
Optimisation and Relaxation for Multiagent Planning
in the Situation Calculus

Toby O. Davies
National ICT Australia and

The University of Melbourne
toby.davies@nicta.com.au

Adrian R. Pearce
National ICT Australia and

The University of Melbourne
adrianrp@unimelb.edu.au

Peter J. Stuckey
National ICT Australia and

The University of Melbourne
pstuckey@unimelb.edu.au

Harald Søndergaard
The University of Melbourne
harald@unimelb.edu.au

ABSTRACT
The situation calculus can express rich agent behaviours and
goals and facilitates the reduction of complex planning prob-
lems to theorem proving. However, in many planning prob-
lems, solution quality is critically important, and the achiev-
able quality is not necessarily known in advance. Existing
Golog implementations merely search for a Legal plan, typ-
ically relying on depth-first search to find an execution. We
illustrate where existing strategies will not terminate when
quality is considered, and to overcome this limitation we for-
mally introduce the notion of cost to simplify the search for a
solution. The main contribution is a new class of relaxations
of the planning problem, termed precondition relaxations,
based on Lagrangian relaxation. We show how this facil-
itates optimisation of a restricted class of Golog programs
for which plan existence (under a cost budget) is decidable.
It allows for tractably computing relaxations to the plan-
ning problem and leads to a general, blackbox, approach to
optimally solving multi-agent planning problems without ex-
plicit reference to the semantics of interleaved concurrency.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
plan execution, formation, and generation; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—multiagent
systems

General Terms
Algorithms

Keywords
Resource-bounded planning, Golog, Lagrangian relaxation,
Situation calculus

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Reasoning about quality is essential in many domains,

as agents must often make economical use of one or more
resources, be it money, fuel, time, or some other domain-
specific resource.

We consider multiagent planning problems expressed in
Golog, an agent language based on the situation calculus.
Golog is Turing complete—the use of a Golog interpreter
comes without any guarantee of termination. We can, how-
ever, identify a restricted class of problems (or associated
Golog programs) that have a “bounded benefit” property.
We show that budget-limited planning is decidable for this
class. We also introduce relaxations that let us reason about
how far from optimal a candidate solution is. Relaxations
can be viewed as specialized algorithms to prove statements
of the form “no solution is more than a multiple of ε better
than solution x” without the need to enumerate the solu-
tion space. Technically our approach is close to the use of
Lagrangian relaxation techniques in operations research.

Delete relaxation has previously been applied to Golog, to
generate heuristically improved execution [5]. In contrast
with that work, we focus on precondition relaxation, as this
is particularly appropriate for multi-agent teams where each
agent ideally helps others achieve the preconditions they
face. The kind of relaxation we have in mind is much more
sophisticated than an “ignore precondition” relaxation. Our
precondition relaxations can avoid combinatorial explosions
by ignoring the multiple ways concurrent action sequences
can be interleaved. To guide search for optimal solutions we
apply costs to assuming, and bonuses to causing, the relaxed
preconditions. Thus preconditions are treated as a type of
shared resource that can be traded between agents at a cost.
This is key to the performance improvements we achieve.

Utilisation of shared resources has previously been treated
in the situation calculus, but in the context of an explicit
interleaved semantics of concurrency [8]. Our approach can
frequently minimise—sometimes even ignore—explicit inter-
agent action interleaving, heuristically finding high-quality
joint executions directly from high-level specifications.

Contribution.
The relax-&-merge algorithm described in this paper gen-

eralises the fragment-based planning approach of Davies et

al. [7] which shows orders of magnitude improvements over
state-of-the-art temporal planners. We define the necessary
conditions for modeling domains in this generalized formal-
ism. We propose a new kind of relaxation for planning prob-
lems; “precondition relaxations” which adapt Lagrangian re-
laxation to dynamic logic-based optimisation problems. The
technique is of particular interest in a multi-agent setting,
because it offers a blackbox approach to planning via col-
laborative search: An agent is not required to know about
other agents’ programs or effect axioms for “private” flu-
ents; all that is required is the ability to query those agents
for their optimal plans under a given penalty function. We
show that well-chosen relaxations can provide large increases
in the speed of planning, scaling linearly with the number
of interacting agents. Our work allows optimisation using
a wider range of search techniques in the situation calculus
than previously possible.

Outline.
We recapitulate Golog and relaxation broadly, in Sec-

tions 2 and 3, respectively. Section 4 introduces bounded-
benefit programs and Section 5 introduces precondition re-
laxation. Section 6 shows how to combine individual agents’
relaxed plans and Section 7 shows how to use the result to
construct a feasible joint execution.

2. PRELIMINARIES
We assume familiarity with the situation calculus and rea-

soning based on regression, at the level of Reiter [15], from
which we also (mostly) borrow notation and terminology.
We use R for the regression operator; � for the pre-history
relation; Φf as the regressable successor-state axiom for a
fluent f ; and φ+

f and φ−f for the positive and negative effect
axioms of a fluent f respectively.

We use a fragment of ConGolog [8], which includes most
constructs of the language, except for (recursive) procedures.
Hereafter we will simply refer to Golog , ConGolog and its
extensions simply as Golog :

α atomic action
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters,
and ϕ is a situation-suppressed formula, that is, a formula
in the language with all situation arguments in fluents sup-
pressed. We denote by ϕ[s] the situation calculus formula
obtained from ϕ by restoring the situation argument s into
all fluents in ϕ.

Program δ1|δ2 allows for the nondeterministic choice be-
tween programs δ1 and δ2, while πx.δ executes program δ
for some nondeterministic choice of a legal binding for vari-
able x. δ∗ performs δ zero or more times. Program δ1‖δ2
expresses the concurrent execution (interpreted as interleav-
ing) of programs δ1 and δ2. We assume without loss of
generality that each occurrence of the construct πx.δ in a
program uses a unique fresh variable x.

Formally, the semantics of Golog is specified in terms of
single-step transitions, using the following two predicates [8]:
(i) Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation s may lead to situation s′ with δ′ remaining to be
executed; and (ii) Final(δ, s), which holds if program δ may
legally terminate in situation s.

The definitions of Trans and Final we use are as in [17];
these are standard [8], except that, following [6], the test
construct ϕ? does not yield any transition, but is final when
satisfied. Thus, it is a synchronous version of the original
test construct (it does not allow interleaving). Note that the
definition of Trans(δ, s, δ′, s′) has only one successful non-
recursive case, where s′ is exactly one action longer than
s; any successful transition adds exactly one action to the
current situation.

Trans and Final are used to define the single-step seman-
tics of Golog ; they are used to look ahead, to solve the pro-
jection problem. We define Trans∗ to be the transitive re-
flexive closure1 of Trans. Trans∗ is used to define the reach-
able states: we wish to limit the search to states that are
both reachable, and for which any residual program is Final .
For this purpose we define

Do(δ, s, s′) ≡ ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

3. REASONING ABOUT OPTIMALITY
A key technique used in operations research to prove so-

lution quality is relaxation. Given a problem with a set X of
solutions and cost function to be minimized C, a relaxation
is a new problem with solutions X ′ and cost function C′

such that X ⊆ X ′ and for any solution x ∈ X, the relaxed
cost is a lower bound on the real cost, that is, C′(x) ≤ C(x).

A useful relaxation is one that is easier to solve to opti-
mality, compared to the original problem, and which addi-
tionally provides a tractable way to establish how far from
optimal a candidate solution is. Let x be a feasible solution
to the original problem and let x′∗ be an optimal solution
to the relaxed problem. The optimality gap is then defined
as η = C(x)/C′(x′∗) − 1. When the gap is 0, the solution
x is optimal. Where multiple relaxations are available, the
tightest can be used to compute η. This approach is used
with Lagrangian relaxation of integer programs.

In many optimisation problems it is easier to optimize a
variant of the problem with fewer constraints. For example
the resource constrained shortest path problem [13] is NP-
complete, whereas there are well-known polynomial-time al-
gorithms, such as Dijkstra’s, for the classical, unconstrained
shortest path problem.

Lagrangian relaxation softens complicating constraints and
incorporates them into the objective function [12, 9]. The
idea is to capitalise on algorithms designed for the easier
problem while penalizing violations of the complicating con-
straints. Careful variation of the penalties (the so-called La-
grange multipliers) allows solutions to the relaxed problem
to be guided towards feasible areas of the original problem.

Traditionally Lagrangian relaxation is applied to Integer
Programming (IP) models. A major contribution of this pa-
per is the extension of Lagrangian relaxation to logic-based
optimization in dynamical systems.

1Trans is a binary relation but we follow convention, writing
Trans(δ, s, δ′, s′) rather than Trans((δ, s), (δ′, s′)).

Consider a set R of inequalities to relax in an IP model:

Minimize: z(x̃)

Subject To: cr(x̃) ≤ 0 ∀r ∈ R
cn(x̃) ≤ 0 ∀n ∈ N

x̃ ∈ Zn

We transform it into a relaxed problem:

Minimize: z(x̃)+
∑
r∈R

λr · cr(x̃)

Subject To: cn(x̃) ≤ 0 ∀n ∈ N
x̃ ∈ Zn

Note that the effect is to increase the objective when con-
straints are violated, and decrease it when constraints are
strictly satisfied. To solve the original problem, the relaxed
problem is optimized and for each violated constraint r, the
penalty λr is increased. The relaxed problem is then re-
optimized, and so the process is iterated. In general, branch-
ing is also required to find solutions to discrete problems.

4. COST-AWARE SEARCH
Consider the problem of finding a path for agent a from
〈0, 0〉 to 〈x, y〉 on an infinite Manhattan grid. The agent is
allowed to move in each of the cardinal compass directions
N , S, E, and W .

A naive Golog program to solve this problem is:

proc travelto(a, x, y):

while ¬At(a, x, y) do

π(d ∈ [N,S,E,W]). move(a, d);

A satisfying solution to this problem is uninteresting as there
are infinitely many and an optimal path is trivial to com-
pute. However a simple depth first search for solutions to
this program might not terminate. To guarantee termina-
tion, a significantly more complex and less flexible program
may restrict the search to only move towards 〈x, y〉. Such
a program will find an optimal path between two points,
but the approach will fail in general, if any obstacles are
introduced into the grid.

We introduce a restricted class of Golog program and cost
functions that allow the simpler and more general Golog pro-
gram to always terminate. Algorithms from classical plan-
ning then allow us to compute the optimal solution. We
refer to the restrained programs as “bounded-benefit”.

Definition 1 (Bounded Benefit). A bounded-benefit
program is a Golog program δ, for which there exists some
plan length l0 and ε > 0 such that some lower bound lb(l)
on the cost of any reachable situation of length l satisfies
∀n ∈ N : lb(l0 + n) ≥ lb(l0) + nε, and lb(l0) is finite.

That is, there are a finite number of beneficial actions that
can be performed, and all other actions increase cost by at
least ε. Note that this is a property of the program and cost
function, and may not depend on the precondition axioms
of the domain.

Bounded benefit programs are related to the problems ad-
dressed by classical planning, but are slightly more general.
In particular, planning algorithms assume monotonically in-
creasing costs where l0 = 0 and lb(0) = 0. Bounded ben-
efit programs can be converted into this form when lb(l0)

is known (rather than merely guaranteed to exist) by defin-
ing a new cost function similar to removal of soft-goals in
classical planning [11]. Optimal algorithms for this class of
problems are well studied in the automated planning litera-
ture, and include both “uninformed” search, such as uniform
cost search, and “informed” search such as A∗, which is re-
liant on a heuristic or relaxation.

The simplest class of bounded-benefit programs results
when all actions increase cost. In the Manhattan grid exam-
ple, if all actions have unit cost, every program has bounded-
benefit. A less obvious, but interesting class of bounded-
benefit programs results when the cost function defines a
finite set of “soft goals” that decrease the objective when
achieved. For example, in the Manhattan grid example,
some grid points may be points of interest for which a re-
ward is available as they are visited the first time (similar
to the prize-collecting travelling salesman problem [3]). We
use this kind of soft-goal in later sections to guide agents to
achieve preconditions for others.

We have introduced bounded-benefit programs in response
to the undecidability of planning in Golog . In aid of our
proof of decidability we introduce the following definitions:

Definition 2 (Agent State). An agent state is a pair
〈s, δ〉 comprising a situation s and a residual program δ.

Definition 3 (Reachable State). An agent state
〈s′, δ′〉 is reachable from 〈s, δ〉 if it satisfies Trans∗(δ, s, δ′, s′).

Definition 4 (Applicable Transitions). The set of
applicable transitions T (s, δ) is the set of agent states reach-
able by using exactly one action from 〈s, δ〉

T (s, δ) = {〈s′, δ′〉 | Trans(δ, s, δ′, s′)}

Definition 5 (Branching Factor). A Golog program
δ in some domain D has branching factor b = max(|T (s′, δ′)|)
over all reachable states 〈s′, δ′〉 of finite length.

To have a finite branching factor merely requires that the
set of possible actions in any given situation is bounded.
This is not an unreasonable restriction, and would be re-
quired for a Prolog-based Golog implementation.

Theorem 1. Let m ∈ N and let δ be a bounded-benefit
program with finite branching. The query D |= Do(δ, S0, s)∧
(∀s′ : s′ � s⇒ cost(s′) ≤ m) is decidable.

Proof. For any finite length l, the situations reachable
from S0 in at most l steps can be enumerated (there are at
most bl solutions), for example, by a breadth-first search.

By Definition 1 we can assume the existence of a length l0
beyond which cost grows linearly, at least. The length of a
reachable situation s with cost(s) ≤ m is then bounded by
l0 + (m− lb(l0))/ε.

More practically, we can perform any search algorithm
with an additional test for the condition cost(s) ≤ m when
nodes are expanded, and guarantee that either we exhaust
the successors of s, or the cost of the successors eventually
exceeds the budget m, by defining a budget-limited Trans:

Transm(δ, s, δ′, s′) ≡ Trans(δ, s, δ′, s′) ∧ Cost(s′) ≤ m.

Importantly this approach does not require a computable
lower bound, merely the guarantee that one exists.

x y

p q

z

Figure 1: Cooperative navigation with unlockable
edges. Initially the edge from y to z is locked. The
shortest path from x to z is dependent on the loca-
tion of other agents capable of unlocking the edge.

5. RELAXING PRECONDITIONS
Relaxing delete effects (by ignoring them) is common in

automated planning. The result is “easier” than the original
problem because the application of an action without delete
effects monotonically increases the set of true facts. Ignor-
ing preconditions is the regression analogue: the regression
of a goal formula through an action with no preconditions
monotonically decreases the set of open preconditions, guar-
anteeing the regressed formula will eventually become true
in the initial situation, if any such action sequence exists.

Instead of simply ignoring preconditions, we attach costs
to assumptions. In a collaborative setting, an agent has
a choice between the pursuit of achieving its own precon-
dition, or relying on others to do this. Whichever is easier
depends on circumstances but the choice can be informed by
using cost to express a benefit to achieving another agent’s
preconditions.

For a very simple example, consider Figure 1 which depicts
an instance of a “cooperative navigation” problem. (We will
vary the initial conditions throughout this paper, but Fig-
ure 1’s graph will remain unchanged in subsequent exam-
ples.) The dashed edge denotes an edge that is in a “locked”
state; it can be unlocked only by certain agents, and only
if they are at appropriate locations. For now assume there
are two agents, a and b, with the joint goal for a to reach z.
The edge from y to z can only be unlocked by b if it is at y.
We assume unit cost to unlock an edge and to traverse any
edge. Note that the shortest path for one agent to travel
from x to z depends on other agents enabling it.

Primitive actions in this domain are move(Agt ,From,To)
and unlock(Agt ,From,To). Fluent At(Agt) = Loc gives an
agent’s current location; Unlocked(From,To) represents a
usable From-To edge while HasKey(Agt ,From,To) repre-
sents a potential From-To edge.

The cost function in this domain is equivalent to plan
length. Note that any program has bounded-benefit with
this cost function: l0 = 0 and ε = 1.

First consider the initial situation where agent a is at x,
agent b is at y, and b has a key to unlock y → z. The
minimum cost joint execution is for b to unlock y → z,
and a to travel from x to y to z. If however b is initially
at z, the minimum cost path is for x to travel via p and q.
Note carefully that a sum of per-agent relaxation will not be
admissible here in general: a’s optimal path over-estimates
the true cost.

Preconditions persist in general, and the best time to allow
another agent to achieve our precondition is not necessar-
ily the situation immediately preceding the action requiring
that precondition. There are two options as to where we
can allow this necessary choice: where we assume a fluent
becomes true; and when we allow a fluent we cause to be

used by another agent.
We choose to use the first of these, as there will always

be a bounded choice of situations in which we can assume a
fluent. We then force agents to take the benefit associated
with causing a fluent at the point it was actually caused.

That is, in do([move(a, x, y), move(a, y, z)], S0) agent a can
assume that y → z was unlocked in S0 or after a’s first
action, and thus may choose either of these two penalties
to apply. However in do([move(b, p, y), unlock(b, y, z)], S0)
agent b has no choice and must take the bonus available
after the first action.

In the cooperative navigation domain nothing negates the
preconditions we are relaxing. However, in general an agent
could negate an assumed precondition before the point at
which it was required. To avoid this, we introduce some
analysis functions that allow us to determine the situations
from which an assumed fluent would have persisted. We
assume that fluents have successor state axioms transformed
from effect axioms φ+ and φ− in the standard way [15].
lasteff (f, s) = s′ computes the last situation which would
have had either a positive or negative effect on f :

lasteff (f, S0) = S0

lasteff (f, do(α, s)) =

{
do(α, s) if φ±f (α, s)
lasteff (f, s) otherwise

Here φ±f (α, s) ≡ φ+
f (α, s) ∨ φ−f (α, s). For example, in the

situation s = do(move(a, x, y), S0):

lasteff (At(a), s) = s
lasteff (Unlocked(y, z), s) = S0

We then restrict situations in which f can be assumed before
situation s, to situations s′ with lasteff (f, s) � s′ � s.

To transform a regressable query in a basic action theory
in such a way that we can apply penalties, we need to detect
which assumptions ∆ are made. For this purpose we define
Precondition Relaxed Regression PRR∆

R in terms of a set
of relaxable fluents R. This can be considered a kind of
abductive reasoning, but differs in that any relaxable fluent
F (s) must be explicitly assumed if it is ever true, even if it
is caused by some action already present in s.

In the cooperative navigation example, Unlocked(y, z) must
be assumed (recorded in ∆) to ensure that agent a can find
the optimal plan. That is, a must assume that the (y, z)
edge becomes unlocked before attempting move(a, y, z).

Precondition relaxed regression is defined like usual re-
gression, except for the cases for atomic fluents:

PRR∆
R(f(S0)) =

([[f(S0)]] 6∈ R ∧ f(S0)) ∨ ([[f(S0)]] ∈ R ∧ [[f(S0)]] ∈ ∆)

PRR∆
R(f(s)) =

(s = do(α, s′)) ∧ [[f(s)]] 6∈ R ∧ PRR∆
R(Φf (α, s′)) ∨

[[f(s)]] ∈ R ∧ ∃s′′.(lasteff (f, s) � s′′ � s ∧ [[f(s′′)]] ∈ ∆)

Here Φf is the successor state axiom for f . The brackets
[[. . .]] have no semantic significance; we use them simply as
a reminder that ∆ and R store representations [[f(s)]] of
fluents f to evaluate at situations s. In the definition, any
relaxable fluent f ∈ R required to be true to satisfy the
formula is in ∆, evaluated at some point between when it is
required and the last effect on f .

We assume that any regressed formula is in negation nor-
mal form, that is, only atomic fluents are negated, not whole

expressions. Additionally we assume that the negation of a
fluent is represented as a separate fluent with opposite effect
axioms, i.e., ¬f(s) is replaced with f ′(s) where f ′ has effect
axioms φ+

f ′ = φ−f and φ−f ′ = φ+
f . This is simply syntactic

sugar that simplifies our formulae and proofs.
We can now use the assumptions, ∆, computed in the pre-

condition relaxed problem to compute penalties (Lagrange
multipliers). We define an AssumptionCost function that
computes the total cost of those assumptions:

AssumptionCost(λ,∆) =
∑

f(s)∈∆

λ(f, s)

We also define a Bonuses function that calculates the benefit
of causing a fact, by summing those relaxed fluents that
actually hold in s:2

Bonuses(R, λ, s) = −
∑

f(s)∈R

λ(f, s) · 〈Φf [s]〉 · 〈lasteff (f, s) = s〉

We combine these components with the original cost to de-
fine a penalized cost function:

Costλ(R,∆, s) = Cost(s) + AssumptionCost(λ,∆)

− Bonuses(R, λ, s)

We illustrate this concept on a handful of situations in the
cooperative navigation domain using the following penalties:

λ1(Unlocked(x, y), s) = 9 ⊂ time(s) = 0

λ1(Unlocked(x, y), s) = 1 ⊂ time(s) = 1

λ1(, s) = 0 otherwise

The assumption necessary to perform

do([move(a, x, y), move(a, y, z)], S0))

is just ∆ = {Unlocked(x, y, do(move(a, x, y), S0))}. Using it,
we compute the penalties: AssumptionCost(λ1,∆) = 1 and
no bonuses. Importantly,

do([move(b, p, y), unlock(b, y, z), move(b, y, z)], S0)

still requires the assumption

Unlocked(x, y, do([move(b, p, y), unlock(b, y, z)], S0))

in spite of the fact that the action sequence causes this as-
sumed fluent. This ensures that all relaxable fluents are
treated uniformly across all agents.

In many domains, the only rational choice is to assume
the fluent in the least penalized situation where that fluent
would persist to s:

min
λ(f,s)

(s′ | lasteff (f, s) � s′ � s)

This observation is important in reducing the computational
burden of the projection problem. The obvious exception to
this is when a fluent has already been assumed in order to
enable an earlier action, in which case there may be no need
to assume the same fluent twice. E.g., if an agent takes the
route y → z → q → p→ y → z, the agent need only assume
that y → z is unlocked once, before starting the circuit.

2We use 〈 and 〉 as Iverson brackets. 〈P 〉 denotes a 0-1
variable which takes the value 1 iff condition P holds.

Definition 6 (Precondition-relaxed projection).
The precondition relaxed projection problem with a set R of
relaxed fluents, ∆ ⊆ R of fluents assumed within the execu-
tion s, and a penalty function λ, is defined

PRDoλ(R,∆, δ, S0, s) ≡ PRR∆
R(Do(δ, S0, s))

Lemma 1. For any choice of relaxed fluents R, any legal
execution is legal in the precondition-relaxed problem, i.e.,

(D |= Do(δ, S0, s)) ⊃ ∀R.∃∆.(D |= PRDo(R,∆, δ, S0, s)),

Proof. ∆ ⊆ {f(s) ∈ R | R[f(s)]}, the set of assumptions
required is at most the set of relaxed fluents that actually
hold in the original problem.

Lemma 2. For any choice of relaxed fluents R and penalty
function λ satisfying ∀f, s.λ(f, s) ≥ 0, the penalized cost of
any solution s∗ to the original problem is no more than the
non-penalized cost.

Proof sketch. By contradiction.
Since s∗ is a solution to the non-relaxed problem, for each

f which is a precondition of any action in s∗, it must hold
that ∀s � s∗ : f(lasteff (f, s)), as any subsequent effect
would either negate f , causing s∗ not to be a solution, or it
would cause f in which case that subsequent situation would
be the cause of f .

Assume the penalized cost is greater than the non-penalized
cost. Then there exists some precondition f assumed in
some situation s � s∗ where the cost of assuming f exceeds
the bonus for causing f (because the restriction on λ means
there cannot be a penalty for causing f):

min(λ(f, s′) | lasteff (f, s) � s′ ≺ s) > λ(f, lasteff (f, s))

But it is impossible that the minimum of a set that includes
the value λ(f, lasteff (f, s)) exceeds that value, hence we have
a contradiction.

Theorem 2. For any choice of relaxed fluents R and
penalty function λ satisfying ∀f, s.λ(f, s) ≥ 0,

min
Costλ(∆,S)

{S | D |= PRDo(R,∆, δ, S0, S)}

is a relaxation of min
Cost(S)

{S | D |= Do(δ, S0, S)}.

Proof. Directly from Lemmas 1 and 2.

For our relaxation to remain decidable, we place a slightly
different restriction on the penalty function: it should have
finitely-many ways that actions can have negative cost. An
action can have negative cost if any precondition or post-
condition has a non-zero penalty.

Theorem 3. Let δ be a bounded-benefit program and R
a set of fluents to relax such that the branching factor of δ
remains bounded. For any choice of relaxed fluents R (where
the branching factor remains bounded) and penalty function
λ and bounded-benefit program δ. If the penalty function λ
has a finite number of solutions to λ(f, s) 6= 0, and a fi-
nite total magnitude M =

∑
|λ(f, s)|, then the precondition

relaxed problem is itself a bounded-benefit program.

Proof sketch. By assumption there is a bounded to-
tal benefit that can be gained, given an initial lower bound.
Defining lb′(l) = lb(l) −M gives a lower bound for the re-
laxed problem with the necessary properties.

When lb and M are computable and known, we can use
lb′ to apply informed search algorithms in subproblems.

Note that when R satisfies the requirements of Theorem
3, an infinite number of penalty functions can be systemati-
cally generated. Importantly, to estimate the joint cost, one
need not know any agent’s program, merely be able to query
agents for their optimal relaxed plan given a set of relaxed
fluents and penalty function.

6. MULTI-AGENT RELAXATIONS
We now have a mechanism to generate per-agent relaxed

plans from penalties. The next logical step is to merge these
into a relaxed joint execution. There are several approaches
to merging agent plans, the most general approach is to
treat agent i’s plan as a literal program: do([α1, . . . , αn], S0)
becomes δi ≡ α1; · · · ;αn; then to merge a pair of such literal
programs for agents i and j by taking the minimum cost plan
generated by Do(δi‖δj , S0, s). Other merge operators cannot
have solutions that are not also solutions to this general
merge operator.

We assume that the actions in s originating from s1 are
distinguishable from those in s2 using a function agent(α)
that returns the agent responsible for this action. We can
then define a predicate to un-merge a joint execution into a
per-agent equivalent:

m−1(agt , S0, s
′) = S0

m−1(agt , do(α, s), s′) = (s′ = do(α, s) ∧ agent(α) = agt)

∨ (s′ = s ∧ agent(α) 6= agt)

This is an inverse of any merge operator, regardless of its
definition. This also allows us to determine the agent caus-
ing a fluent in a joint execution:

CausedBy(f, s, agt) ≡
lasteff (f, do(α, s)) = do(α′, s′) ∧ agent(α′) = agt

A more practical approach to merging, which we use in our
implementation, is temporal merging based on the temporal
semantics of MIndiGolog [10]. Each agent’s plan maintains
a per-agent notion of time, and the merged plan must ensure
that the actions in the resulting plan are a topological sort
of the actions in the agent plans that is consistent with the
timestamp for that action. that is, if two agents, i and j per-
form actions αi and αj then, for each s and s′ representing
a prefix of the merged joint execution,

do(αi, s) � do(αj , s
′) ⊃

timei(do(αi, s)) ≤ timej(do(αj , s
′)).

must hold for the merge to be temporally consistent.
In the cooperative navigation domain, under the assump-

tion that each action takes one unit of time, a temporal
consistent merge of do([move(a, x, y), move(a, y, z)], S0) and
do([unlock(b, x, y), move(b, x, p), move(b, p, q)], S0) would be

do([move(a, x, y), unlock(b, x, y),

move(a, y, z), move(b, x, p), move(b, p, q)],

S0)

but

do([move(a, x, y), unlock(b, x, y),

move(b, x, p), move(b, p, q), move(a, y, z)],

S0)

would not be temporally consistent. Namely, move(a, y, z),
performed at time 2 in the per-agent plans, is performed
after move(b, x, p) in the merged plan, but this second action
was performed at time 1 in the per-agent plan.

This approach massively reduces the computational over-
head of merging plans, and also allows us to apply penalty
functions more consistently between agents by taking time
into account. For example, in the multi-agent navigation
domain from Figure 1, the penalty for assuming x → y is
unlocked at time 0 is high, as this is un-achievable.

In computing a multi-agent relaxation, we would like to
totally avoid merging plans to compute a lower bound. To
this end we define a class of (penalized) cost functions that
allow us to simply sum the per-agent costs. We refer to such
cost functions as “merge-consistent”.

Definition 7 (Merge-consistent cost). The penalty
function λ(f, s) and the cost function Costλ are consistent
with a merge operation m(δ1, δ2) under a relaxed set R of
fluents if for all relaxed plans s1 and s2, with assumption
set ∆ = ∆1 ∪∆2 ⊂ R,

Costλ(R,∆,m(s1, s2)) = Costλ(R,∆1, s1)

+ Costλ(R,∆2, s2)

Merge-consistent penalties are quite easy to develop in
practice within temporal domains, when penalties and costs
are consistently applied at the same time points. Unfortu-
nately this approach alone is not always sufficient to guar-
antee that the per-agent relaxed optima (which are the only
solutions we want to consider ideally) can be merged to pro-
duce the optimal joint execution.

Referring again to Figure 1, now assume that a needs to
plan a path from x to z and b one from p to z. As usual
b may unlock the locked edge, and Unlocked(y, z) is relaxed
in all situations except S0. The optimal solution is for both
agents to travel via y → z. We see the two non-penalized
per-agent optima are do([move(a, x, y), move(a, y, z)], S0) and
do([move(b, p, q), move(b, q, z)], S0).

No penalty function we can give to b can give any in-
centive to travel via y → z, as b will necessarily pay the
same penalty for assumption as it gets in bonuses, unless
b performs some intermediate action, which would be sub-
optimal. The reason for this is that the precondition can
benefit multiple agents simultaneously. Hence we duplicate
Unlocked(y, z) as Unlockeda(y, z) and Unlockedb(y, z) with
identical successor state axioms. Each agent then requires
only its own copy of this fluent to perform the action, and
this allows the bonuses to exceed the penalties. Importantly,
this transformation also guarantees that the ∆s for each
agent do not overlap, and therefore no assumption costs will
be double counted when a single assumption could be used
in the relaxed joint program δ1‖δ2.

Definition 8 (Shared Relaxation). A shared relax-
ation is a domain D, a set of fluents R and merge operator
m such that

D |= Do(δ1‖δ2, S0, s) ⊃
∃∆1,∆2 : PRDo(R,∆1, δ1, S0, s1)

∧ PRDo(R,∆2, δ2, S0, s2) ∧m(s1, s2) = s

∧ ∀f¬∃s′ � s :

f(m−1(1, s′)) ∈ ∆1 ∧ f(m−1(2, s′)) ∈ ∆2

That is, it is a relaxed domain where sufficiently many flu-
ents are relaxed to ensure that each agent can operate inde-
pendently in the relaxed domain and thus all legal executions
in the original can be generated by merging relaxed single-
agent plans, with no assumptions shared between agents.
This non-overlap restriction guarantees that penalties can-
not be “double counted”.

Theorem 4. Let λ be a penalty function, merge-consistent
with a merge operator m under a shared relaxation R. Let
A be a set of agents numbered 1 to n, let ∆i be the set of
assumptions made by agent i, and let si be agent i’s relaxed
plan. For all joint executions s which are legal in the original
domain:

∃s1 . . . sn : s = m(s1, . . . , sn)∧∑
i∈A

Costλ(R,∆i, si) ≤ Cost(s)

Proof sketch. By Definition 8, s1 . . . sn exist. By Defi-
nition 7,

∑
i∈A

Costλ(R,∆i, si) is equivalent to Costλ(R,∆, s).

Namely, as no two ∆i overlap, no penalties can be double
counted. So by Lemma 2, Costλ(R,∆, s) ≤ Cost(s).

Obviously, to be practically useful such a relaxation must
be computationally easier than the original problem. Choos-
ing such a set is an exercise for the modeler. Table 1 com-
pares the precondition-relaxed runtime with a non-relaxed
implementation in MIndiGolog and observe speedups in ex-
cess of 9000× in some cases. Importantly, we can see both
from Definition 7 and our experimental results that the com-
plexity of computing the relaxation for n agents is in O(n)
assuming the penalty function and remaining domain are
unchanged.

7. CONSTRUCTING JOINT EXECUTIONS
We now have methods to guide agents towards behaviours

that benefit the overall objective in the precondition relaxed
problem. We would like to use a similar approach to achieve
the same aim in the original problem.

We can also guide other agents away from hard to satisfy
assumptions, and towards causing helpful preconditions. By
violating the non-negativity assumption in Lemma 2, we can
also do the converse: guide agents towards assumptions, and
away from causing interfering effects.

Theorem 5. Given a feasible joint execution sj such that
Do(S0, δ1‖δ2, sj)∧sj = m(s1, s2), there exist relaxed precon-
dition sets R1 and R2 such that PRDo(R1,∆1, S0, δ1, s1) ∧
PRDo(R2,∆2, S0, δ2, s2).

Proof sketch. By Lemma 1, PRDo(R,∆, S0, δ1‖δ2, s)
must hold for any R. If we then constrain Ri to be a superset

of each precondition f of any action whose last effect was
caused by a different action, that is, for all agents agt the
following should hold for each fluent f true in any situation
s � sj :

CausedBy(f, s, agt ′) ∧ f(s) ∧ agt ′ 6= agt ⇒
m−1(agt , s, s′) ∧ [[f(s′)]] ∈ Ri ∧ [[f(s)]] ∈ R

Each Ri is sufficient to allow each agent to perform the ac-
tion sequence required using PRR. Any superset of Ri al-
lows at least the same solution set.

To construct a feasible joint execution we use a form of
Lagrangian relaxation. We solve the relaxed problem for
each agent and then check whether there is a feasible inter-
leaving. If not, we will discover some relaxed fluents that
are assumed but not caused by any agent. The penalty for
these fluents will then be increased and the process iterated.

Consider the situation in the cooperative navigation do-
main, where a is at x and b is at y initially and can unlock
y → z. If we relax the Unlocked(y, z) fluent with penalty 0,
a’s optimal relaxed plan is do([move(a, x, y), move(a, y, z)], S0),
which is exactly the plan a should execute. However, with
the same penalty, b’s optimal plan is to do nothing. We
observe that these action sequences cannot be interleaved
to form a legal joint execution. The reason for this is that
there is a relaxed fluent assumed by a that is not generated
by any agent. If instead we relax the same fluent with a
penalty of 2, a will perform the same action sequence (but
incur 2 additional cost units of penalty), and b will perform
do(unlock(b, y, z), S0), gaining 2 units in bonuses. Impor-
tantly, agent a has no knowledge whatsoever of agent b, and
vice-versa. Even the central planner setting the penalties
has no specific a priori knowledge of b’s capability to un-
lock y → z, only by giving b sufficient incentive to achieve
this precondition for a is this capability discovered. All that
each agent knows is that there may exist an agent capable
of causing Unlocked(y, z), and an agent that may rely on the
same fluent.

Table 1 shows results from the relaxations used in the
agent-based rail scheduling application described in [7]. In
this application we schedule a set of train services on a
shared rail network subject to mutual exclusion constraints
(two trains cannot simultaneously occupy the same track
section). In the results we present, these mutual exclusion
constraints are relaxed, and we apply a temporal penalty
function and merge operator. As this represents a schedul-
ing problem, we compare our approach to a state-of-the-art
solver for scheduling problems, cpx [18].

The penalties were determined by the optimal dual so-
lution to a linear program modeling the mutual exclusion
constraints. The per-agent relaxed plans were then incre-
mentally added to a pool, the linear program was re-solved,
and the process was iterated. This process is an application
of Branch-and-Price [4]—for details, see [7]. The results il-
lustrate the speedup that can be gained by relaxing the right
preconditions, and that relax-&-merge can be used to find
feasible joint executions significantly faster than existing ap-
proaches.

Table 1 shows the effectiveness of using the relax-&-merge
approach to constructing feasible joint executions. It also
shows the average time to solve a full joint relaxation ex-
trapolated from the average time to solve a single agent’s
relaxation. The time is extrapolated because the relaxation

Agents Golog cpx Relaxed* Relax-&-Merge

2 0.4 0.7 0.1 1.6
4 — 1.7 0.2 2.0
8 — 7.5 1.1 7.6
16 — 37.9 4.6 29.7
32 — — 12.5 50.3
64 — — 25.3 150.3

Table 1: Time to first solution in seconds of the
Bulk Freight Rail Scheduling Problem described in
[6]. (— denotes runtime exceeds 1800s, or memory
usage exceeds 4GB). (* time to optimal solution of
the precondition relaxed problem)

was stopped early whenever an agent plan that changed the
violated constraints was generated. In the table we com-
pare a special case of relax-&-merge (fragment-based plan-
ning [7]) with (column 2) MIndiGolog [10], a Prolog-based
multi-agent Golog interpreter; and (column 3) cpx, a con-
straint programming solver using Lazy Clause Generation
[14]. The implementation of [7] was instrumented to find
the proportion of time spent on relaxation (column 4). All
experiments were performed on a 2.4 GHz Intel Core i3 with
4GB RAM running Ubuntu 12.04. Our implementation used
Gurobi 5.1, CPython 2.7.3. We used the binary version of
cpx included with MiniZinc 1.6.

8. RELATED WORK
Baier et al. [2] have considered the compilation of a re-

stricted class of Golog programs using an intermediate lan-
guage for capturing temporal logic preferences. This could
allow PDDL3-compliant classical planners to tackle prob-
lems of a similar nature, utilising a range of well studied
tractable relaxations. However, PDDL is less expressive
than Golog in general [16]. Moreover, the application of clas-
sical approaches to multi-agent planning problems requires
knowledge of each agent’s goals and transition function. In
contrast, the approach proposed in this paper requires only
that agents can generate optimal plans given a penalty func-
tion.

Delete relaxation is the most common of these relaxations
and has been applied to Golog to generate a heuristically
good execution [5]. However [5] does not use the delete re-
laxation to generate lower bounds as no attempt is made to
approximate the optimal solution to the relaxed problem,
this could limit the accuracy of information derived from
this heuristic. The alternative search strategies that are ap-
plicable to the bounded-benefit programs we introduce in
this paper could allow this issue to be addressed.

In contrast to delete relaxation, our approach introduces
precondition relaxation and demonstrates its applicability
to both computing relaxations in multi-agent problems, and
constructing feasible joint executions.

Abduction has been used extensively in planning, however
only one published approach the authors are aware of uses
abduction to synthesise plans. In this approach planning
is achieved using predicates distinguished as abducible, and
is formalised in the event calculus [19], however this work
does not consider optimisation or multi-agent applications.
The use of costs in conjunction with abduction has also been
used in multi-agent reasoning for plan recognition [1].

9. CONCLUSIONS
We have introduced a notion of cost to the situation calcu-

lus, and described a logical framework to prove the relative
quality of solutions to projection problems in Golog with-
out the need to enumerate the solution space. These enable
more control of the search algorithm, and with further work
could allow the integration of informed search techniques
from automated planning.

Our main contribution is precondition relaxations, a class
of relaxations that are particularly applicable to multi-agent
domains. Our experimental results show that relaxations
can be chosen which yield dramatic speedups and scale lin-
early with increasing numbers of interacting agents. These
relaxations can be usefully and systematically varied, so as
to not only improve the lower bounds they generate, but also
to generate feasible joint executions from relaxed per-agent
plans.

We have explained the restrictions on domains where these
relaxations can be applied and described some simple trans-
formations that can be applied, to ensure these properties
hold. Additionally we describe temporal merging which rep-
resents additional constraints that can be added to a domain
such that the overhead of merging per-agent plans can be
effectively reduced.

Importantly, these relaxations and approaches to search
can be applied without knowledge of any agent’s program,
so long as those agents can be queried for their optimal plan
under a given penalty function.

ACKNOWLEDGEMENTS
NICTA is funded by the Australian Government through
the Dept. of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

REFERENCES
[1] D. Appelt and M. Pollack. Weighted abduction for

plan ascription. User Modeling and User-Adapted
Interaction, 2(1-2):1–25, 1992.

[2] J. A. Baier, C. Fritz, M. Bienvenu, and S. A.
McIlraith. Beyond classical planning: Procedural
control knowledge and preferences in state-of-the-art
planners. In Proc. AAAI’08, volume 3, pages
1509–1512. AAAI Press, 2008.

[3] E. Balas. The prize collecting traveling salesman
problem. Networks, 19(6):621–636, 1989.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser,
M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge
integer programs. Op. Res., 46(3):316–329, 1998.

[5] M. L. Blom and A. R. Pearce. Relaxing regression for
a heuristic GOLOG. In STAIRS 2010: Proc. Fifth
Starting AI Researchers’ Symposium, pages 37–49.
IOS Press, 2010.

[6] J. Classen and G. Lakemeyer. A logic for
non-terminating Golog programs. In Principles of
Knowledge Representation and Reasoning, pages
589–599. AAAI, 2008.

[7] T. Davies, A. R. Pearce, P. J. Stuckey, and
H. Søndergaard. Fragment-based planning using
column generation. In Proc. ICAPS’14, pages 83–91,
2014.

[8] G. De Giacomo, Y. Lespérance, and H. Levesque.
ConGolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121(1-2):109–169, 2000.

[9] M. L. Fisher. The Lagrangian relaxation method for
solving integer programming problems. Management
Science, 50(12 supplement):1861–1871, 2004.

[10] R. F. Kelly and A. R. Pearce. Towards high level
programming for distributed problem solving. In
S. Ceballos, editor, IEEE/WIC/ACM Int. Conf.
Intelligent Agent Technology (IAT-06), pages 490–497.
IEEE Comp. Soc., 2006.

[11] E. Keyder and H. Geffner. Soft goals can be compiled
away. Journal of Artificial Intelligence Research,
36(1):547–556, 2009.

[12] C. Lemaréchal. Lagrangian relaxation. In M. Jünger
and D. Naddef, editors, Computational Combinatorial
Optimization, volume 2241 of LNCS, pages 112–156.
Springer, 2001.

[13] K. Mehlhorn and M. Ziegelmann. Resource
constrained shortest paths. In Algorithms—ESA 2000,
volume 1879 of LNCS, pages 326–337. Springer, 2000.

[14] O. Ohrimenko, P. Stuckey, and M. Codish.
Propagation via lazy clause generation. Constraints,
14(3):357–391, 2009.

[15] R. Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[16] G. Röger and B. Nebel. Expressiveness of ADL and
Golog: Functions make a difference. In Proc. AAAI’07,
volume 2, pages 1051–1056. AAAI Press, 2007.

[17] S. Sardina and G. De Giacomo. Composition of
ConGolog programs. In Proc. IJCAI’09, pages
904–910, 2009.

[18] A. Schutt, F. Thibaut, P. J. Stuckey, and M. G.
Wallace. Solving RCPSP/max by lazy clause
generation. Journal of Scheduling, 16:273–289, 2013.

[19] M. Shanahan. An abductive event calculus planner.
Journal of Logic Programming, 44:207–239, 2000.

