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Abstract. Many constraint problems exhibit dominance relations which
can be exploited for dramatic reductions in search space. Dominance rela-
tions are a generalization of symmetry and conditional symmetry. How-
ever, unlike symmetry breaking which is relatively well studied, dom-
inance breaking techniques are not very well understood and are not
commonly applied. In this paper, we present formal definitions of dom-
inance breaking, and a generic method for identifying and exploiting
dominance relations via dominance breaking constraints. We also give a
generic proof of the correctness and compatibility of symmetry breaking
constraints, conditional symmetry breaking constraints and dominance
breaking constraints.

1 Introduction

In a constraint satisfaction or optimization problem, dominance relations de-
scribe pairs of assignments where one is known to be at least as good as the other
with respect to satisfiability or the objective function. When such dominance re-
lations are known, we can often prune off many of the solutions without changing
the satisfiability or the optimal value of the problem. Many constraint problems
exhibit dominance relations which can be exploited for significant speedups (e.g.,
[16, 25, 3, 18, 24, 22, 6, 12]).

Dominance relations are a generalization of symmetry and conditional sym-
metry and offer similar or greater potential for reductions in search space. Unlike
symmetries however, dominance relations are not very widely exploited. Dom-
inance relations can be hard to identify, and there are few standard methods
for exploiting them. It it also often hard to prove that a particular method is
correct, especially when multiple dominance relations are being exploited simul-
taneously. These issues have been overcome in the case of symmetry, which is
why symmetry breaking is now standard and widely used. Dominance relations
have been successfully applied in a number of problems, but their treatment is
often very problem specific and yields little insight as to how they can be gen-
eralized. In this paper, we seek to advance the usage of dominance relations by
making the following contributions:

– We describe a generic method for identifying and exploiting a large class of
dominance relations using dominance breaking constraints.



– We show that our method naturally produces symmetry breaking and con-
ditional symmetry breaking constraints as well (since they are simply special
cases of dominance breaking).

– We give a generic theorem proving the correctness and compatibility of all
symmetry breaking, conditional symmetry breaking and dominance breaking
constraints generated by our method.

The layout of the paper is as follows. In Section 2, we give our definitions. In
Section 3, we describe our method of identifying and exploiting dominance rela-
tions using dominance breaking constraints. In Section 4, we describe how our
method can be extended to generate symmetry and conditional symmetry break-
ing constraints as well. In Section 5, we discuss related work. In Section 6, we
provide experimental results. In Section 7, we discuss future work. In Section 8,
we conclude.

2 Definitions

To facilitate rigorous proofs in the later sections, we will give our own definitions
of variables, domains, constraints, constraint problems and dominance relations.
These are slightly different from the standard definitions but are equivalent to
them in practice.

Let ≡ denote syntactical identity,⇒ denote logical implication and⇔ denote
logical equivalence. We define variables and constraints in a problem independent
way. A variable v is a mathematical quantity capable of assuming any value from
a set of values called the default domain of v. Each variable is typed, e.g., Boolean
or Integer, and its type determines its default domain, e.g., {0, 1} for Boolean
variables and Z for Integer variables. Given a set of variables V , let ΘV denote
the set of valuations over V where each variable in V is assigned to a value
in its default domain. A constraint c over a set of variables V is defined by a
set of valuations solns(c) ⊆ ΘV . Given a valuation θ over V ′ ⊃ V , we say θ
satisfies c if the restriction of θ onto V is in solns(c). Otherwise, we say that
θ violates c. A domain D over variables V is a set of unary constraints, one
for each variable in V . In an abuse of notation, if a symbol A refers to a set
of constraints {c1, . . . , cn}, we will often also use the symbol A to refer to the
constraint c1 ∧ . . . ∧ cn. This allows us to avoid repetitive use of conjunction
symbols.

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D,C), where V
is a set of variables, D is a domain over V , and C is a set of n-ary constraints.
A valuation θ over V is a solution of P if it satisfies every constraint in D
and C. The aim of a CSP is to find a solution or to prove that none exist. In
a Constraint Optimization Problem (COP) P ≡ (V,D,C, f), we also have an
objective function f mapping ΘV to an ordered set, e.g., Z or R, and we wish
to minimize or maximize f over the solutions of P . In this paper, we deal with
finite domain problems only, i.e., where the initial domain D constrains each
variable to take values from a finite set of values.

We define dominance relations over full valuations. We assume that all objec-
tive functions are to be minimized, and consider constraint satisfaction problems
as constraint optimization problems with f(θ) = 0 for all valuations θ.



Definition 1. A dominance relation ≺ for COP P ≡ (V,D,C, f) is a transitive
and irreflexive binary relation on ΘV such that if θ1 ≺ θ2, then either: 1) θ1 is
a solution and θ2 is a non-solution, or 2) they are both solutions or both non-
solutions and f(θ1) ≤ f(θ2).

If θ1 ≺ θ2, we say that θ1 dominates θ2. Note that we require our dominance
relations to be irreflexive. This means that no loops can exist in the dominance
relation, and makes it much easier to ensure the correctness of the method. The
following theorem states that it is correct to prune all dominated assignments.

Theorem 1. Given a finite domain COP P ≡ (V,D,C, f), and a dominance
relation ≺ for P , we can prune all assignments θ such that ∃θ′ s.t. θ′ ≺ θ,
without changing the satisfiability or optimal value of P .

Proof. Let θ0 be an optimal solution. If θ0 is pruned, then there exists some
solution θ1 s.t. θ1 ≺ θ0. Then θ1 must be a solution with f(θ1) ≤ f(θ0), so θ1 is
also an optimal solution. In general, if θi is pruned, then there must exist some
θi+1 s.t. θi+1 ≺ θi and θi+1 is also an optimal solution. Since ≺ is transitive and
irreflexive, it is impossible for the sequence θ0, θ1, . . . to repeat. Then since there
are finitely many solutions, the sequence must terminate in some θk which is an
optimal solution and which is not pruned. ut

We can extend ≺ to relate search nodes in the obvious way.

Definition 2. Let D1 and D2 be the domains from two different search nodes.
If ∀θ2 ∈ solns(D2),∃θ1 ∈ solns(D1) s.t. θ1 ≺ θ2, then we define D1 ≺ D2.

Clearly if D1 ≺ D2, Theorem 1 tells us that we can safely prune the search
node with D2. We call the pruning allowed by Theorem 1 dominance breaking
in keeping with symmetry breaking for symmetries.

Dominance relations can be derived either statically before search or dynam-
ically during search in order to prune the search space. It is easy to see that
static symmetry breaking (e.g., [7, 10]) are a special case of static dominance
breaking. For example, consider the lex-leader method of symmetry breaking.
Suppose S is a symmetry group of problem P . Suppose lex(θ) is the lexicograph-
ical function being used in the lex-leader method. We can define a dominance
relation: ∀σ ∈ S, ∀θ, σ(θ) ≺ θ if lex(σ(θ)) < lex(θ). Then applying Theorem 1
to ≺ gives the lex-leader symmetry breaking constraint (i.e., prune all solu-
tions which are not the lex-leader in their equivalence class). Similarly, dynamic
symmetry breaking techniques such as Symmetry Breaking During Search [15]
and Symmetry Breaking by Dominance Detection [8, 11] are special cases of dy-
namic dominance breaking. Nogood learning techniques such as Lazy Clause
Generation [23, 9] and Automatic Caching via Constraint Projection [5] are also
examples of dynamic dominance breaking. We will discuss these two methods in
more detail in Section 5.

Just as in the case of symmetry breaking, it is generally incorrect to simulta-
neously post dominance breaking constraints for multiple dominance relations.
This is because dominance relations only ensure that one assignment is at least
as good as the other (not strictly better than), thus when we have multiple dom-
inance relations, we could have loops such as θ1 ≺1 θ2 and θ2 ≺2 θ1, and posting



the dominance breaking constraint for both ≺1 and ≺2 would be wrong. We
have to take care when breaking symmetries, conditional symmetries and dom-
inances that all the pruning we perform are compatible with each other. As we
shall show below, one of the advantages of our method is that all the symmetry
breaking, conditional symmetry breaking and dominance breaking constraints
generated by our method are provably compatible.

Dominance breaking constraints can be particularly useful in optimization
problems, because they provide a completely different and complementary kind
of pruning to the branch and bound paradigm. In the branch and bound paradigm,
the only way to show that a partial assignment is suboptimal is to prove a suf-
ficiently strong bound on its objective value. Proving such bounds can be very
expensive, especially if the model does not propagate strong bounds on the objec-
tive. In the worst case, further search is required, which can take an exponential
amount of time. On the other hand, dominance breaking can prune a partial as-
signment without having to prove any bounds on its objective value at all, since
it only needs to know that the partial assignment is suboptimal. Once dominance
relations expressing conditions for suboptimality are found and proved, the only
cost in the search is to check whether a partial assignment is dominated, which
can often be much lower than the cost required to prove a sufficiently strong
bound to prune the partial assignment.

3 Identifying and Exploiting Dominance Relations

3.1 Overview of method

We now describe a generic method for identifying and exploiting a fairly large
class of dominance relations using dominance breaking constraints. The idea is to
use mappings σ from valuations to valuations to construct dominance relations.
Given a mapping σ, we ask: under what conditions does σ map a solution to a
better solution? If we can find these conditions, then we can build a dominance
relation using these conditions and exploit it by posting a dominance breaking
constraint. More formally:

Step 1 Find mappings σ : ΘV → ΘV which are likely to map solutions to better
solutions.

Step 2 For each σ, find a constraint scond(σ) s.t. if θ ∈ solns(C ∧ D ∧ scond(σ)),
then σ(θ) ∈ solns(C ∧D).

Step 3 For each σ, find a constraint ocond(σ) s.t. if θ ∈ solns(C ∧ D ∧ ocond(σ)),
then f(σ(θ)) < f(θ).

Step 4 For each σ, post the dominance breaking constraint db(σ) ≡ ¬(scond(σ) ∧
ocond(σ)).

The following theorem proves the correctness of this method.

Theorem 2. Given a finite domain COP P ≡ (V,D,C, f), a set of mappings
S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying:
∀σ ∈ S, if θ ∈ solns(C ∧D∧ scond(σ)), then σ(θ) ∈ solns(C ∧D), and: ∀σ ∈ S,
if θ ∈ solns(C ∧ D ∧ ocond(σ)), then f(σ(θ)) < f(θ), we can add all of the
dominance breaking constraints db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) to P without
changing its satisfiability or optimal value.



Proof. Construct a binary relation ≺ as follows. For each σ, for each θ ∈
solns(C ∧ D ∧ scond(σ) ∧ ocond(σ)), define σ(θ) ≺ θ. Now, take the transi-
tive closure of ≺. We claim that ≺ is a dominance relation. It is transitive by
construction. Also, by construction, θ ∈ solns(C ∧ D ∧ scond(σ) ∧ ocond(σ))
guarantees that σ(θ) is a solution and that f(σ(θ)) < f(θ). Thus ∀θ1, θ2, θ1 ≺ θ2
implies that θ1 and θ2 are solutions, and that f(θ1) < f(θ2). This means that
≺ is irreflexive and satisfies all the properties of a dominance relation, thus by
Theorem 1, we can prune any θ ∈ solns(C ∧D ∧ scond(σ)∧ ocond(σ)) for any σ
without changing the satisfiability or optimality of P . Thus it is correct to add
db(σ) for any σ to P . ut

Note that there are no restrictions on σ. It does not have to be injective
or surjective. The db(σ) are guaranteed to be compatible because they all obey
the same strict ordering imposed by the objective function f , i.e., they prune a
solution only if a solution with strictly better f value exists. We illustrate the
method with two simple examples before we go into more details.

Example 1. Consider the Photo problem. A group of people wants to take a
group photo where they stand in one line. Each person has preferences regarding
who they want to stand next to. We want to find the arrangement which satisfies
the most preferences.

We can model this as follows. Let xi ∈ {1, . . . , n} for i = 1, . . . , n be variables
where xi represent the person in the ith place. Let p be a 2d integer array
where p[i][j] = p[j][i] = 2 if person i and j both want to stand next to each
other, p[i][j] = p[j][i] = 1 if only one of them wants to stand next to the other,
and p[i][j] = p[j][i] = 0 if neither want to stand next to each other. The only
constraint is: alldiff (x1, . . . , xn). The objective function to be minimized is given

by: f = −
∑n−1

i=1 p[xi][xi+1].

Step 1 Since this is a sequence type problem, mappings which permute the
sequence in some way are likely to map solutions to solutions. For simplicity,
consider the set of mappings which flip a subsequence of the sequence, i.e.,
∀i < j, σi,j maps xi to xj , xi+1 to xj−1, . . ., xj to xi.

Step 2 We want to find the conditions under which σ maps solutions to solutions.
Since all of these σ are symmetries of C ∧D, we do not need any conditions and
it is sufficient to set scond(σi,j) ≡ true.

Step 3 We want to find the conditions under which f(σi,j(θ)) < f(θ). If we com-
pare the LHS and RHS, it is clear that the only difference is the terms p[xi−1][xj ],
p[xi][xj+1] on the LHS and the terms p[xi−1][xi], p[xj ][xj+1] on the RHS. So it is
sufficient to set ocond(σi,j) ≡ p[xi−1][xj ]+p[xi][xj+1] > p[xi−1][xi]+p[xj ][xj+1].

Step 4 For each σi,j , we can post the dominance breaking constraint: ¬(p[xi−1][xj ]+
p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1]).
These dominance breaking constraints ensure that if some subsequence of the as-
signment can be flipped to improve the objective, then the assignment is pruned.
�



Example 2. Consider the 0-1 knapsack problem where xi are 0-1 variables, we
have constraint

∑
wixi ≤W and we have objective f = −

∑
vixi, where wi and

vi are constants.

Step 1 Consider mappings which swap the values of two variables, i.e., ∀i < j, σi,j
swaps xi and xj .

Step 2 A sufficient condition for σi,j to map the current solution to another
solution is: scond(σi,j) ≡ wixj + wjxi ≤ wixi + wjxj . Rearranging, we get:
(wi − wj)(xi − xj) ≥ 0.

Step 3 A sufficient condition for σi,j to map the current solution to an assignment
with a better objective function is: ocond(σi,j) ≡ vixj + vjxi > vixi + vjxj .
Rearranging, we get: (vi − vj)(xi − xj) < 0.

Step 4 For each σi,j , we can post the dominance breaking constraint: db(σi,j) ≡
¬(scond(σi,j) ∧ ocond(σi,j)). After simplifying, we have db(σi,j) ≡ xi ≤ xj if
wi ≥ wj and vi < vj , db(σi,j) ≡ xi ≥ xj if wi ≤ wj and vi > vj , and db(σi,j) ≡
true for all other cases.

These dominance breaking constraints ensure that if one item has worse
value and greater or equal weight to another, then it cannot be chosen without
choosing the other also. �

3.2 Step 1: Finding Appropriate Mappings σ

In general, we want to find σ’s such that scond(σ) and ocond(σ) are as small
and simple as possible, as this will lead to dominance breaking constraints that
are easier to propagate and prune more. So we want σ such that it often maps a
solution to a better solution. σ’s which are symmetries or almost symmetries of
the problem make good candidates, since their scond(σ) will be simple, and all
else being equal, there is around a 50% chance that it will map the solution to one
with a better objective value. In general, we can try all the common candidates
for symmetries such as swapping two variables, swapping two values, swapping
two rows/columns in matrix type problems, flipping/moving a subsequence in a
sequence type problem, etc. Mappings which are likely to map an assignment to
one with better objective value are also good candidates, since their ocond(σ)
will be simple. For example, in scheduling problems minimizing makespan, we
can try shifting items forwards in the schedule. There may also be problem
specific σ’s that we can try.

3.3 Step 2: Finding scond(σ)

We can calculate scond(σ) straightforwardly with the help of the following def-
inition.

Definition 3. Given a mapping σ : ΘV → ΘV , we can extend σ to map con-
straints to constraints as follows. Given a constraint c, σ(c) is defined as a
constraint over V such that θ satisfies σ(c) iff σ(θ) satisfies c.



For example, if c ≡ x1 + 2x2 + 3x3 ≥ 10, and σ swaps x1 and x3, then
σ(c) ≡ x3 + 2x2 + 3x1 ≥ 10. Or if c ≡ (x1, x2) ∈ {(1, 1), (2, 3), (3, 1)}, and σ
permutes the values (1, 2, 3) to (2, 3, 1) on x1 and x2, then σ(c) ≡ (x1, x2) ∈
{(3, 3), (1, 2), (2, 3)}.

It is easy to define σ(c), however, σ(c) may or may not be a simple logical
expression. For example, if c ≡ x1 + 2x2 ≥ 5 and σ swaps the values 1 and 2,
then σ(c) ≡ (x1 = 1 ∧ x2 = 1) ∨ (x1 = 2 ∧ x2 = 1) ∨ (x1 6= 1 ∧ x1 6= 2 ∧ x2 6=
1 ∧ x2 6= 2 ∧ x1 + 2x2 ≥ 5) which does not simplify at all.

For each σ, we want to find a sufficient condition scond(σ) so that if a solution
satisfied scond(σ), then σ maps it to another solution. A necessary and sufficient
condition is: C∧D∧scond(σ)⇒ σ(C∧D), i.e., C and D together with scond(σ)
must imply the mapped versions of every constraint in C and D.

We can construct scond(σ) as follows. We calculate σ(c) for each c ∈ C ∪D.
If it is not implied by C ∧ D, then we add a constraint c′ to scond(σ) such
that C ∧ D ∧ c′ → σ(c). For example, in the knapsack problem in Example 2,
σi,j(C) ≡ w1x1 + . . . + wixj + . . . + wjxi + . . . wnxn ≤ W . It is easy to see
that

∑
wixi ≤ W ∧ wixj + wjxi ≤ wixi + wjxj ⇒ σi,j(C), hence we could set

scond(σi,j) ≡ wixj + wjxi ≤ wixi + wjxj .
If σ is a symmetry of C ∧D then scond(σ) ≡ true. If σ is almost a symmetry

of C ∧D, then scond(σ) is usually fairly small and simple, because most of the
σ(c) are already implied by C ∧D.

3.4 Step 3: Finding ocond(σ)

We assume that the objective function f(θ) is defined over all assignments (not
just solutions). We first give a few definitions.

Definition 4. Given a function σ mapping assignments to assignments, we ex-
tend σ to map functions to functions as follows: ∀θ, σ(f)(θ) = f(σ(θ)).

Definition 5. Given two functions mapping assignments to the reals f and g,
we use f < g to denote a constraint such that: θ satisfies f < g iff f(θ) < g(θ).

For each σ, we want to find a sufficient condition ocond(σ) so that if a
solution satisfied ocond(σ), then σ maps it to an assignment with a strictly better
objective value. A necessary and sufficient condition is: C∧ocond(σ)⇒ σ(f) < f .
We can typically just set ocond(σ) ≡ σ(f) < f . For example, in both the Photo
and Knapsack examples above, we simply calculated σ(f) < f , eliminated equal
terms from each side, and used that as ocond(σ).

3.5 Step 4: Posting the Dominance Breaking Constraint

Once we have found scond(σ) and ocond(σ), we can construct the dominance
breaking constraint db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) and simplify it as much as
possible. If it is simple enough to implement efficiently, we can add it to the
problem. If not, we can simply ignore it, as it is not required for the correctness
of the method. It is quite common that the dominance breaking constraint for
different σ’s will have common subexpressions. We can take advantage of this to
make the implementation of the dominance breaking constraints more efficient.



4 Generating Symmetry and Conditional Symmetry
Breaking Constraints

The method described so far only finds dominance breaking constraints which
prune a solution when its objective value is strictly worse than another. We can
do better than this, as there are often pairs of solutions which have equally good
objective value and we may be able to prune many of them. Exploiting such sets
of equally good pairs of solution is called symmetry breaking and conditional
symmetry breaking. We show that with a slight alteration, our method will
generate dominance breaking constraints that will also break symmetries and
conditional symmetries.

We modify the method as follows. We add in a Step 0, and alter Step 3
slightly.

Step 0 Choose a refinement of the objective function f ′ with the property that
∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2).

Step 3* For each σ, find a constraint ocond(σ) s.t. if θ ∈ solns(C ∧ D ∧ ocond(σ)),
then f ′(σ(θ)) < f ′(θ).

We have the following theorem concerning the correctness of the altered
method.

Theorem 3. Given a finite domain COP P ≡ (V,D,C, f), a refinement of the
objective function f ′ satisfying ∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2),
a set of mappings S, and for each mapping σ ∈ S constraints scond(σ) and
ocond(σ) satisfying: ∀σ ∈ S, if θ ∈ solns(C ∧ D ∧ scond(σ)), then σ(θ) ∈
solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧D∧ocond(σ)), then f ′(σ(θ)) < f ′(θ),
we can add all of the dominance breaking constraints db(σ) ≡ ¬(scond(σ) ∧
ocond(σ)) to P without changing its satisfiability or optimal value.

Proof. The proof is analogous to that of Theorem 2.

The db(σ) are guaranteed to be compatible because they all obey the same
strict ordering imposed by the refined objective function f ′, i.e., they prune a
solution only if a solution with strictly better f ′ value exists. Theorem 3 is a
very useful result as it is generally quite difficult to tell whether different sym-
metry, conditional symmetry or dominance breaking constraints are compatible.
There are lots of examples in literature where individual dominance breaking
constraints are proved correct, but no rigorous proof is given that they are cor-
rect when used together (e.g., [12, 6, 14]). The symmetry, conditional symmetry
or dominance breaking constraints generated by our method are guaranteed to
be compatible by Theorem 3, thus the user of the method does not need to prove
anything themselves. We now show with some examples how the altered method
can generate symmetry and conditional symmetry breaking constraints.

Example 3. Consider the Photo problem from Example 1. Suppose that in Step
0, instead of setting f ′ = f , we set f ′ = lex(f, x1, . . . , xn), the lexicographic least
vector (f, x1, . . . , xn). That is, we order the solutions by their objective value, and
then tie break by the value of x1, then by x2, etc. Clearly, f(θ1) < f(θ2) implies



f ′(θ1) < f ′(θ2) so it is a refinement. Now, consider what happens in Step 3. In
general, we have σ(lex(f1, . . . , fn)) < lex(f1, . . . , fn)⇔ lex(σ(f1), . . . , σ(fn)) <
lex(f1, . . . , fn) ⇔ (σ(f1) < f1) ∨ (σ(f1) = f1 ∧ σ(f2) < f2) ∨ . . . ∨ (σ(f1) =
f1 ∧ . . . ∧ σ(fn−1) = fn−1 ∧ σ(fn) < fn).

In this problem, we have: ∀i < j, ocond(σi,j) ≡ σ(f ′) < f ′ ≡ (p[xi−1][xj ] +
p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1])∨ (p[xi−1][xj ] + p[xi][xj+1] = p[xi−1][xi] +
p[xj ][xj+1] ∧ x[j] < x[i]). There is an additional term in ocond(σi,j) which says
that we can also prune the current assignment if the flipped version has equal
objective value but a better lexicographical value for {x1, . . . , xn}. Thus db(σi,j)
not only breaks dominances but also includes a conditional symmetry breaking
constraint. Similarly, consider σ1,n. Because it is a boundary case, the terms in
σ(f) and f all cancel and we have ocond(σ1,n) ≡ x[n] < x[1], so db(σ1,n) ≡
x[1] ≤ x[n] which is simply a symmetry breaking constraint. �

Example 4. Consider the Knapsack problem from Example 2. In Step 0, we can
tie break solutions with equal objective value by the weight used, and then
lexicographically, i.e., f ′ = lex(f,

∑
wixi, x1, . . . , xn). In Step 3, we have: ∀i <

j, ocond(σi,j) ≡ σ(f ′) < f ′ ≡ ((vi − vj)(xi − xj) < 0) ∨ ((vi − vj)(xi − xj) =
0∧(wi−wj)(xi−xj) > 0)∨((vi−vj)(xi−xj) = 0∧(wi−wj)(xi−xj) = 0∧xj < xi).
In Step 4, after simplifying, in addition to the dominance breaking constraints
we had before, we would also have: db(σi,j) ≡ xi ≤ xj if wi > wj and vi = vj ,
db(σi,j) ≡ xi ≥ xj if wi < wj and vi = vj , and db(σi,j) ≡ xi ≤ xj if wi = wj and
vi = vj which is a symmetry breaking constraint. �

We can also apply the altered method to satisfaction problems to generate
symmetry and conditional symmetry breaking constraints.

Example 5. The Black Hole Problem [14] seeks to find a solution to the Black
Hole patience game. In this game the 52 cards of a standard deck are laid out
in 17 piles of 3, with the Ace of spades starting in a “black hole”. Each turn, a
card at the top of one of the piles can be played into the black hole if it is ±1
from the card that was played previously, with king wrapping back around to
ace. The aim is to play all 52 cards. We can model the problem as follows. Let
the suits be numbered from 1 to 4 in the order spades, hearts, clubs, diamonds.
Let the cards be numbered from 1 to 52 so that card i has suit (i − 1)/13 + 1
and number (i− 1)%13 + 1, where 11 is jack, 12 is queen and 13 is king. Let li,j
be the jth card in the ith pile in the initial layout. Let xi be the turn in which
card i was played. Let yi be the card which was played in turn i. We have:

x1 = 1 (1)

inverse(x, y) (2)

xli,j < xli,j+1 ∀1 ≤ i ≤ 17, 1 ≤ j ≤ 2 (3)

(yi+1 − yi)%13 ∈ {−1, 1} ∀1 ≤ i ≤ 51 (4)

We now apply our method. Since cards which are nearer to the top of the piles
are much more likely to be played early on, we choose a lexicographical ordering
which reflects this. We define f ′ = lex(xl1,1 , . . . , xl17,1 , . . . , xl1,3 , . . . , xl17,3). An
obvious set of mappings that are likely to map solutions to solutions is to swap



cards of the same number in the sequence of cards to be played. Consider σi,j
for i− j%13 = 0, i 6= 1, j 6= 1 where σi,j swaps xi and xj , and swaps the values
of i and j among {y1, . . . , y52}.

Now we construct scond(σi,j). For each constraint c in the problem, we need
to find a c′ such that C ∧D∧ c′ ⇒ σi,j(c) and add it to scond(σi,j). Clearly, the
domain constraints and the constraints in (1), (2) and (4) are all symmetric in
σi,j , so we do not need to add anything for them. However, there will be some con-
straints in (3) which are not symmetric in σi,j . For example, suppose we wished
to swap 3♠ and 3♥, and they were in piles: (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), where
3♠ is in lexicographically earlier pile than 3♥. The constraints in 3 which are not
symmetric in σi,j are those involving 3♠ or 3♥, i.e., 2♠ < 3♠, 3♠ < 5♣, 1♦ < 3♥
and 3♥ < 6♦. Their symmetric versions are 2♠ < 3♥, 3♥ < 5♣, 1♦ < 3♠ and
3♠ < 6♦ respectively, so we can set scond(σ2,15) ≡ 2♠ < 3♥∧ 3♥ < 5♣∧ 1♦ <
3♠∧ 3♠ < 6♦. To construct ocond(σi,j), we can set ocond(σi,j) ≡ σi,j(f ′) < f ′.
For this example, we have ocond(σ2,15) ≡ 3♥ < 3♠. Combining, we have
db(σ2,15) ≡ ¬(2♠ < 3♥ ∧ 3♥ < 5♣ ∧ 1♦ < 3♠ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠). We
can use the constraints in the original problem to simplify this further. Since
3♠ < 5♣ is an original constraint and 3♥ < 3♠∧ 3♠ < 5♣ ⇒ 3♥ < 5♣, we can
eliminate the second term in db(σ2,15). Since 1♦ < 3♥ is an original constraint
and 1♦ < 3♥ ∧ 3♥ < 3♠ ⇒ 1♦ < 3♠, we can eliminate the third term in
db(σ2,15). The result is db(σ2,15) ≡ ¬(2♠ < 3♥ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠). The
other cases are similar. �

Although the conditional symmetry breaking constraints derived in Exam-
ple 5 are identical to those derived in [14], our method is much more generic and
can be applied to other problems as well. Also, no rigorous proof of correctness is
given in [14], whereas Theorem 3 shows that these conditional symmetry break-
ing constraints are compatible. In this problem it is quite possible to derive multi-
ple incompatible conditional symmetry breaking constraints which are individu-
ally correct. For example, suppose in addition to (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦),
we had a third pile (2♥, 3♦, 7♠), then the following conditional symmetry break-
ing constraints are all individually correct: ¬(2♠ < 3♥ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠),
¬(2♥ < 3♠∧3♦ < 5♣∧3♠ < 3♦), ¬(1♦ < 3♦∧3♥ < 7♠∧3♦ < 3♥), but they
are incompatible. For example, no matter which permutation of 3♠, 3♥, and 3♦
is applied, the partial solution 1♠, 2♥, 1♦, 2♥, 3♠, 4♠, 3♥, 4♦, 3♦ is pruned by
one of the three conditional symmetry breaking constraints. Our method will
never produce such incompatible sets of dominance breaking constraints.

Example 6. The Nurse Scheduling Problem (NSP) is to schedule a set of nurses
over a time period such that work and hospital regulations are all met, and as
many of the nurses’ preferences are satisfied. There are many variants of this
problem in the literature (e.g., [21, 2]). We pick a simple variant to illustrate our
method. Each day has three shifts: day, evening, and overnight. On each day,
each nurse should be scheduled into one of the three shifts or scheduled a day
off. For simplicity, we can consider a day off to be a shift as well. We number the
shifts as day: 1, evening: 2, over-night: 3, day-off: 4. Each shift besides day-off
requires a minimum number ri of nurses to be rostered. Nurses cannot work for
more than 6 days in a row, and must work at least 10 shifts per 14 days. Each
nurse i has a preference pi,j for which of the four shift they wish to take on day



j. The objective is to maximize the number of satisfied preferences. Let n be the
number of nurses and m be the number of days. Let xi,j be the shift that nurse
i is assigned to on day j. Then the problem can be stated as follows:

Maximize

n∑
i=1

m∑
j=1

(xi,j = pi,j)

Subject to

among(ri,∞, [xk,j | 1 ≤ k ≤ n], i) ∀1 ≤ i ≤ 3, 1 ≤ j ≤ m (5)

among(1,∞, [xi,j | k ≤ j < k + 7], 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 6 (6)

among(−∞, 4, [xi,j | k ≤ j < k + 14], 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 13 (7)

Where among(l, u, [x1, . . . , xn], v) means that there are at least l and at most
u variables from among [x1, . . . , xn] which take the value v. We now apply our
dominance breaking method. Firstly, we can potentially get some symmetry or
conditional symmetry breaking in by refining the objective function to f ′ =
lex(f, x1,1, x2,1, . . . , xn,m). Let us consider mappings which are likely to map
solutions to solutions. An obvious set of candidates are mappings which swap
the shifts of two nurses on the same day, i.e., mappings σi1,i2,j which swap xi1,j
and xi2,j .

We wish to calculate scond(σi1,i2,j). For each c ∈ C ∪D, we need to find c′

such that C ∧D∧ c′ ⇒ σi1,i2,j(c). It is easy to see that the constraints in (5) are
all symmetric in σi1,i2,j , so we do not need to add anything to scond(σi1,i2,j).
The constraints among(1,∞, [xi,j | k ≤ j < k + 7], 4) in (6) will be satisfied by
σ(θ) iff: xi1,j 6= 4 ∨ xi2,j = 4 ∨ among(1,∞, [xi,j | k ≤ j < k + 7, j 6= i1], 4).
Similarly, the constraints among(−∞, 4, [xi,j | k ≤ j < k + 14], 4) in (7) will
be satisfied by σ(θ) iff: xi1,j = 4 ∨ xi2,j 6= 4 ∨ among(−∞, 3, [xi,j | k ≤
j < k + 14, j 6= i1], 4). Since the among conditions are probably too expen-
sive to check, we can simply throw them away. We lose some potential prun-
ing, but it is still correct, since we had a disjunction of conditions. So we add
xi1,j 6= 4 ∨ xi2,j = 4 and xi1,j = 4 ∨ xi2,j 6= 4 to scond(σi1,i2,j). Calculating
σ(f ′) > f ′ is straight forward. We simply try each pair of values for xi1,j and
xi2,j and see if swapping them improves the refined objective function. For ex-
ample, suppose i1 < i2, pi1,j = 4, pi2,j = 2, then ocond(σi1,i2,j) ≡ σ(f ′) <
f ′ ≡ (xi1,j , xi2,j) ∈ {(1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 4)}. Then db(σi1,i2,j) ≡
¬(scond(σi1,i2,j)∧ocond(σi1,i2,j)) ≡ (xi1,j , xi2,j) /∈ {(2, 1), (2, 3), (3, 1)}, which is
a table constraint encapsulating both dominance breaking and symmetry break-
ing constraints. �

5 Related Work

There have been many works on problem specific applications of dominance rela-
tions, e.g., the template design problem [25], online scheduling problems [16], the
Maximum Density Still Life problem, Steel Mill Design problem and Peaceable
Armies of Queens problem [24], the Minimization of Open Stacks problem [6],



and the Talent Scheduling Problem [12]. However, the methods used are typically
very problem specific and offer little insight as to how they can be generalized
and applied to other problems. The implementations of these methods are also
often quite ad-hoc (e.g., pruning values from domains even though they do not
explicitly violate any constraint), and it is not clear whether they can be cor-
rectly combined with other constraint programming techniques. In contrast, our
new method rests on a much stronger theoretical foundation and is completely
rigorous. Since our method simply adds constraints to the problem, the modified
problem is a perfectly normal constraint problem and it is correct to use any
other constraint programming technique on it. Another important advantage of
our method is that we are able to use any search strategy we want on the modi-
fied problem. This is not the case with many of the problem specific dominance
breaking methods as they rely on specific labeling strategies.

There are a small number of works on generic methods for detecting and ex-
ploiting dominance relations. Machine learning techniques have been proposed
as a method for finding candidate dominance relations [27]. This method works
by encoding problems and candidate dominance relations into forms amenable to
machine learning. Machine learning techniques such as experimentation, deduc-
tion and analogy are then used to identify potential dominance relations. This
method was able to identify dominance relations for the 0/1 knapsack prob-
lem and a number of scheduling problems. However, the main weakness of this
method is that it only generates candidate dominance relations and does not
prove their correctness. Each candidates has to be analyzed to see if they are
in fact a dominance relation. Then the dominance relation has to be manually
proved and exploited.

Recently, several generic and automatic methods have been developed for
exploiting certain classes of dominance relations. These include nogood learning
techniques such as Lazy Clause Generation [23, 9] and Automatic Caching via
Constraint Projection [5]. Both of these can be thought of as dynamic dominance
breaking, where after some domain D1 is found to fail, a nogood (constraint) n is
found which guarantees that if D2 violates n, then D2 is dominated by D1 and
must also fail. The nogood n is posted as an additional redundant constraint
to the problem. Lazy Clause Generation derives this n by resolving together
clauses which explain the inferences which led to the failure. Automatic Caching
via Constraint Projection derives n by finding conditions such that projection
of the subproblem onto the subset of unfixed variables yield a more constrained
problem. These methods are to a large extent complementary to the method
presented in this paper. None of these methods exhausts all possible dominances
occurring in a problem, and there are dominances which can be exploited by one
method but not another. Thus we can often use them simultaneously to gain an
even greater reduction in search space.

6 Experimental Results

We now give some experimental results for our method on a variety of problems.
We have already discussed how our method applies to the Photo Problem, Knap-
sack Problem, Black Hole Problem, and Nurse Scheduling. For these problems,



we generate random instances of several different sizes, with 10 instances of each
size. We also give experimental results for four further problems:

RCPSP. The resource constrained project scheduling problem (RCPSP) [4]
schedules n tasks using m renewable resources so that ordering constraints
among tasks hold and resource usage limits are respected. A standard domi-
nance rule for this problem, used in search, is that each task must start at time
0 or when another task ends, since any schedule not following this rule is do-
mainated by one constructed by shifting tasks earlier until the rule holds. We
use the instances from the standard J60 benchmark set [1] which are non-trivial
(not solved by root propagation) and solvable by at least one of the methods.

Talent Scheduling Problem. In the Talent Scheduling Problem [12], we have a
set of scenes and a set of actors. Each actor appears in a number of scenes and is
paid a certain amount per day they are on location. They must stay on location
from the first scene they are in till the last scene they are in. The aim is to find
the schedule of scenes x1, . . . , xn which minimize the cost of the actors. We set
f ′ = lex(f, x1, . . . , xn). We consider mappings which take one scene and move
it to another position in the sequence. We generate 10 random instances of size
14, 16, and 18.

Steel Mill Problem. In the Steel Mill Problem [13], we have a set of orders to
be fulfilled and the aim is to minimize the amount of wasted steel. Each order
i has a size and a color (representing which path it takes in the mill) and is to
be assigned to a slab xi. Each slab can only be used for orders of two different
colors. Depending on the sum of the sizes of the orders on each slab, a certain
amount of steel will be wasted. We set f ′ = lex(f, x1, . . . , xn) and try mappings
where we take all orders of a certain color from one slab, and all orders of a
certain color from another slab, and swap the slabs they are assigned to. We
generate 10 random instances of size 40 and 50.

PC Board Problem. In the PC Board Problem [19], we have n × m compo-
nents of various types which need to be assigned to m machines. Each machine
must be assigned exactly n components and there are restrictions on the sets of
components that can go on the same machine. Each type of component gains a
certain utility depending on which machine it is assigned to and the goal is to
maximize the overall utility. We set f ′ = lex(f, x1,1, x1,2, . . . , xn,m) where xi,j is
the type of component assigned to the jth spot on the ith machine. We consider
mappings which swap two components on different machines. We generate 20
random instances of size 6× 8.

The experiments were performed on Xeon Pro 2.4GHz processors using the
CP solver Chuffed. For each set of benchmarks, we report the geometric mean
of time taken in seconds and the number of failed nodes for: the original prob-
lem with no dominance breaking of any form (base), with dominance breaking
constraints generated by our method (db), with Lazy Clause Generation (lcg),
and with dominance breaking constraints and Lazy Clause Generation (db+lcg).



Table 1. Comparison of the original model and the model augmented with dominance
breaking constraints

Problem base db lcg db+lcg
Time Nodes Time Nodes Time Nodes Time Nodes

Photo-14 1.09 57773 0.90 10967 0.30 5791 0.25 1962
Photo-16 8.38 441574 4.00 43373 6.49 44325 1.40 8960
Photo-18 60.68 2828622 22.09 206507 19.73 138926 6.25 24523
Knapsack-20 0.01 215 0.01 9 0.01 212 0.01 7
Knapsack-30 0.17 46422 0.01 91 0.85 45733 0.01 65
Knapsack-50 602 1 × 108 0.01 684 900 1 × 107 0.01 507
Knapsack-100 900 1 × 108 0.40 54705 900 1 × 107 1.05 37571
Black-hole 5.18 77542 0.08 607 0.97 2767 0.09 347
Nurse-15-7 900 9 × 107 900 8 × 107 1.72 55217 0.91 24258
Nurse-15-14 900 8 × 107 900 8 × 107 483.29 7 × 106 140.95 1× 106

RCPSP 358.95 2779652 279.74 781399 4.07 7890 32.84 32770
Talent-Sched-14 1.66 39479 0.42 10122 0.45 4983 0.27 3189
Talent-Sched-16 16.08 349704 2.33 51993 3.71 27186 1.28 12336
Talent-Sched-18 252.05 5557959 13.88 299043 26.25 128810 4.28 31829
Steel-Mill-40 60.64 1 × 106 22.00 451636 16.31 75293 4.53 27225
Steel-Mill-50 379.21 7 × 106 231.95 3 × 106 249.39 714451 32.24 129788
PC-board 547.93 4 × 107 412.29 1 × 107 20.28 156933 7.51 64320

A timeout of 900 seconds was used. Fastest times and lowest node counts are
shown in bold.

As Table 1 shows, adding dominance breaking constraints can significantly
reduce the search space on a variety of problems, leading to large speedups
which tend to grow exponentially with problem size. Our method can also often
be combined with Lazy Clause Generation for additional speedup (e.g., Photo,
Steel Mill, Talent Scheduling, Nurse Scheduling, PC Board). In some cases (e.g.,
Knapsack, Black Hole), even though adding LCG on top of our method can
reduce the node count further, the extra overhead of LCG swamps out any
benefit. In other cases (e.g., RCPSP), adding our dominance breaking constraints
on top of LCG actually increases the run time and node count. In this problem,
the dynamically derived dominances from LCG are stronger than the static ones
that our method derives. Adding the dominance breaking constraints interferes
with and reduces the benefit of LCG. In general however, our method appears to
provide significant speedups over a wide range of problems for both non-learning
and nogood learning solvers.

7 Future Work

Although we have developed this method in the context of Constraint Program-
ming, the dominance relations we find can be applied to other kinds of search as
well. For example, MIP solvers, which use branch and bound, can also benefit
from the power of dominance relations, as they can encounter suboptimal partial
assignments which nevertheless do not produce an LP bound strong enough to



prune the subproblem. Simple dominance rules such as fixing a variable to its
upper/lower bound if it is only constrained from below/above [17] are already
in use in MIP, but our method can produce much more generic dominance rules.
Similarly, local search can benefit tremendously from dominance relations, as
they can show when a solution is suboptimal and map it to another solution
which is better. Exploring how our method could be adapted for use in other
kinds of search is an interesting avenue of future work.

It may also be possible to automate many or all of the steps involved in
our method. Such automation would provide a great benefit for system users as
they will be able to feed in a relatively “dumb” model and have the system
automatically identify and exploit the dominances. Step 0 typically requires
augmenting the objective function with an appropriate lexicographical ordering
of the variables. For Step 1, there already exist automated methods for detecting
symmetries in problem instances [20, 26]. Such methods can be adapted to look
for good candidates for σ. Step 2 and 3 involves algebraic manipulations which
are not difficult for a computer to do. The difficulty lies in Step 4, where we
need to simplify the logical expressions and determine whether the dominance
breaking constraint is sufficiently simple, efficient and powerful that it is worth
adding to to problem. Automating our method is another interesting avenue of
future work.

8 Conclusion

We have described a generic method for identifying and exploiting dominance
relations in constraint problems. The method generates a set of dominance break-
ing constraints which are provably correct and compatible with each other. The
method also generates symmetry and conditional symmetry breaking constraints
as a special case, thus it unifies symmetry breaking, conditional symmetry break-
ing and dominance breaking under one method. Experimental results show that
the dominance breaking constraints so generated can lead to significant reduc-
tions in search space and run time on a variety of problems, and that they can
be effectively combined with other dominance breaking techniques such as Lazy
Clause Generation.
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