
Lagrangian Decomposition via sub-problem
Search

Geoffrey Chu, Graeme Gange, and Peter J. Stuckey

National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia
{geoffrey.chu,gkgange,pstuckey}@unimelb.edu.au

Abstract. One of the critical issues that affect the efficiency of branch
and bound algorithms in Constraint Programming is how strong a bound
on the objective function can be inferred at each search node. The
stronger the bound that can be inferred, the earlier failed subtrees can
be detected, leading to an exponentially smaller search tree. Normal CP
solvers are only capable of inferring a bound on the objective function via
propagating the problem constraints. Unfortunately, for many problem
classes, this does not yield a very strong bound. Recently, Lagrangian
decomposition methods have been adapted and applied to Constraint
Programming in order to yield stronger bounds on the objective func-
tion. While these methods yield some success, they are somewhat limited
in the types of problems they can be effectively applied to. In particular,
the set of constraints has to be divided into subsets such that each sub-
set can be solved efficiently via a specialized propagator, e.g., consists of
a knapsack problem, or a cost-MDD problem. For many more practical
problem classes, such a division of constraints is simply not possible and
thus those methods cannot be applied. In this paper, we propose a La-
grangian decomposition method where the sub-problems are solved via
search rather than through a specialized propagator. This has the benefit
that the method can be applied to a much wider range of problems. We
present experiments to show the effectiveness of our method.

1 Introduction

Constraint Programming (CP) approaches are state-of-the-art for solving many
combinatorial optimization problems using a branch and bound approach. But
a critical issue that effects the the efficiency of branch and bound algorithms
in CP is how strong a bound on the objective function can be inferred at each
search node. The stronger the bound that can be inferred, the earlier failed
subtrees can be detected, leading to an exponentially smaller search tree. Normal
CP solvers are only capable of inferring a bound on the objective function via
propagating the problem constraints. Unfortunately, for many problem classes,
this does not yield a very strong bound. Indeed for this reason Mixed Integer
Programming (MIP) approaches are preferable to CP for solving many forms of

combinatorial optimization problem – they have strong bounds derived from the
linear programming relaxation of the problem.

Recently, Lagrangian decomposition methods have been adapted and applied
to Constraint Programming in order to yield stronger bounds on the objective
function [1, 2]. Lagrangian decomposition allows us to break an optimization
problem down into parts that act independently, analogous to the way that CP
solvers treat different constraints. For Lagrangian decomposition each of these
parts is a constrained optimization problem, and together they generate bounds
on the objective, which can be much stronger than simply propagating the ob-
jective constraint. The use of Lagrangian decomposition in CP is an exciting
development, exactly because it gives us scope for the same powerful heteroge-
neous approach to constraint satisfaction used in CP, through separate commu-
nicating propagators, to be used for constraint optimization, through separate
communicating optimizers.

While the introduction of Lagrangian decomposition to CP is an important
development, current methods are quite limited in the types of problems they
can be applied to. In particular, the set of constraints have to be divided into
subsets such that each subset can be solved efficiently via a specialized propaga-
tor/optimizer. Examples considered so far restrict the sub-problems to be either
knapsack problems [2], or problems specified by a cost-MDD constraint [1] (al-
though this can theoretically express any COP).

For many problem classes, such a division of constraints is simply not possi-
ble and thus those methods cannot be applied. In this paper, we propose a La-
grangian relaxation method where the sub-problems are solved via search rather
than through a specialized propagator. This has the benefit that the method can
be applied to a much wider range of problems. We present experiments to show
the effectiveness of our method.

The contributions of this paper are:

– a generic approach to Lagrangian decomposition, applicable to any problem
with a linear objective.

– a meta-search based approach to solving Lagrangian decomposed sub-problems,
in order to improve bounds on the objective.

– experiments showing that the search based approach to Lagrangian decom-
position can be highly effective.

2 Background and Definitions

2.1 Constraint Programming with Lazy Clause Generation

Let V be a set of (integer) variables (we will treat Boolean variables as 0-1
integers).

A valuation, θ, is a mapping of variables to values, denoted {x1 7→ d1, . . . , xn 7→
dn}. Define vars(θ) = {x1, . . . , xn}. We can apply a valuation to a variable θ(xi)
to return the value di, and extend application of valuations θ to arbitrary ex-
pressions involving vars(θ) in the obvious way.

A primitive constraint, c, is a set of valuations over a set of variables vars(c).
A valuation θ is a solution of c if {x 7→ θ(x) | x ∈ vars(c)} ∈ c. A constraint C is
a conjunction of primitive constraints, which we often treat as a set. A valuation
θ is a solution of constraint C if it is a solution for each c ∈ C. We write C1 |= C2

if every solution of C1 is a solution of c2. We extend this notation to valuations,
writing θ |= C if

∧n
i=1 xi = di |= C where θ = {x1 7→ d1, . . . , xn 7→ dn}.

A literal is a unary constraint (we can restrict to the forms x = d, x 6= d, x ≥
d, x ≤ d), or false. A domain D is a conjunction of literals over vars(D). D is a
false domain if it has no solutions. We use notationD(x) = {θ(x) | θ is a solution of D}.
We use range notation [l .. u] = {d | l ≤ d ≤ u}. We can map a valuation θ to a
domain D0 = ∧x∈vars(D)x = θ(x).

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a conjunction of literals p(c)(D), where D ∧ c |= p(c)(D). We assume each
propagator is checking, that is if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD
is a solution of c and {false} otherwise. A propagation solver prop(P,D) applied
to a set of propagators P and a domain D repeatedly applies the propagators
p ∈ P until p(D′) = ∅ for p ∈ P , and returns D′.

A constraint satisfaction problem (CSP) is a constraint C, often broken into
a domain constraint and the remainder C ⇔ D ∧ C ′. A constraint optimization
problem (COP) is of the form z = min{e | C}, where e is an expression to be
minimized and C is a constraint.

In lazy clause generation (LCG) solvers [3] propagators are also required to
return explanations for each new consequence l ∈ p(c)(D), that is an explanation
clause e ≡ l1 ∧ · · · ln → l where ∀1 ≤ i ≤ n,D |= li and c |= e. LCG solvers,
like SAT solvers, create an implication graph, where every new consequence is
attached to a reason. On failure this is used to create a nogood by repeatedly
replacing literals in the explanation of failure until only one literal that became
true after the last decision remains. This nogood is guaranteed to generate new
propagation information. See [3] for more details.

2.2 Lagrangian Decomposition

Lagrangian decomposition is a well understood application of Lagrangian relax-
ation in order to decompose an optimization problem into parts. Consider an
optimization problem of the form z = min{cx | C1(x) ∧ C2(x)} where z is the
objective value, c are the coefficients and x the decisions of the linear objective,
and C1(x) and C2(x) are arbitrary constraints, then we can provide a lower
bound on the objective using

z = min{cx | C1(x) ∧ C2(x)} = min{cx | C1(x) ∧ C2(y) ∧ x = y}
= min{cx+ λ(x− y) | C1(x) ∧ C2(y) ∧ x = y}
≥ min{cx+ λ(x− y) | C1(x) ∧ C2(y)}
= min{(c+ λ)x | C1(x)}+ min{−λy | C2(y)}

The problem is decomposed by duplicating the variables and adding a Lagrange
multiplier penalty λ to try to force the duplicate variables to be the same.

The above reasoning shows how to break a problem into two parts, the ap-
proach straightforwardly generalizes into n+ 1 parts by creating n copies of the
variables and n sets of equations relating the copied variables with the original
variables.

The correctness of the lower bound holds regardless of the values of λ, but
we can get stronger bounds by solving the Lagrangian dual to obtain the best
values for λ. In the CP space, since the constraints Ci(x) are arbitrary the usual
approach to do this is the subgradient method [4].

In CP many integer variables represent different choices, and the order of the
integers is irrelevant, hence applying a Lagrangian penalty like xi− yi makes no
sense since if it is non-zero it simply represents that two different choices are
made of (original) variable xi. Hence Lagrangian decomposition approaches for
CP usually break such integer variables into separate 0-1 variables representing
which choice is taken. Given Dinit(xi) = [l..u] we replace xi by 0-1 variables
xji , l ≤ j ≤ u where xji = 1↔ xi = j. We then replace xi = yi by the conjunction∧
l≤j≤u x

j
i = yji . The key advantage for Lagrangian decomposition is that we

have separate Lagrange multipliers λ for each such equation.
The CP based Lagrangian decomposition approaches, solve the original prob-

lem z = min{cx | C1(x)∧C2(x)} by effectively solving the problem min{z | C1(x)∧
C2(x)∧z = cx∧z ≥ z1+z2∧z1 = min{(c+λ)x | C1(x)}}∧z2 = min{−λy | C2(y)}}.
Each of the constraints in the master problem are represented by propagators.
This requires a propagation algorithm for the each of optimization sub-problem
constraints. This is a distinct restriction on the approaches. Some practical ap-
proaches to building these propagation algorithms are:

– restrict to a well understood problem: e.g. z = min{−λy | dy ≤ d0} is an
instance of the knapsack problem, for which many algorithms are known,
and indeed quick approximation algorithms are available.

– encode the problem using an existing global: e.g. z = min{−λy | C2(y)} can
be represented as a cost-MDD constraint, where the MDD encodes C2(y).
As long as the MDD constraint is not too large then we can use the global
cost-MDD propagation algorithms [5, 6].

In the end the difficulty of creating efficient propagators for the optimization
sub-problem can severely limit the applicability of Lagrangian decomposition to
CP.

3 Objective Splitting Lagrangian Decomposition

The existing approaches to Lagrangian decomposition decompose the problem
in a constraint centric way, splitting up the constraints into disjoint subsets and
assigning the corresponding part of the objective to each subset. We advocate a
decomposition based on breaking up the objective function directly and assigning
the corresponding parts of the constraints to each part of the objective. Unlike
normal Lagrangian decomposition where each constraint can only belong to one
sub-problem, we project the original constraints onto each sub-problem, meaning

that each original constraint could have a projection in more than one sub-
problem.

3.1 Problem Decomposition

We consider a similar Lagrange decomposition based on splitting on the objec-
tive for z = min{cx + du | C(x, u, v)}. We consider three classes of variables: x
and u appear in the objective and v are auxiliary variables; and split the con-
straints C(x, u, v) into three categories: C1(x, v) are constraints only involving
x and auxiliaries, C2(u, v) are constraints only involving u and auxiliaries and
C0(x, u, v) are the remaining constraints. In practice if we have auxiliaries v only
related to x we can add them to x, treating them as having coefficient 0 in the
objective, similarly for auxiliaries only related to u. This reduces the number of
Lagrange multipliers required.

The objective splitting decomposition is based on the following reasoning:

z = min{cx+ du | C(x, u, v)}
= min{cx+ du | C0(x, u, v) ∧ C1(x, v) ∧ C2(u, v)}
= min{cx+ du | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v) ∧ C01(x, u, v)}
= min{cx+ du | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v′) ∧ C01(x, u, v′) ∧ v = v′}
= min{cx+ du+ λ(v − v′) | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v′) ∧ C01(x, u, v′) ∧ v = v′}
≥ min{cx+ du+ λ(v − v′) | C1(x, v) ∧ (∃u.C02(x, u, v)) ∧ C2(u, v′) ∧ (∃x.C01(x, u, v′))}
= min{cx+ λv | C1(x, v) ∧ ∃u.C02(x, u, v)}+ min{du− λv′ | C2(u, v′) ∧ ∃x.C01(x, u, v′)}
= min{cx+ λv | C1(x, v) ∧ ∃u.C02(x, u, v)}+ min{du− λv | C2(u, v) ∧ ∃x.C01(x, u, v)}
= min{cx+ λv | ∃u.C1(x, v) ∧ C02(x, u, v)}+ min{du− λv | ∃x.C2(u, v) ∧ C01(x, u, v))}
= min{cx+ λv | ∃u.C(x, u, v)}+ min{du− λv | ∃x.C(x, u, v)}
≥ min{cx+ λv | ∃̄u.C(x, u, v)}+ min{du− λv | ∃̄x.C(x, u, v)}

where C02(x, u, v)⇔ C0(x, u, v)∧C2(u, v), C01(x, u, v)⇔ C0(x, u, v)∧C1(x, v),
and the quasi projection, defined later, ∃̄y.C is a formula such that ∃y.C ⇒ ∃̄y.C.
The two weakening steps hold since weakening the constraints can only reduce
the minimum value.

The resulting CP optimization problem is min{z | C(x, u, v)∧z = cx+du∧z ≥
z1 + z2 ∧ z1 = min{cx+λv | ∃̄u.C(x, u, v)}∧ z2 = min{du−λv | ∃̄x.C(x, u, v)}}.
Notice that all sub-problems use the same variables, and all constraints are
present (in a quasi projected form) in every sub-problem.

We can generalize this to separating into m components

z = min{c1x1 + · · · cmxm | C(x, v)}
≥ min{c1x1 + (λ2 + · · ·λm)v | ∃̄x2...xm.C(x, v)}+

min{c2x2 − λ2v | ∃̄x1x3...xm.C(x, v)}+ · · ·+
min{cmxm − λmv | ∃̄x1...xm−1.C(x, v)}

Now the resulting problem appears far more complex than the original prob-
lem, since we have m sub-problems that appear to be (almost) copies of the
original. The advantage that arises is that we have weakened the constraints in
the sub-problem and still get correct bounds. Of course if we weaken them too
much the bounds will be useless.

The objective based decomposition makes use of existential quantification to
allow us to separate constraints that involve objective variables from different
classes. Since projection is impractical to compute we weaken the projection.
While the logic holds for an arbitrary weakening we will use a certain form we
call quasi projection.

Given a constraint C with vars(C) = V a quasi projection of C onto variables
V , written ∃̄{V −V }.C or ∃̄−V .C, is the set of solutions θ over variables V such
that prop({p(c) | c ∈ C}, Dθ) does not return a false domain. We call V the local
variables of the qausi projection.

Proposition 1. ∃W.C ⇒ ∃̄W.C

Proof. By definition each solution σ of ∃W.C is such that there exists θ solution
of C where σ = {x 7→ θ(x) | x ∈ V −W}. The call prop({p(c) | c ∈ C}, Dσ) can-
not return a false domain since this would eliminate the solution θ erroneously.
Consider the propagator that did this, i.e. θ ∈ D′ and D′′ = p(D′) where θ 6∈ D′′.
Now θ |= D ∧ c but θ 6|= p(D) which contradicts the definition of a propagator.
Hence σ ∈ ∃̄W.C. ut

Example 1. Consider the constraint C ≡ x < y ∧ y < z ∧ y mod 3 = 0 ∧ x ∈
0..4 ∧ y ∈ 0..4 ∧ z ∈ 0..4. Assuming bounds propagators for the inequalities and
a mod propagator that only wakes when y is fixed, the quasi projection onto
{x, z} is {{x 7→ 0, z 7→ 3}, {x 7→ 0, z 7→ 4}, {x 7→ 1, z 7→ 4}, {x 7→ 2, z 7→ 4}}.
Note how {x 7→ 0, z 7→ 2} causes failure since propagation fixes y to 1 where the
mod constraint then fails. The actual projection eliminates the first solution. If
the propagator for y mod 3 = 0 was stronger, changing the domain of y to {3}
then the quasi projection would return the projection. ut

Example 2. Consider a nurse rostering problem. We have n nurses working for m
days and on each day we must choose a shift type in S for each nurse (including
a day off). The model has complex restrictions on the sequence of shifts that
each nurse can undertake, typically encoded by a regular constraint using some
finite automata FA, and vectors of upper u and lower l limits on the number
of nurses assigned to each shift type on a day, typically encoded by a global
cardinality constraint. Finally each nurse i has a preferred shift pij for each day
j, and the aim is to maximize the number of preferences that are met by the
schedule. Let xij represent the shift type chosen for nurse i on day j, then the
model is

z = minimise−
∑m
j=1

∑n
i=1(xij = pij)

subject to gcc low up([xij |i ∈ 1..n], S, l, u), j ∈ 1..m
regular([xij |j ∈ 1..m], FA), i ∈ 1..n

We decompose the objective into days, arriving at the following m sub-
problems P (j), of the form yj = min{−

∑n
i=1(xij = pij) | ∃̄−Vj

.C} where
Vj = {xij | i ∈ 1..m} and C is all the constraints. Note that the constraint
gcc low up([xij |i ∈ 1..n], S, l, u) will certainly be satisfied by any solution of the
quasi-projection since none of its variables are projected away. In this problem
since there are no auxiliary variables we need no Lagrange multipliers. ut

Example 3. Consider the problem of max density still life, building a 2m × 2m
square which is stable under the Conway’s Game of Life rules, and has the
maximum number of live cells. The best model [7] for this minimizes wastage
(wasted opportunities for placing live cells) which can be computed from each
3 × 3 subsquare. Let xij , 1 ≤ i, j ≤ 2m be the 01 decisions for each cell: 1 is
live, 0 is dead. Let wij , 2 ≤ i, j ≤ 2m− 1 be the wastage for the 3× 3 subsquare
centered at (i, j). A (simplified for ease of exposition) model for the problem is

z = minimise
∑2m−1
i=2

∑2m−1
j=2 wij

subject to table([
xi−1,j−1, xi−1,j , xi,j+1,
xi,j−1, xi,j , xi,j+1,
xi+1,j−1, xi+1,j , xi+1,j+1,

wij], T), i, j ∈ 2..2m− 1

where T is a table relating 3×3 patterns to their wastage. We will use wastageij
as shorthand for the table constraint. We consider a decomposition of the ob-
jective into 4 quadrants z = minimise

∑m
i=2

∑m
j=2 wij +

∑m
i=2

∑2m−1
j=m+1 wij +∑2m−1

i=m+1

∑m
j=2 wij +

∑2m−1
i=m+1

∑2m−1
j=m+1 wij The auxiliary x variables for columns

and rows m and m+ 1 are shared by sub-problems and need Lagrange multipli-
ers, the remaining x variables only appear in one sub-problem and do not. The
top left quadrant sub-problem has objective

z = minimise

∑m
i=2

∑m
j=2 wij

+
∑m
i=2 λi,mxi,m +

∑m
j=2 λm,jxm,j

−
∑m
i=2 λi,m+1xi,m+1 −

∑m
j=2 λm+1,jxm+1,j − λm+1,m+1xm+1,m+1

The quasi projection (quasi)eliminates all variables not in top left quadrant
except those included in the last line of the objective. All of the wastage con-
straints for the top left quadrant will be guaranteed to be solved since none of
their variables are projected out, hence the bound will understand the effect of
their interaction on the objective. ut

How to split the objective expression into parts remains a question for all
Lagrangian decomposition methods. In many problem classes, the partitioning
is somewhat natural. It is often the case that problems have a certain amount
of locality, where there are certain groups of variables which are strongly related
to each other, but weakly related to other variables. We propose to partition the
objective function into groups of closely related terms.

Example 4. Example 2 shows how we can meaningful split the nurse scheduling
objective into individual days. This make sense for improving the lower bound

since the nursed preferred shifts will contradict the gcc constraint, and we will
get a much better idea of how many it is possible to simultaneously satisfy.
Another possibility is to split it into groups of consecutive days, since these
are more tightly related by the regular constraint, so the sub-problems then
learn about the interaction of regular and gcc. Alternatively, we could imagine
splitting it into individual nurses, thus capturing the effect of the regular on
the objective. ut

Our objective based decomposition differs from the constraint based decom-
position of earlier methods [1, 2], and has both advantages and disadvantages.
Some points of interest are as follows:

– When a variable in the objective function appears in two or more sub-
problems, it is not clear which sub-problem this objective term should be
assigned to in order to maximize the effectiveness of the Lagrangian decom-
position. In the constraint based decomposition, the constraint split does
not completely tell us how to split the objective terms, and indeed we often
have to make a second set of decisions as to how to split the objective terms.
This decision is handled in a somewhat ad-hoc manner in [1, 2]. Sometimes
one sub-problem gets the term, sometimes it is split into two or more parts.
It is hard to understand what sort of assignment/split gives the best bound
in general. In the objective based decomposition method however, this ques-
tion does not arise, as the objective split has already fully decided which
objective term belongs to each sub-problem, lowering the total amount of
decisions that need to be made. Further, we have a good general policy for
splitting the objective function, which is to split the objective terms into
groups of strongly related terms.

– The constraint based decompositions allow objective terms to be split be-
tween sub-problems whereas our proposed objective based decomposition
does not. This may be an advantage of the constraint based decomposition
as there may be problem classes where splitting objective terms gives a bet-
ter bound than we can if we are not allowed to split them. On the other
hand, our objective based decomposition approach allows constraints to be
split (projected) onto multiple sub-problems, whereas in the constraint based
decomposition method, each constraint can only appear in one sub-problem.
This may be an advantage of the objective based decomposition as many
COPs have global constraints that may include all, or many of the variables
defining the problem. If we place such a global constraint in only one sub-
problem, then all the other sub-problems are substantially weakened. By
projecting the global constraint into all of the sub-problems, all of them can
get the pruning benefit of the relevant part of that global constraint.

– The constraint based decomposition approach can handle non-linear objec-
tive functions by for example assigning the entire objective function to one
subproblem. This is not possible in general for the objective based decom-
position. However, the objective based decomposition could also potentially
handle certain forms of non-linear objective functions in a different way. For

bandb(D,V, P, z, S)
u := maxD(z)
θ := ⊥
repeat

best := θ
θ := search(D,V, P, z, {p(z ≤ u)}, S)
u := θ(z)− 1

until θ = ⊥
return best

search(D,V, P, z,Q, S)
D := propagate(D,V, P,Q, S)
if (∃x ∈ V.D(x) = ∅) return ⊥
if (∀x ∈ V.|D(x)| = 1)

let θ = {x 7→ dx | x ∈ V,D(x) = {dx}}
return θ

else
{c1, . . . , cm} := branch(D,V)
for i ∈ 1..m

θ := search(D,V, P ∪Q, z, {p(ci)}, S)
if (θ 6= ⊥) return θ

return ⊥

propagate(D,V, P,Q, S)
P := P ∪Q
repeat

while (∀x ∈ V.D(x) 6= ∅ ∧ ∃p′ ∈ Q)
Q := Q− {p′}
D′ := D ∧ p′(D)
Q := Q ∪ new(P,D,D′)
D := D′

if (∃s ∈ S.Θ(s) 6|= D)
D′ := subbound(s,D, P)
Q := Q ∪ new(P,D,D′)
D := D′

until Q = ∅
return D

subbound(s,D, P)
let s ≡ z = min([o|∃̄−Vs .C ∧ Ss])
θ := bandb(D,Vs, P, o, Ss)
D := D ∧ z ≥ θ(o)
Θ(s) := θ
return D

Fig. 1. Pseudo-code for evaluating LD COPs.

example, a min(x1, . . . , xn) objective function could be split so that each of
the xi is the objective function for one subproblem.

3.2 Solving the sub-problems

The main difference between our approach and the recent approaches is that
we do not require the sub-problems to be of a special form which can be solved
via a specialized propagator. Instead, we are going to solve them via standard
CP search. This means that our approach can be applied to virtually any CP
problem with a linear objective function, rather than only to those which so
happen to decompose into sub-problems of specialized forms.

Our approach is as follows. We decide on a splitting of the objective and
create the Lagrangian optimization sub-problems. Note that since these problems
also have a linear objective we can apply the splitting recursively constructing
a nested Lagrangian decomposition.

First, we add a new variable zj representing the objective value of each of
those Lagrangian decomposed optimization sub-problems. We add a constraint
z ≥

∑m
i=1 zj to relate the original objective to these variables. Finally we add the

optimization sub-problems defining the zj . Note that we do not create multiple
copies of variables when they belong to multiple sub-problems. Instead, we only
require the original copy. In addition, even if a constraint appears in multiple
sub-problems, we only need to post one copy of that constraint in the CP solver.
This is important because it increases the reusability of nogoods.

The solving of the Lagrangian decomposed COP z = min{c.x | C} is as
follows. We begin by calling bandb(Dinit,V, {p(c) | c ∈ P ∪{z ≥

∑m
j=1 zj}}, z, S)

subbound(s,D, P)
let s ≡ z = min([o|∃̄−Vs .C ∧ Ss])
l := minD(o)
while (θ ≡ search(D,Vs, P, o, {p(o ≤ l)}, Ss) = ⊥)

l := l + 1
D := D ∧ z ≥ l
Θ(s) := θ
return D

Fig. 2. Subsearch using destructive lower bounding search.

(shown in Figure 1) where sj ∈ S is a Lagrangian decomposed optimization
problem of the form sj ≡ zj = min{oj | ∃̄−Vj

.C}.
Notice that each optimization sub-problem is of the same form as the original

problem, with a different linear objective and some variables quasi projected.
Hence we can apply Lagrangian decomposition on the sub-problems, nesting
new Lagrangian decomposed problems within them. The algorithms in Figure 1
handle arbitrary depth of nesting of optimization sub-problems.

Branch and bound search calls search to search for a solution, repeatedly, and
then adds constraints to search for better solutions, returning the best solution
when it is proved optimal. The search routine is almost standard except: it passes
around the sub-problem constraints S, it terminates when all the local variables
V are fixed (as opposed to all variables in the problem V), and the branching
decisions returned by branch are restricted to only involve local variables V . This
implements quasi projection.

The propagation routine propagate is standard, except that it wakes up a
sub-problem s, when its incumbent optimal solution Θ(s) is no longer a support
for the lower bound since it is incompatible with the current domain, using
subbound to calculate a new lower bound. Initially the incumbent solution Θ(s)
for each sub-problem s is set to ⊥. We assume Θ(s) is a backtracking global
variable.

The subbound procedure finds the optimal solution θ to the optimization sub-
problem s ≡ z = min{o | ∃̄−V , C ∧ Ss} where Ss are optimization sub-problems
local to S. It uses branch and bound search to minimize o. Crucially the variables
of interest are limited to the objective variables for this sub-problem V . Note
that the variable reduction is critical for solving the sub-problem more efficiently,
since we only look for “solutions” where each local variable is fixed (and the
propagators do not detect failure). It sets the lower bound of the sub-problem
variable z to that value, as well as storing θ as the incumbent solution.

Alternatively we can use destructive lower bounding search to raise the lower
bound of the sub-problem. Unlike normal branch and bound where we iteratively
find better and better solutions, in destructive bounding, we start with the tight-
est bound on the objective function and repeatedly loosen that bound until we
find a solution. Destructive bounding is more suitable than normal branch and
bound for re-solving a sub-problem when the previous incumbent solution has
become invalid. It will immediately try to find a replacement solution which is at
least as good as the previous one, and if that fails, it will be able to strengthen

the bound proved and then try to find a solution which is one unit worse, etc.
This is generally better than re-solving the sub-problem from scratch via normal
branch and bound. Destructive bounding is described in Figure 2. Note that
we can break the while loop at any time and still get a correct lower bound,
although the there will be no incumbent solution in this case. This may be use-
ful in cases where we want to put a time limit on solving the sub-problems. In
practice we use normal branch and bound for the first solve of a sub-problem,
and use destructive bounding for all re-solves.

3.3 Nogood Learning

Our search-based method integrates seamlessly with nogood learning [3]. In no-
good learning, each propagation has to have an explanation clause which ex-
plains why that propagation is valid given the current domain. If we want to
use nogood learning, then when we derive a bound on zj via the sub-search on
zj = min{oj | ∃̄−Vj

.C}, we have to be able to generate a clause which explains the
bound on zj given the current domain. Fortunately, this occurs naturally with-
out any need to modify the nogood learning solver. When we enter a sub-search,
any domain changes made by the master search will act as “assumptions” in the
sub-search. Any literals representing those initial domain conditions which are
relevant to failures in the sub-search will be kept in the nogoods derived during
that sub-search. At the end of the proof of optimality phase of the sub-search, we
will end up deriving a nogood of form: l1∧. . .∧ln∧oj < θ(oj)→ false where li are
conditions on the variables V which are sufficient to force that bound on oj . We
can translate this to an explanation for the lower bound l1∧ . . .∧ ln → zj ≥ θ(oj)

Another benefit of nogood learning is that many of the things learned during
one sub-search are encapsulated in nogoods and can be reused in subsequent
sub-searches of the same sub-problem. Thus we do not have to re-solve those
sub-problems from scratch each time, but rather, much of the failed subspace is
still encapsulated in the nogoods and can be immediately pruned.

Example 5. Consider an instance of the nurse rostering problem of Example 2
with 8 nurses, requiring at least 3 on day shift (d) and at least 2 on night shift
(n), where shift regulations require: no day shift immediately after a night shift,
no more than 3 days shifts in a row, no more than 2 night shifts in a row, and
no more than one dayoff (o) in a row. Consider a sub-problem instance, for a
day j where all nurses request a day shift. Running the sub-problem at the root
will discover that zj ≥ −6 since at most 6 nurses can get a day shift. When the
branch and bound code searches with oj ≤ −7 the search fails with explanation
oj ≤ −7 → false, since this makes use only of globally true information. The
resulting explanation of the bound is simply zj ≥ −6.

Now consider waking the sub-problem when on the previous day j − 1 we
have assigned the first four nurses to night shift, and the last 4 to day shift. Then
only the last 4 nurses can be assigned to a day shift on day j. Branch and bound
fails when we add oj ≤ −5 with explanation x1j−1 = n ∧ x2j−1 = n ∧ x3j−1 =
n ∧ x4j−1 = n ∧ oj ≤ −5 → false. Generating the explanation for zj ≥ −4 as
x1j−1 = n ∧ x2j−1 = n ∧ x3j−1 = n ∧ x4j−1 = n→ zj ≥ −4. ut

3.4 Lagrangian Multipliers

In order to take maximum advantage of Lagrangian multipliers for CP, we dif-
ferentiate between two different types of integer variables; bounds type integer
variables, and value type integer variables. Bounds-type variables are those which
are mainly involved in bounds type constraints like linear inequalities. Whereas
value-type variables are those which are mainly involved in value type constraints
like alldifferent, table or regular constraints. For the latter class of variable
we break them into separate 0-1 variables representing each possible value.

We could update Lagrangian multipliers at each call to search using the
subgradient method. However, on the problem classes we tried, it appears that
updating the Lagrangian multipliers at each node is usually not worth it. In-
stead we simply calculate the Lagrange multipliers at the root node and use the
same multipliers throughout the computation, like [1]. This has an advantage
for nogood learning, because the Lagrange multipliers are globally fixed we do
not need to include any assumptions about them in explanations for propaga-
tion. Using the subgradient method [4] at the root, we update the Lagrangian
multipliers for a fixed number of iterations or until the bound derived no longer
improves.

3.5 Lazier Bounding

Re-solving the optimization sub-problems does not always yield a better bound
on zj . If the bound does not improve, then all the effort done in the sub-search
is wasted. Thus we want to try to only resolve the sub-problems when we have
a good chance of improving its bound. The pseudo-code naively re-solves a sub-
problem each time its incumbent solution becomes inconsistent with the current
domain of the master search, as there is a chance that the bound may be im-
proved. However, this may be too costly.

We propose the following dynamic policy for determining whether to per-
form the sub-search. For each sub-problem sj , we have an activation chance pj
which determines whether to re-solve the sub-problem when the incumbent so-
lution becomes inconsistent with the master search. pj starts at 1. Each time
re-solving sj yields a better bound, we increase pj by α, capped at 1. Each time
re-solving sj does not yield a better bound, we decrease pj by β, capped at 0.1.
Some reasonable values for α and β are 0.1 and 0.05, and varying these values
somewhat did not appear to make much difference. The main idea is that if
re-solving the sub-problem often does not yield anything, then pj will eventu-
ally decrease and we will rarely re-solve that sub-problem again, lowering the
overhead of the method.

We propose another policy for reducing the overhead of the method. When
the master search is searching on the variables of a particular sub-problem, the
incumbent solution of that sub-problem will become invalid at almost every
decision. If we follow the normal policy of re-solving a sub-problem whenever
its incumbent solution becomes invalid, then we will end up re-solving a sub-
problem at almost every node in the master search tree. This is clearly very

expensive. It is also often redundant work, because since the master search is
searching on the variables of that sub-problem, the bound of that sub-problem
will quickly be fixed by the master search anyway and worth trying to strengthen
that bound through sub-search. Thus we modify our policy so that if the master
search has just made a decision on variable v, then any sub-problem involving v
will not be woken up for sub-search at that search node.

4 Experiments

In this section, we describe a few problems as well as how we partitioned their
objective function.

Nurse Scheduling Problem This problem is described in Example 2. In the in-
stance we use there are 4 possible shifts including a “day off” shift, and re-
quirements on the number of nurses for each shift and minimum and maximum
requirements on the number of holidays per time span. We partition the objective
function into partial sums each representing one day, as described in Example 2.

Maximum Density Still Life Problem This problem is described in Example 3,
although there we only give a simplified model of the optimization problem,
ignoring edge effects, and require the size n is even (2m). We partition the
objective function by chopping the n×n region into 9 equal sized square chunks
(rather than the 4 of Example 3).

Concert Hall Scheduling Problem In this problem, we have k concert halls and
a bunch of orders. Each order hires a hall from a certain start time to a certain
end time and gives a certain profit. The problem is to pick the subset of orders to
satisfy such that we maximize the profit. Clearly, orders which are close together
in terms of their time are more closely related then orders which are far apart in
terms of their time. Thus we can quite naturally partition the objective function
according to time. We partition the objective function by dividing the time span
into 4 equal sized chunks and putting an order in a chunk based on their starting
time.

Talent Scheduling Problem In this problem, we have some actors and some
scenes. Each scene requires a subset of the actors. Each actor has a cost. The
scenes are shot in a certain order. Each actor has to be on-scene from the first
scene that they are in until the last scene that they are in is finished. For each
day they are on-scene, they have to be paid their corresponding cost. The prob-
lem is to find the order of the scenes which minimizes the total cost of the
actors. Again, terms which represent costs close in time are more closely related
together than those far in time. Thus we partition the objective function into 4
equal sized chunks according to time.

Resource Constrained Project Scheduling Problem with tardiness In this problem,
we have some tasks, each of which requires a certain amount of resources on each
of the machines. Each machine has a maximum resource capacity. There are some
precedences between the tasks. Each task has a due date. For each unit of time
past the due date the task is finished by, there is a penalty. The problem is to
find the schedule with the least penalty. Tasks which are closer together in terms
of their time are more closely related. Thus we partition the objective function
into 4 equal sized chunks based on time.

Sweatshop Scheduling Problem In this problem, we have rows of benches, each
with some machines. Each machine is assigned a type of garment to make. Each
type of garment will cost a different amount of power. Each bench and each
bench column has limitations on the total amount of power used. Each person
in a row has to work on a different garment. There are also global constraints
on the minimum and maximum amount of each garment made. The problem
is to find the the assignment of garments which maximizes the profit. Clearly,
terms belonging to the same bench/row/column are more closely related to each
other than to terms belong to different bench/row/columns. We partition the
objective function based on rows.

Traveling Salesman Problem In this problem, we have a number of cities. We
have a salesman which must tour all the cities and visit each one exactly once.
The problem is to minimise the total amount of distance traveled. Cities which
are geographically closer together are more closely related to each other. Thus
we divide the objective function by partitioning the cities geographically into 9
square chunks.

The experiments were performed on Xeon Pro 2.4GHz processors using the
state of the art LCG solver Chuffed. We use 20 instances of each problem
class, except for Still Life where we use just one. 1 We compare running the
above problems with the new sub-problem search-based Lagrangian decomposi-
tion (LD via search), with the decomposition but no Lagrangian multipliers (D
via search), and without any decomposition (Normal). We also try to compare
against the cost-MDD based Lagrangian decomposition method [1] (Bergman
et al.). Unfortunately, it is not very clear how that method can be applied to
these particular problem classes, as most of them do not decompose into a set
of MDD’s. Thus we only compare against that method on the Nurse Scheduling
problem, as the constraints in that problem can easily be modeled as MDD’s.
In all the new methods, we use the lazier bounding as described in Section 3.5.
We use constructive brand and bound for the first solve of each subproblem and
destructive bounding for all subsequent re-solves. We update the Lagrangian
multipliers at the root for 100 iterations using the subgradient method or until
the bound no longer improves. We use a time out of 10 minutes. The results are
shown in Table 1 and Figure 3.

1 Available from people.unimelb.edu.au/pstuckey/lgadec.

Table 1. Comparison between using and not using the search-based Lagrangian decomposition
method.

Problem Normal LD via search D via search Bergman et al.
fails time fails time fails time fails time

Nurse Scheduling 618537 56.32 54325 7.23 54325 7.23 48630 13.02
Still Life 478182 57.12 23415 3.45 24218 3.37 — —
Concert Hall 389799 35.14 45231 5.27 158962 12.56 — —
Talent Scheduling 1535814 215.1 2589576 417.82 2620582 428.07 — —
RCPSP with tardiness 234758 68.54 1834758 487.29 1834758 487.29 — —
Sweatshop Scheduling 682934 24.87 124562 5.27 124562 5.27 — —
Traveling Salesman 256375 94.56 185239 70.82 185239 70.82 — —

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Still Life

Concert Hall

Nurse Scheduling

Talent Scheduling

RCPSP with Tardiness

Sweatshop Scheduling

Travelling Salesman

Time

O
ve

rh
e

a
d

 (
%

)

Fig. 3. Overhead of sub-searches per time partition

Table 1 shows the total number of fails and time spent on the benchmarks.
These numbers include the fails and time spent in the master search and the sub-
problem searches. In all of these benchmarks, the Lagrangian decomposition can
give a better bound than that found through normal propagation. However, it
is not always worth the overhead. We get significantly stronger bounds for the
Nurse Scheduling, Still Life, Concert Hall and Sweatshop Scheduling problems,
but relatively weak improvements to the bound for Talent Scheduling, RCPSP
with tardiness and the Traveling Salesman Problem. It can be seen that when
the bound we derive is significantly better, the overhead of the Lagrangian de-
composition method is often worth it. Whereas when the improvement in bound
is small, the reduction in the search space of the master search may well be
swamped out by the overhead of the sub-searches. For example, in RCPSP with
tardiness, the sub-searches occur frequently but the improvement in bound is
too insignificant to be worth it. The Lagrangian multipliers are only useful for
the Concert Hall problem. For the rest they either have no use because there
are no shared variables between sub-problems, or their effect is statistically in-
significant. We suspect that this is because Lagrangian multipliers do not work
well when sub-problems are connected via value type integer variables, whereas
they work far better when sub-problems are connected via bounds type integer
variables. The approach of [1] requires less search, since instead of solving the
sub-problems via search, the sub-problems are solved by the global propagator
instead, which does not contribute to the node count. However, this costs more
than the gain in run time compared to our approach.

Figure 3 shows the time overhead of the sub-searches as a percentage of
the overall search when the search time is split evenly into 10 parts. It can be

seen that for some problem classes, much more time is spent on solving the
sub-problems near the start of the search than in the rest of the search. There
are several reasons. The first is that the first solve via branch and bound is
often expensive, whereas subsequent re-solves using destructive bounding are
often very quick. The second is that the learned nogoods which describe which
boundary conditions force certain bounds for the sub-problem may often imme-
diately propagate to avoid some redundant re-solving of sub-problems, making
re-solving sub-problems quicker later in the search.

5 Related Work and Conclusion

We have already discussed the most closely related work on Lagrangian De-
composition for CP [1, 2]. The approach we present is closely related to Nested
Constraint Programs (NCPs) [8], the optimization sub-problems can be seen as
nested CPs where the domain of the variables are defining the sub-problem, for a
new copy of the variables in the sub-problem. Because we use the same variables
and constraints we can avoid much of the complexity of NCP. Similarly Russian
doll search [9] can be seen as a special case of our approach to Lagrangian De-
composition, where there is exactly one optimization sub-problem per level, and
no recomputation of the optimization sub-problems.

Lagrangian Decomposition is an exciting development for CP, allowing the
same heterogeneous approach to satisfaction to be extended to optimization. In
this paper we show how to create a very general scheme for Lagrangian De-
composition using sub-problem search, which, together with learning provides
a powerful method for tackling optimization problems that can be meaning-
fully decomposed. We have shown that the new method can provide significant
speedups on some realistic problem classes.

Acknowledgments NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program. This work was partially supported by
Asian Office of Aerospace Research and Development grant 15-4016.

References

1. Bergman, D., Ciré, A.A., van Hoeve, W.: Improved constraint propagation via
lagrangian decomposition. In: Principles and Practice of Constraint Programming
- 21st International Conference, CP 2015, Cork, Ireland, August 31 - September
4, 2015, Proceedings. (2015) 30–38

2. Ha, M.H., Quimper, C., Rousseau, L.: General bounding mechanism for con-
straint programs. In: Principles and Practice of Constraint Programming - 21st
International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015,
Proceedings. (2015) 158–172

3. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357–391

4. Shor, N.: Minimization Methods for Non-differentiable Functions. Springer (1985)

5. Demassey, S., Pesant, G., Rousseau, L.: A cost-regular based hybrid column gen-
eration approach. Constraints 11(4) (2006) 315–333

6. Gange, G., Stuckey, P.J., Hentenryck, P.V.: Explaining propagators for edge-valued
decision diagrams. In Schulte, C., ed.: Proceedings of the 19th International Con-
ference on Principles and Practice of Constraint Programming. Volume 8124 of
LNCS., Springer (2013) 340–355

7. Chu, G., Stuckey, P.: A complete solution to the maximum density still life problem.
Artificial Intelligence 184–185 (2012) 1–16

8. Chu, G., Stuckey, P.J.: Nested constraint programs. In O’Sullivan, B., ed.: Proceed-
ings of the 20th International Conference on Principles and Practice of Constraint
Programming. Volume 8656 of LNCS., Springer (2014) 240–255

9. Verfaillie, G., Lemâıtre, M., Schiex, T.: Russian doll search for solving constraint
optimization problems. In: Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence
Conference, AAAI Press / The MIT Press (1996) 181–187

10. Pesant, G., ed.: Principles and Practice of Constraint Programming - 21st In-
ternational Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015,
Proceedings. Volume 9255 of Lecture Notes in Computer Science., Springer (2015)

