∧ ∧j∈Ti

si 6= sj + pj . So:

db(σi) ≡ ¬(scond(σi) ∧ ocond(σi))⇔ si ∈ {0} ∪ {sj + pj | j ∈ Ti}.

This is simply an element constraint and can be implemented in a straightforward
manner. �

Example 13 The Nurse Scheduling Problem (NSP) is to schedule a set of nurses
over a time period such that work and hospital regulations are all met, and as
many as possible of the nurses’ preferences are satisfied. There are many variants
of this problem in the literature (e.g., [27,1]). We pick a simple variant to illustrate
our method. Each day has three shifts: day, evening, and overnight. On each day,
each nurse should be scheduled into one of the three shifts or scheduled a day off.
For simplicity, we can consider a day off to be a shift as well. We number the shifts
as day: 1, evening: 2, over-night: 3, day-off: 4. Each shift besides day-off requires
a minimum number ri of nurses to be rostered. Nurses cannot work for more than
6 days in a row, and must work at least 10 shifts per 14 days. Each nurse i has a
preference pi,j for which of the four shifts they wish to take on day j. The objective
is to maximize the number of satisfied preferences. Let n be the number of nurses
and m be the number of days. Let xi,j be the shift that nurse i is assigned to on
day j. Then the problem can be stated as follows:

Maximize
n∑
i=1

m∑
j=1

(xi,j = pi,j)

Subject to

at least([xk,j | 1 ≤ k ≤ n], i, ri) ∀1 ≤ i ≤ 3, 1 ≤ j ≤ m (5)

at least([xi,j | k ≤ j < k + 7], 4, 1) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 6 (6)

at most([xi,j | k ≤ j < k + 14], 4, 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 13 (7)

We now apply our dominance breaking method. Firstly, we can potentially
get some symmetry or conditional symmetry breaking in by refining the objective
function to f ′ = lex(f, x1,1, x2,1, . . . , xn,m). Let us consider mappings which are
likely to map solutions to solutions. An obvious set of candidates are mappings
which swap the shifts of two nurses on the same day, i.e., mappings σi1,i2,j which
swap xi1,j and xi2,j .

We wish to calculate scond(σi1,i2,j). For each c ∈ C ∪ D, we need to find c′

such that C ∧ D ∧ c′ ⇒ σi1,i2,j(c). It is easy to see that the constraints in (5)
are all symmetric in σi1,i2,j , so we do not need to add anything to scond(σi1,i2,j).
The constraints at least([xi1,j′ | k ≤ j′ < k + 7], 4, 1) in (6) are symmetric in
σi1,i2,j if k + 7 ≤ j or k > j. For j − 7 < k ≤ j, they will be satisfied by σ(θ)
iff: xi1,j 6= 4 ∨ xi2,j = 4 ∨ at least([xi1,j′ | k ≤ j′ < k + 7, j 6= j′], 4, 1). Similarly,
the constraints at most([xi1,j | k ≤ j < k + 14], 4, 4) in (7) are symmetric in
σi1,i2,j if k + 14 ≤ j or k > j. For j − 14 < k ≤ j, they will be satisfied by σ(θ) iff:
xi1,j = 4∨xi2,j 6= 4∨at most([xi1,j′ | k ≤ j

′ < k+14, j 6= j′], 4, 3). Since the at least
and at most conditions are probably too expensive to check, we can simply throw
them away. We lose some potential pruning, but it is still correct, since we had a
disjunction of conditions. So we add xi1,j 6= 4 ∨ xi2,j = 4 and xi1,j = 4 ∨ xi2,j 6= 4
to scond(σi1,i2,j). Calculating σ(f ′) > f ′ is straightforward. We simply try each



pair of values for xi1,j and xi2,j and see if swapping them improves the refined
objective function. For example, suppose i1 < i2, pi1,j = 4, pi2,j = 2, then

ocond(σi1,i2,j) ≡ σ(f ′) < f ′ ⇔ (xi1,j , xi2,j) ∈ {(1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 4)}.

And finally

db(σi1,i2,j) ≡ ¬(scond(σi1,i2,j)∧ocond(σi1,i2,j))⇔ (xi1,j , xi2,j) /∈ {(2, 1), (2, 3), (3, 1)},

which is a table constraint encapsulating both dominance breaking and symmetry
breaking constraints. �

5 Interaction with Search

It is well known that static symmetry breaking constraints can conflict with the
search heuristic [16], leading to little speedup or even an overall slow down. Since
dominance breaking constraints are a direct generalization of symmetry break-
ing constraints, the same issues are pertinent. Clearly, if we refine the objective
function using a lexicographical ordering which is contradictory to the order in
which the search strategy would like to search, the symmetry breaking and con-
ditional symmetry breaking constraints defined by our method will conflict with
the search strategy in the same way that symmetry breaking constraints does in
static symmetry breaking. The solution in both cases is to pick a lex ordering that
is as closely aligned to the search strategy as possible. For example, if the search
is a fixed order search on [v1, . . . , vn] where the value ordering is from smallest to
largest, then f ′ = lex(f, v1, . . . , vn) is a good refinement. If the search tries values
from largest to smallest, then we should use f ′ = lex(f,−v1, . . . ,−vn). If the search
uses a dynamic variable ordering, then it may not be possible to pick a refinement
which is completely consistent with the search strategy.

While the symmetry and conditional symmetry breaking constraints defined by
our method may suffer from the already well known conflict with the search strat-
egy described above, a new possibility for conflict arises between the exploitation
of strict dominances and the branch and bound framework often used for solving
optimization problems. Dominance breaking constraints attempt to prevent the
solver from searching any dominated subtree whatsoever. However, while domi-
nated solutions may not be optimal, they may nevertheless allow additional prun-
ing in a branch and bound framework if they improve the current best solution.
Consider a situation where we have a relatively bad search heuristic. It may have
ordered the search tree such that the first 1000 solutions it encounters are all bad,
dominated solutions, and it does not encounter a good, non-dominated one until
the 1001st one. In contrast, a search without dominance breaking constraints will
find these bad solutions and use them for branch and bound. So while it does not
benefit from the additional pruning of the dominance breaking constraints, it has
compensation in the form of a better bound for performing branch and bound in
that part of the search. A search with dominance breaking constraints on the other
hand, will enjoy the additional pruning from dominance breaking constraints, but
will never find any of those first 1000 dominated solutions. This means that for
that stretch of search, it had no bound on the objective with which to perform
branch and bound and is missing out on some potential pruning. The end result
is that it may spend a large amount of time with no solution at all, although once
it does find a solution, it tends to be a very good one. In pathological cases, it



is entirely possible that with dominance breaking constraints, the solver will not
find any solution within the time out at all, whereas without dominance breaking
constraints, it will at least find some bad solutions. Thus dominance breaking con-
straints are not necessarily beneficial, especially in an any-time context where you
want to find good solutions fast. We illustrate this kind of conflict experimentally
in Section 7.

Note that this new type of possible conflict between exploiting strict dom-
inances and the branch and bound framework is fundamentally different from
the possible conflict between lexicographical symmetry breaking constraints and
the search strategy. In the latter type of conflict, the conflict is caused by the
user artificially deciding which solution among a set of equally good, fully sym-
metric solutions to accept and which to prune, such that that choice conflicts
with the order in which the search normally finds those solutions. Such a conflict
can be resolved by using a good lexicographical ordering which is consistent with
the search strategy, by dynamically changing the lexicographical ordering during
search [20], or by using dynamic symmetry breaking techniques such as SBDS [3,
18] or SBDD [10,14] which determine the ordering dynamically. However, the new
kind of conflict identified here is caused by the order between pairs of dominated
solutions where one has a strictly better objective value than the other. If the
search tends to find the better one of each pair of dominated solutions first, it
will tend not to conflict with the strict dominance breaking. On the other hand,
if it consistently finds the worse one of each pair first, it will tend to conflict with
the dominance breaking. This is because the dominance breaking constraints may
prune off this worse solution that it encounters first, even though it is possible that
this solution is better than the current best and can help the branch and bound
to prune more. Thus the conflict is caused directly by the search strategy ordering
the solutions badly, and is not caused by some inappropriate choice of ordering
by the user when generating the dominance breaking constraints. Changing the
lexicographical ordering used for the refinement phase either statically or dynam-
ically will not fix this conflict. Nor will any direct extension of SBDS or SBDD
that we can think of. Instead, the best way to avoid the conflict is simply to use
a good search strategy, since a good search strategy will order the good solutions
first and will tend not to conflict with the dominance breaking.

If a good search strategy cannot be found, an alternative method called domi-
nance jumping [8] can be used to resolve the conflict instead. The basic idea behind
dominance jumping is that whenever the current subtree is pruned by a dominance
breaking constraint db(σ), we actually know exactly where the better subtree that
dominates the current one is. If D is the domain of the current subtree, and db(σ)
prunes the current subtree (every solution of θ in D is dominated by σ(θ)), then
σ(D)2 leads to a subtree that dominates the current one. The dominance jumping
method modifies the search so that instead of simple failing when db(σ) is violated
and backtracking and continuing with the depth first search, the search immedi-
ately jumps to the subtree reached by σ(D). What this means is that even if the
search is bad and has ordered a dominated solution first, once that dominated
subtree is encountered, the search will simply jump to the better subtree contain-
ing a dominating solution. Thus we can find those dominating solutions quickly
and enjoy the full benefits of branch and bound while still avoiding searching any
dominated subtrees.

2 The dominance jumping method relies on σ being extendible to map domains to domains,
which is true for almost all σ considered in practice.



One might think that if a good search heuristic is used, then dominance break-
ing constraints may be useless, because the search never gets to the dominated
solutions in the first place. However, this is not true. If a good search heuristic is
used, the first parts of the search tree that are explored may contain few or no
dominated solutions, meaning that dominance breaking constraints provide little
benefit there. However, a complete search must eventually also search the bad
parts of search tree to prove that no better solution exists. These parts of the
search tree may contain lots of dominated solutions, and dominance breaking con-
straints can be highly useful there, as they provide a completely complementary
pruning scheme to branch and bound, and can often prove that a bad subtree is
bad exponentially faster than pure branch and bound can. We illustrate this with
the following example.

Example 14 In the knapsack problem, suppose we have v1 = 2, w1 = 1, vi = 1, wi =
1 for i = 2, . . . , 100 and W = 50. Any decent search heuristic will quickly lead us to
an optimal solution of profit 51. However, even after the optimal solution is found,
branch and bound cannot immediately detect that the partial assignment x1 = 0
is suboptimal (unless we use a global propagator like a knapsack propagator or a
linear programming propagator). In fact, it will still spend an exponential amount
of time down the x1 = 0 branch to prove no solution better than 51 exists. However,
the dominance constraints will enforce x1 ≥ xi for i = 2, . . . , 100, so as soon as we
try x1 = 0, propagation will detect failure.

In general, dominance constraints can allow us to detect local suboptimalities
and prune a subtree even if that suboptimality is not enough to immediately make
the bound on the objective value sufficiently bad for branch and bound to prune
it.

6 Related Work

There have been many works on problem specific applications of dominance re-
lations, e.g., the template design problem [33], online scheduling problems [19],
the Maximum Density Still Life problem, Steel Mill Design problem and Peace-
able Armies of Queens problem [32], the Minimization of Open Stacks prob-
lem [7], and the Talent Scheduling Problem [15]. However, the methods used are
typically highly problem specific and offer little insight as to how they can be
generalized and applied to other problems. The implementations of these meth-
ods are also often quite ad-hoc (e.g., pruning values from domains even though
they do not explicitly violate any constraint), and it is not clear whether they
can be correctly combined with other constraint programming techniques, such
as restarts or nogood learning. Many of these methods alter the search in or-
der to implement dominance breaking. They can be seen as performing a some-
what non-rigorous propagation of a dominance breaking constraint directly in
the search engine in order to remove possible values for the next decision vari-
able, rather than a proper propagation of a dominance breaking constraint in the
propagation engine. For example, in the Photo problem, instead of propagating
db(σi,j) ≡ p[xi−1][xj ] + p[xi][xj+1] ≤ p[xi−1][xi] + p[xj ][xj+1] in the propagation
engine, they would not propagate it, but would wait till they are about to label
xj+1 and then use those dominance breaking constraints to figure out which values
of xj+1 do not need to be searched. The result is a solver that is not very rigorous
because it is technically no longer a complete search. The dominance breaking



constraint used is rarely explicitly stated, and it is rarely formally proved that
such solvers are actually correct. This is particularly problematic when multiple
dominances and symmetries are being exploited simultaneously, as then the cor-
rectness of the solver is not obvious at all. In contrast, our new method rests on a
much stronger theoretical foundation and is completely rigorous. Since our method
simply adds constraints to the problem, the modified problem is a perfectly nor-
mal constraint problem and it is correct to use any other constraint programming
technique on it. Another important advantage of our method is that we are able
to use any search strategy we want on the modified problem. This is not the case
with many of the problem specific dominance breaking methods as they rely on
specific search orders.

There are a small number of works on generic methods for detecting and ex-
ploiting dominance relations. Machine learning techniques have been proposed as
a method for finding candidate dominance relations [38]. This method works by
encoding problems and candidate dominance relations into forms amenable to ma-
chine learning. Machine learning techniques such as experimentation, deduction
and analogy are then used to identify potential dominance relations. This method
was able to identify dominance relations for the 0/1 knapsack problem and a num-
ber of scheduling problems. However, the main weakness of this method is that it
only generates candidate dominance relations and does not prove their correctness.
Each candidate has to be analyzed to see if it is in fact a dominance relation. Then
the dominance relation has to be manually proved and exploited.

Recently, several generic and automatic methods have been developed for ex-
ploiting certain classes of dominance relations. These include nogood learning
techniques such as Lazy Clause Generation [30,11] and Automatic Caching via
Constraint Projection [6]. Both of these can be thought of as dynamic dominance
breaking, where after some domain D1 is found to fail, a nogood (constraint) n
is found which guarantees that if D2 violates n, then D2 is dominated by D1 and
must also fail. The nogood n is posted as an additional redundant constraint to the
problem. Lazy Clause Generation derives this n by resolving together clauses which
explain the inferences which led to the failure. Automatic Caching via Constraint
Projection derives n by finding conditions such that projection of the subproblem
onto the subset of unfixed variables yield a more constrained problem. These meth-
ods are to a large extent complementary to the method presented in this paper.
None of these methods exhausts all possible dominances occurring in a problem,
and there are dominances which can be exploited by one method but not another.
Thus we can often use them simultaneously to gain an even greater reduction in
search space.

7 Experimental Results

In this section, we present experimental results showing the utility and also the
limitations of dominance breaking constraints.

7.1 The Utility of Dominance Breaking Constraints

We now give some experimental results for our method on a variety of problems.
Note that the aim of our method is to accelerate the solving of an arbitrary model,
not necessarily that of the best model, hence improving the state of the art on these



problems is not the current aim. We compare using no dominance breaking or sym-
metry breaking constraints (base), with using symmetry breaking constraints only
(sym), and using the dominance breaking constraints defined by our new method
(dom). Note that the dominance breaking constraints defined by our method ex-
ploit full symmetries, conditional symmetries and strict dominances and hence are
a superset of the symmetry breaking constraints. Note also that many problems
only have conditional symmetries or strict dominances and do not exhibit any full
symmetries. We have already discussed how our approach to dominance breaking
applies to the Photo Problem, Knapsack Problem, Black Hole Problem, and Nurse
Scheduling. For these problems, we generate random instances of several different
sizes, with 10 instances of each size. We also give experimental results for four
further problems:

Photo Problem. This problem has full symmetries, conditional symmetries and
strict dominances as described in Example 3 and 9. We use a search strategy
where we label the xi in order. To label xi, we try the available value with the
highest p[xi−1][xi] first.

Black Hole Problem. This problem has conditional symmetries as described in Ex-
ample 11, but no full symmetries or strict dominances. We use a search strategy
where out of the legally playable cards, we pick the one that is in the largest pile.

Knapsack Problem. This problem has symmetries and strict dominances as de-
scribed in Example 4 and 10. We use a search strategy where we pick the unfixed
xi with the highest vi/wi and set it to 1 first.

Nurse Scheduling Problem. This problem has conditional symmetries and strict
dominances as described in Example 13. It can also have instance specific full
symmetries if for example two nurses have exactly the same preferences for all
days in the scheduling period, in which case they become interchangeable. How-
ever, this does not occur in any of our instances. We use a search strategy where
we label day by day, nurse by nurse within each day, and try to assign each nurse
to the shift they most prefer.

RCPSP. The resource constrained project scheduling problem (RCPSP) [4] sched-
ules n tasks using m renewable resources so that ordering constraints among tasks
hold and resource usage limits are respected. A standard dominance rule for this
problem, used in search, is that each task must start at time 0 or when another task
ends, since any schedule not following this rule is dominated by one constructed by
shifting tasks earlier until the rule holds. We use the instances from the standard
J60 benchmark set [34] which are non-trivial (not solved by root propagation) and
solvable by at least one of the methods we compare. This problem has conditional
symmetries and strict dominances. If a task can be shifted forward in the sched-
ule, but it does not reduce the makespan, then this is a conditional symmetry. If
shifting it forward does reduce the makespan, then it is a strict dominance. There
may also be instance specific full symmetries if for example two tasks have exactly
the same resource requirements, duration and precedence constraints. However,
no such instance specific symmetries occur in the J60 benchmarks we are using.
We use a search strategy where we find the unfixed task with the earliest possible
start time and set its start time to that earliest time.



Talent Scheduling Problem. In the Talent Scheduling Problem [15], we have a set
of scenes and a set of actors. Each actor appears in a number of scenes and is
paid a certain amount per day they are on location. They must stay on location
from the first scene they are in till the last scene they are in. The aim is to find
the schedule of scenes x1, . . . , xn which minimize the cost of the actors. We set
f ′ = lex(f, x1, . . . , xn). We consider mappings which take one scene and move it to
another position in the sequence. We generate 10 random instances of size 14, 16,
and 18 scenes and 8 actors. This problem has conditional symmetries and strict
dominances. Moving a scene to another position in the sequence may increase,
maintain or decrease the total cost of hiring the actors. If it maintains the cost,
it is a conditional symmetry. If it increases or decreases the cost, it is a strict
dominance. There may also be instance specific full symmetries if for example two
scenes require the exact same set of actors, in which case swapping the position
of those scenes is a full symmetry. However, no such instance specific symmetries
occur in our instances. We use a search strategy where we label day by day, and
we pick the scene with the lowest score where the score is calculated as follows.
For each actor who is on-site but not in the scene, we add the actor’s cost to the
score. For each actor who is not on-site but is in the scene, we add the actor’s cost
to the score.

Steel Mill Problem. In the Steel Mill Problem (CSPLIB problem number 38, origi-
nally presented in Kalagnanam et al. [23]), we have a set of orders to be fulfilled
and the aim is to minimize the amount of wasted steel. Each order i has a size
and a color (representing which path it takes in the mill) and is to be assigned to
a slab xi. Each slab can only be used for orders of two different colors. Depending
on the sum of the sizes of the orders on each slab, a certain amount of steel will be
wasted. We set f ′ = lex(f, x1, . . . , xn) and try mappings where we take all orders
of a certain color from one slab, and all orders of a certain color from another
slab, and swap the slabs they are assigned to. We generate 10 random instances
of size 40 and 50. This problem has full symmetries, conditional symmetries and
strict dominances. All the slabs are interchangeable, leading to a full symmetry
on the slabs. Conditional symmetries arise when the orders of a certain color from
one slab has the same total size as the orders of a certain color from another slab,
in which case they can be exchanged without changing the objective value. Strict
dominances can occur when the orders of a certain color from one slab has a dif-
ferent total size than the orders of a certain color from another slab, in which case
we may be able to swap them and use a smaller slab for one of them, leading to
less wasted steel. We use a search strategy where we label the slabs one by one.
For each slab, we first set its wastage to the lowest allowed value, and then we go
through each order and try to add it to the slab.

PC Board Problem. In the PC Board Problem [25], we have n×m components of
various types which need to be assigned to m machines. Each machine must be as-
signed exactly n components and there are restrictions on the sets of components
that can go on the same machine. Each type of component gains a certain utility
depending on which machine it is assigned to and the goal is to maximize the
overall utility. We set f ′ = lex(f, x1,1, x1,2, . . . , xn,m) where xi,j is the type of com-
ponent assigned to the jth spot on the ith machine. We consider mappings which
swap two components on different machines. We generate 20 random instances of
size 6× 8. This problem has conditional symmetries and strict dominances. If two
components can be swapped without violating the restrictions on which sets of



Table 6 Comparison of the original model and the model augmented with symmetry breaking
and dominance breaking constraints

Problem base sym dom
Time Nodes Time Nodes Time Nodes

Photo-14 1.09 57773 0.76 43785 0.90 10967
Photo-16 8.38 441574 7.34 383242 4.00 43373
Photo-18 60.68 2828622 49.7 2320255 22.09 206507
Knapsack-20 0.01 340 0.01 322 0.01 15
Knapsack-30 0.17 46422 0.15 41386 0.01 91
Knapsack-50 602 1× 108 605 1× 108 0.01 684
Knapsack-100 900 1× 108 900 1× 108 0.40 54705
Black-hole 5.18 77542 5.18 77542 0.08 607
Nurse-15-7 900 9× 107 900 9× 107 900 8× 107

Nurse-15-14 900 8× 107 900 8× 107 900 8× 107

RCPSP 358.95 2779652 358.95 2779652 279.74 781399
Talent-Sched-14 1.66 39479 1.66 39479 0.42 10122
Talent-Sched-16 16.08 349704 16.08 349704 2.33 51993
Talent-Sched-18 252.05 5557959 252.05 5557959 13.88 299043
Steel-Mill-40 60.64 1× 106 65.7 1× 106 22.00 451636
Steel-Mill-50 379.21 7× 106 384.18 7× 106 231.95 3× 106

PC-board 547.93 4× 107 547.93 4× 107 412.29 1× 107

components can go on the same machine, then depending on where two compo-
nents are currently assigned to, swapping them may increase, maintain or decrease
the utility. If the utility remain the same, it is a conditional symmetry. If the utility
increases or decreases, it is a strict dominance. We use a search strategy where we
label one machine at a time. For each machine, we pick the allowed component
which has the highest utility in that machine and assign it there.

The experiments were performed on Xeon Pro 2.4GHz processors using the CP
solver Chuffed. For each set of benchmarks, we report the geometric mean of time
taken in seconds and the number of failed nodes. Table 6 compares the original
problem with no symmetry breaking or dominance breaking of any form (base),
with symmetry breaking constraints only (sym), with dominance breaking con-
straints constructed using our method (dom) Note that since as described above,
some of the problem classes only have strict dominances or conditional symme-
tries and has no full symmetries, for those problem classes, symmetry breaking
constraints cannot be applied and base and sym will be identical. A timeout of
900 seconds was used. Table 7 shows the results when we use a learning solver
on each of the variants of the problem: the original with Lazy Clause Genera-
tion (base+lcg), with symmetry breaking constraints and Lazy Clause Genera-
tion (sym+lcg) and with dominance breaking constraints and Lazy Clause Gen-
eration (dom+lcg). Fastest times and lowest node counts across both tables are
shown in bold. All the instances tested are available in MiniZinc [29] format at
www.cs.mu.oz.au/~pjs/dominance/.

By comparing dom with base and dom+lcg with base+lcg in Tables 6 and 7, it
is clear that adding dominance breaking constraints can significantly reduce the
search space on a variety of problems, leading to large speedups which tend to
grow exponentially with problem size. By comparing dom with sym and dom+lcg
with sym+lcg, we can see that dominance breaking is doing a lot more pruning
than pure symmetry breaking. In many of these problems, there are few or no
full symmetries to exploit, but there are many conditional symmetries or strict
dominances which can be exploited for significant speedup using our dominance



Table 7 Comparison of the original model and the model augmented with symmetry breaking
and dominance breaking constraints using learning

Problem base+lcg sym+lcg dom+lcg
Time Nodes Time Nodes Time Nodes

Photo-14 0.30 5791 0.22 4588 0.25 1962
Photo-16 6.49 44325 4.46 40221 1.40 8960
Photo-18 19.73 138926 15.66 117132 6.25 24523
Knapsack-20 0.01 336 0.01 318 0.01 11
Knapsack-30 0.85 45733 0.77 40770 0.01 65
Knapsack-50 900 2× 107 900 2× 107 0.01 507
Knapsack-100 900 1× 107 900 1× 107 1.05 37571
Black-hole 0.97 2767 0.97 2767 0.09 347
Nurse-15-7 1.72 55217 1.72 55217 0.91 24258
Nurse-15-14 483.29 7× 106 483.29 7× 106 140.95 1× 106

RCPSP 4.07 7890 4.07 7890 32.84 32770
Talent-Sched-14 0.45 4983 0.45 4983 0.27 3189
Talent-Sched-16 3.71 27186 3.71 27186 1.28 12336
Talent-Sched-18 26.25 128810 26.25 128810 4.28 31829
Steel-Mill-40 16.31 75293 19.2 82932 4.53 27225
Steel-Mill-50 249.39 714451 250.8 646581 32.24 129788
PC-board 20.28 156933 20.28 156933 7.51 64320

breaking constraints. Although we only compared against symmetry breaking con-
straints here, other symmetry breaking methods such as SBDS [18] or SBDD [10]
are also incapable of exploiting conditional symmetries or strict dominances (de-
spite the word “dominance” appearing in the name of the SBDD method). The
speedup here between the dominance breaking and symmetry breaking is caused
by the exploitation of the conditional symmetries and strict dominances which no
pure symmetry breaking method can exploit.

Dominance breaking constraints are also orthogonal to nogood learning tech-
niques such as Lazy Clause Generation, and can be combined with it for additional
speedup (e.g., Photo, Steel Mill, Talent Scheduling, Nurse Scheduling, PC Board).
In some cases (e.g., Knapsack, Black Hole), even though adding LCG on top of our
method can reduce the node count further, the extra overhead of LCG swamps
out any benefit. In other cases (e.g., RCPSP), adding our dominance breaking
constraints on top of LCG actually increases the run time and node count. In this
problem, the dynamically derived dominances from LCG are stronger than the
static ones that our method derives. Adding the dominance breaking constraints
interferes with and reduces the benefit of LCG. In general however, our dominance
breaking constraints appears to provide significant speedups over a wide range of
problems for both non-learning and nogood learning solvers.

7.2 Conflict Between Dominance Breaking Constraints and Search

In the next set of experiments, we illustrate what happens when the dominance
breaking constraints conflict with the search strategy as described in Section 5.
We will use the Steel Mill problems of size 50 used in the previous experiment.
However, instead of using a good search strategy, we are going to use increasingly
bad search strategies to see what sort of interaction there is between the search
and the dominance breaking constraints. A reasonably good search strategy is to
label one slab at a time, and for each slab, first set its wastage variable to its lower
bound, and then decide which orders to put on it. To make the search strategy



Table 8 Comparing the effectiveness of dominance breaking constraints as the search strategy
goes from good to bad on the Steel Mill problem.

Search opt. % sat. % sat. time val.
base dom base dom base dom base dom

follow-100% 20 70 100 100 0.02 0.13 2.9 0.6
follow-75% 20 70 100 100 0.01 11.2 10.8 4.1
follow-50% 20 20 100 90 0.02 51.8 28.5 7.3
follow-25% 20 10 100 70 0.02 93.7 44.6 9.6
follow-0% 10 10 100 70 0.02 261.6 71.1 13.7

worse, we can force it to pick some suboptimal values of the wastage variable to
try first. Let follow-x% denote the search strategy where we pick a value at the
xth percentile of goodness for the wastage variables. So for example, follow-100%
will try setting the wastage variable to its lower bound first, follow-0% will try
to set the wastage variable to its upper bound first, and follow-50% will try to
set it to the median value in its domain first, etc. Thus the search strategy gets
increasingly worse as the follow percentage drops. We compare using no symmetry
breaking or dominance breaking (base) with using dominance breaking (dom). The
lexicographical ordering used for the symmetry breaking part of the dominance
breaking constraints is chosen so that it does not conflict with the search strategy.
Thus any conflict that occurs is due to the interaction between the search and
the strict dominance part of the dominance breaking constraints. We show the
proportion of instances solved to optimality (opt. %), the proportion of instances
where at least one solution was found (sat. %), the geometric mean of the time
to find the first solution (sat. time) and the arithmetic mean of the best solution
found among the instances where at least one solution was found (val.).

It can be seen from Table 8 that when a good search strategy is used, domi-
nance breaking constraints are highly effective, allowing many more instances to
be solved to optimality. However, as the search strategy gets worse, several things
occur. First, it takes longer and longer for a first solution to be found when using
dominance breaking constraints, whereas without dominance breaking constraints,
the time to find the first solution is pretty much a constant 0.02 seconds or so. This
slowdown in finding the first solution is due to the conflict between the dominance
breaking constraints and the search strategy, as described in Section 5. Secondly,
when the search strategy is sufficiently bad (at around follow-50%), it can take so
long to find a first solution with dominance breaking constraints that it sometimes
does not actually manage to find one at all within the time out. Thirdly, although
it takes an increasingly longer time to find a first solution with dominance break-
ing constraints, if it does find one, it is typically of much higher quality than the
ones found without dominance breaking constraints.

8 Conclusion and Future Work

We have described a generic method for identifying and exploiting dominance
relations in constraint problems. The method defines a set of dominance break-
ing constraints which are provably correct and compatible with each other. The
method also defines symmetry and conditional symmetry breaking constraints as
a special case, thus it unifies symmetry breaking, conditional symmetry break-
ing and dominance breaking under one method. Experimental results show that
the dominance breaking constraints we define can lead to significant reductions in



search space and run time on a variety of problems, and that they can be effec-
tively combined with other dominance breaking techniques such as Lazy Clause
Generation.

Although we have developed this method in the context of Constraint Program-
ming, the dominance relations we find can be applied to other kinds of search as
well. For example, MIP solvers, which use branch and bound, can also benefit from
the power of dominance relations, as they can encounter suboptimal partial assign-
ments which nevertheless do not produce an LP bound strong enough to prune the
subproblem. Simple dominance rules such as fixing a variable to its upper/lower
bound if it is only constrained from below/above [21] are already in use in MIP,
but our method can produce much more generic dominance rules. Similarly, local
search can benefit tremendously from dominance relations, as they can show when
a solution is suboptimal and map it to another solution which is better. Exploring
how our method could be adapted for use in other kinds of search is an interesting
avenue of future work.

It may also be possible to automate many or all of the steps involved in our
method. Such automation would provide a great benefit for system users as they
will be able to feed in a relatively “dumb” model and have the system automatically
identify and exploit the dominances. Step 0 typically requires augmenting the
objective function with an appropriate lexicographical ordering of the variables.
Simple methods such as ordering the variables based on the order they are created
or based on the order they are labelled in the search work well. For Step 1, Table 2
gives a list of standard σ’s we can try. There also exist automated methods for
detecting symmetries in problem instances [26,35] which could be adapted to look
for additional candidates for σ. Step 2 and 3 involve algebraic manipulations which
are not difficult for a computer to do. Assuming that all constraints have been
annotated with any functional or monotonic properties, it is straightforward to
apply the rules contained in Table 3, 4 and 5 to derive candidates for scond(σ)
and ocond(σ). The difficulty lies in choosing whether to use simplified forms of
scond(σ) and ocond(σ) if they are available, as there is a tradeoff between speed and
pruning and there may not be a clear winner. We could either go for a default (e.g.,
always pick simplest), or present the options to a human, who can then choose.
Another difficulty lies in Step 4, where we need to simplify the dominance breaking
constraint and determine whether it is sufficiently simple, efficient and powerful
that it is worth adding to to problem. This could potentially be done via some
some of automated empirical testing where we initially add it, but monitor whether
it is actually pruning anything. If not, we can disable it to save on overhead.
Automating the method is another interesting avenue of future work.
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