
Weighted Spanning Tree Constraint with
Explanations

Diego de Uña1, Graeme Gange1, Peter Schachte1, and Peter J. Stuckey1,2

{d.deunagomez@student.,gkgange@,schachte@,pstuckey@}unimelb.edu.au

1 Department of Computing and Information Systems – The University of Melbourne
2 National ICT Australia, Victoria Laboratory

Abstract. Minimum Spanning Trees (MSTs) are ubiquitous in opti-
mization problems in networks. Even though fast algorithms exist to
solve the MST problem, real world applications are usually subject to
constraints that do not let us apply such methods directly. In these cases
we confront a version of the MST called the “Weighted Spanning Tree”
(WST) in which we look for a spanning tree in a graph that satisfies other
side constraints and is of minimum cost. In this paper we implement this
constraint using a lower bound and learning to accelerate the search and
thus reduce the solving time. We show that having this propagator is
tremendously beneficial for solvers and we show the benefits of learning.

1 Introduction

Given a connected weighted graph G = (N,E), the Minimum Spanning Tree
(MST) T of G is a connected acyclic sub-graph of G that contains all the nodes
in N and is of minimum weight. Finding the MST of a graph can be done using
Kruskal’s algorithm (among others) which is O(|N |log(|E|)). Nevertheless, many
interesting variants of the MST are NP-hard. In these variants, there are side
constraints that make these algorithms unusable.

Some examples where side constraints make the MST problem NP-hard are
the capacitated MST [5, 17], the degree-constrained MST [14], the min-degree
MST [2], the constrained MST [19], or the diameter-constrained MST [1]. These
and other variants can be found in the real world. For instance, cable layout for
offshore wind farms [13] combines the capacitated MST, the degree-constrained
MST and an extra constraint disallowing cable crossing.

In Constraint Programming (CP), the Weighted Spanning Tree (WST) con-
straint is defined as follows: given a graph G = (N,E) and a weight function ws
that maps every edge e ∈ E to an integer called the weight of e, find a tree T
that is a subgraph of G, spans all nodes in N and is of cost at most w (w being
an integer variable). The decisions made by this constraint are Boolean variables
ce representing for each edge e ∈ E whether it is chosen to be part of T or not.
Let B = {ce|e ∈ E}, we write the constraint wst(N,E,ws,B,w). Because this is
a constraint, it can be used in combination with other constraints and therefore
applied to the above stated optimization problems.

The first appearance of this constraint was in [9] (called “Not-too heavy”
spanning tree). Their work was followed up in [21] with a simpler algorithm for
propagation maintaining the same strength for the propagator. They re-named
the constraint “WST”, which is the term that we will use. Here the propagation
was proved to be arc-consistent. Later, in [22], the ccTree data-structure was
improved to decrease the complexity of their algorithms. Similar work was done
in [8], although this constraint forced to solution to be a minimum spanning
tree. The contribution of these papers are the filtering algorithms they provide,
but no implementation or experiments are reported. Nonetheless, in Constraint
Programming, constant factors in the complexity are crucial and the asymptotic
complexity of their algorithms gives only partial information on performance.
Also, no previous work explored the use of explanations in this useful constraint.

In this paper we present our implementation of the WST constraint in the
CP solver Chuffed [7]. We use learning [16] to accelerate the search. We show
that the explanations on this global constraint are tremendously beneficial in
practice. We compare our implementation to the one available in the Choco3
CP solver [18] and show the benefits of learning.

We illustrate the use of this constraint on the Diameter-Constrained MST
(DCMST) problem, because it has been recently addressed in Constraint Pro-
gramming by [15] and has a large number of applications in wireless network
routing [3], telecommunications [26], distributed mutual exclusion in computer
networks [20] and data compression [4]. For this problem there has been work on
both approximation and exact algorithms. In approximations, [11] presented an
approach using Variable Neighbourhood Search, followed by another heuristic
approach [12]. For exact solutions [23] presented a Mixed Integer Programming
formulation of the problem that was later improved in [10]. The latest exact al-
gorithm was presented by [15] using CP and it outperforms all other approaches
known to the authors. Our approach to the DCMST is also CP, so it is only
comparable to the last one. Nevertheless, the solver they used is not the same as
ours, and thus comparisons (especially in time) should be considered with care.

Section 2 briefly introduces Lazy Clause Generation. Section 3 describes our
algorithms and implementation of the WST constraint, including the compu-
tation of explanations. Section 4 summarizes our experimental results on the
DCMST.

2 Lazy Clause Generation

Lazy Clause Generation (LCG, [16]) is a technique by which CP solvers can
learn from what they have explored in the search space. Constraints can be
transformed into a number of clauses over Booleans, and this is typically how
SAT solvers work. The idea of LCG is to make propagators generate these clauses
on the fly when they propagate. These clauses capture the reason for propagation
and thus we say they “explain” propagation. These explanations are then given
to the solver that uses them as a way of remembering what propagators inferred.
This way, we run a relatively expensive algorithm once, do an inference and

remember it for the rest of the solving process. On the other hand, propagators
might need to do some extra computation to compute the explanations.

3 WST propagator with explanations

In our problem, the decision variables are the edges: which edges form the tree
and which edges do not. We say that an edge is mandatory if it has been set
to be part of the tree. We call forbidden the edges that have been set to not be
part of the tree. Other edges are undecided. Let M be the set of mandatory and
F the set of forbidden edges.

Here we present our WST propagator with explanations. We first introduce
a novel lower bound with explanations followed by a propagation rule (which
was already introduced in [21]).

We define a substitute edge of an edge e in a spanning tree T = (N,TE) as
any edge es such that (N,TE\{e} ∪ {es}) is a spanning tree. Also, following the
definition of [21], given a tree T and a non-tree edge e = (i , j), let e′ be the edge
of maximum cost in the path from i to j in T . Then e′ is called the support of e.

3.1 Lower bound with explanations

Assume we are looking for a solution of cost w lower than K. When we branch
(i.e. we make a decision) we can compute a lower bound of the problem that will
tell us if a better solution can exist in this branch. If that’s not the case, we can
stop the search. This is known as branch-and-bound.

The most accurate lower bound for w in the WST propagator is naturally
the MST of the graph given the decisions so far. That is, the tree T ∗ = (N,E∗)
of minimum weight WT∗ such that M ⊆ E∗ and E∗ ∩ F = ∅.

It is easy to see that applying Kruskal’s algorithm where the edges in M have
been pre-added and the edges in F are not used yields T ∗.

Now, if WT∗ ≥ K then no solution of cost lower than K exists in the cur-
rent search space, and we can cut the search. A trivially correct explanation is∧

e∈F ¬ce∧
∧

e∈M ce ⇒WT∗ ≥ K, but it is possible to build a better explanation.
Let Fc be the set of forbidden edges eF such that T ∗ ∪ {eF } forms a cycle

where eF is not the most expensive edge. Let MS be the set of edges e ∈ M hav-
ing some substitute e′ such that ws(e ′) < ws(e). Let SS be a mapping MS 7→ E
from each edge in MS to the substitute of minimum weight for that edge. We then
select a subset MH ⊆ MS such that the inequality

∑
e∈MH

(ws[SS [e]]− ws[e]) +
WT∗ ≥ K holds. Note that multiple such sets MH may exist.

A better explanation is given by Theorem 1.

Theorem 1. A correct explanation for the failure of wst(N,E,ws,B,w) is:∧
e∈Fc

¬ce ∧
∧

e∈M\MH

ce ⇒WT∗ ≥ K

Proof. Forbidden edges: Clearly, Fc ⊆ F . Let e = (u, v) ∈ F\Fc. By definition
of Fc, e is the most expensive edge in the cycle formed by T ∗ ∪{e}. Because the
queue in Kruskal’s algorithm is sorted in increasing order, the path P between
u and v in T ∗ was already built before considering e. Therefore, whether e is
forbidden or not does not affect the cost of P and consequently does not affect
WT∗ and the explanation

∧
e∈Fc

¬ce ∧
∧

e∈M ce ⇒WT∗ ≥ K holds.
Mandatory edges: By construction, MH is a set of edges that, when re-

moved and substituted by the best possible edge available, the cost of the tree
is still higher than K. Therefore, the edges in MH do not need to be in the
explanation for it to hold. �

Note that because several sets MH may exist, different explanations can be com-
puted. Evaluating which explanation is better than another is highly dependent
on the instance of the problem. We ran different tests and could not determine a
way of choosing MH that dominated others in all cases. In our final implemen-
tation we start by putting the cheapest edges in MH .

The algorithm to detect failure and compute the explanation is Algorithm 1.
To construct explanations, we use the Rerooted-Union-Find data structure de-
scribed in [25]. This is a modification of a classic Union-Find that allows the user
to retrieve paths between nodes. Lines 7 to 9 pre-add all the mandatory edges.
Lines 10 to 20 follow the classic Kruskal’s algorithm with some modifications.
Lines 12 and 17 add to the explanation any forbidden edge that should have
been used. Lines 14 and 15 compute the cheapest substitute for each mandatory
edges (if any). Once the tree T ∗ is computed, we build MH in lines 22 and 23,
leaving all the other mandatory edges (that have substitutes) in the explanation
in line 25. The final explanation for WT∗ ≥ K is the set X. The complexity of
the algorithm is O(|E|(|N |+ log(|E|))).

The same explanations can be used for failure if cost > K:∧
e∈Fc

¬ce ∧
∧

e∈M\MH

ce ∧ Jw < KK⇒ false

In the example of Figure 1, we are looking for a solution of cost less than
K = 27. WT∗ is 31, so we must fail. When we consider edge e1, the fact that it
is mandatory causes no trouble, as there is no other substitute to this edge that
would connect h. When we consider e4, we must skip it because it is forbidden,
which means that we will use a more expensive edge to reach c (here e8). When
considering e6, e and g are already connected by a path containing the mandatory
edges e7, e9 and e10 and the undecided edge e3. Therefore e6 is the substitute
of all of them. We later compute that: WT∗ − ws[e7] + ws[e6] = 30 > K, then
30 − ws[e9] + ws[e6] = 28 > K and lastly 28 − ws[e10] + ws[e6] = 21 < K.
Therefore, the explanation will be ¬ce4 ∧ ce10 ∧ Jw < KK⇒ false.

3.2 Propagation rule with explanations

We use the propagation rule exposed in Proposition 3 of [21], that is: given the
best possible tree T ∗ and an upper bound for the solution K such that WT∗ < K,

Algorithm 1 Computing the lower bound with explanation.

1: procedure mandatory kruskal(G = (N,E),M, F,K)
2: Q← sort(E)
3: uf ← RerootedUF ()
4: c← 0, cost ← 0
5: X ← ∅, sub ← array(|E |,nil)
6: for all e = (u, v) ∈M do . Pre-add mandatory edges
7: uf .unite(u, v)
8: c← c + 1; cost ← cost + ws[e]

9: for all e = (u, v) ∈ Q do . (in order)
10: if ¬uf .connected(u, v) ∧ e ∈ F then
11: X ← X ∪ {¬ce} . Should add e, but it is forbidden
12: else if uf .connected(u, v) then
13: for all ep ∈ uf .path(u, v) do
14: sub[ep] = min w(sub[ep], e)
15: if ws[ep] > ws[e] ∧ e ∈ F then
16: X ← X ∪ {¬ce} . e would be cheaper

17: else if c < |N | − 1 ∧ ¬uf .connected(u, v) then
18: uf .unite(u, v)
19: c← c + 1; cost ← cost + ws[e]

20: for all e ∈ M ∧ sub[e] 6= nil do
21: if cost − ws[e] + ws[sub[e]] ≥ K then
22: cost ← cost − ws[e] + ws[sub[e]] . e ∈ MH

23: else if ws[sub[e]] 6= ws[e] then
24: X ← X ∪ {ce} . e 6∈ MH

25: return [X ⇒ Jw ≥ costK]

ab

c d

e

f g
h

i

e7

e10e9

e5

e1

e8

e2

e6

e3

e4

e11

e1 = 1
e2 = 2
e3 = 2

.e4 = 2
e5 = 3
e6 = 3
e7 = 4
e8 = 4
e9 = 5
e10 = 10

.e11 = 100

J
J
J
C (¬e4)
J
C (e10)
J
J
J
J

mandatory forbidden undecided

Fig. 1. Example of a graph during solving. The weights are indicated on the right.
Symbol ‘J’ indicates an edge that was used in the solution, whereas ‘C’ indicates
edges that should have been used (accompanied by the explanation).

for any non-tree edge e∗ of support e′, e∗ can be part of the solution if and only
if WT∗ −ws[e ′] +ws[e∗] < K. That is, e∗ is a valid substitute of e′. If this is not
the case, we must remove e∗ from the possible edges since using it would increase

the weight of T ∗ above the upper bound K. It is easy to see that the previous
explanation applies as well in this case. Let M ′H = ((M\MH)\{e′}) ∪ {e∗}.∧

e∈Fc

¬ce ∧
∧

e∈M ′H

ce ∧ Jw < KK⇒ false

⇔
∧
e∈Fc

¬ce ∧
∧

e∈M ′H\e∗
ce ∧ Jw < KK⇒ ¬e∗

We execute this rule after the previously described algorithm in the case
where no failure is detected.

4 The Diameter Constrained Minimum Spanning Tree

The DCMST is formally defined as follows: given a graph G = (NG, EG) find a
sub-graph T = (NT , ET) of G such that T is a tree, NT = NG and the longest
distance between any two nodes in T is at most D (called the diameter of T).
The distance between two nodes u and v is the number of nodes in the path
from u to v.

4.1 Modeling DCMST

This problem is separated in two cases whether D is even or odd. If D is even,
then there exists a node r that is the root of T and the height of all the other
nodes has to be at most bD/2c. If D is odd, there exists an edge e = (a, b) that
acts as the root of the tree (e is therefore in the tree), meaning that the height of
a and b is zero and all the other nodes must have at most height bD/2c. Notice
that r, a and b are not given in the input: these are variables.

We used the same model as [15] with the only addition of our propagator.
The matrix adj gives for each node the set of neighbour nodes. For the DCMST-
specific constraints, we use an array of heights of nodes h, and an array of
parenthood of nodes p. Two variables a and b are the end-nodes of the edge that
acts as root in the odd case, or are both the root in the even case (in that case,
a = b). The model is minimize(w) such that:

wst(N,E,ws,B,w) (1)

D mod 2 = 0⇔ a = b (2)

(h[a] = 0 ∧ p[a] = b) ∧ (h[b] = 0 ∧ p[b] = a) (3)

∀n ∈ N\{a, b}, h[n] = h[p[n]] + 1 (4)

∀n ∈ N\{a, b}, p[n] ∈ adj [n] (5)

∀e = (u, v) ∈ E, ce ⇔ p[u] = v ∨ p[v] = u (6)

Constraint 2 states that in the even case a and b are the same node (the root
r). Constraint 3 forces a and b to be at height 0 and be each others parents.
Constraint 4 makes every node (other than the root(s)) be one level below its
parent. Constraint 5 forces each node to chose a parent that is adjacent to it.
Constraint 6 links the edge variables of the graph with the parenthood relations.

Although our main intention is to compare the improvement that the WST
propagator and explanations bring to the solver, we also compare our work to
[15] (we name their results “NRS”) as their results are the state of the art in
DCMST as far as we can tell. They used a Pentium 4, 2.8GHz and 2GB of RAM.

For better comparison, we implemented the exact same search strategy they
describe in their paper (Section 3, Figure 2). First, for each node n we compute
the sum sn of the shortest paths from n to any other node. Then, we associate
to each pair of nodes (a, b) the minimum of sa and sb, noted s(a,b) = min(sa, sb).
The search is as follows. Start by taking each pair of nodes (a, b) in increasing
order of s(a,b). Then for each possible value of the height (from 1 to bD/2c),
remove that value from the domain of all the nodes (when possible) taking the
nodes in decreasing order of the shortest path to either a or b. Here “shortest
path” is in weight of the edges.

They use a dominance rule in the search, which we converted into a domi-
nance-breaking constraint [6] in our model, for ease of implementation: ∀{e1 =
(u, v), e2 = (u, y)} ∈ E2, ws[e1] < ws[e2] ∧ h[v] ≤ h[y] ⇒ p[u] 6= y. This states
that if it is cheaper to connect u to v than to y and the height of v is lower than
the height of y, we can connect u to v with a lower cost. This is because if using
e2 does not violate the diameter constraint, neither does e1.

4.2 Experimental results

We run our experiments on a Linux 3.16 Intel R© Core
TM

i7-4770 CPU @ 3.40GHz,
15.6GB of RAM. We used 5 minutes as the time limit. The results from NRS
are extracted from their paper where they used the solver IBM OPL. Bench-
marks can be found in [24]. We give different versions in Chuffed: NoProp
uses learning but does not use our propagator, NoExpl uses our propagator
without learning , Expl uses the propagator with explanations from Section
4, and NaiveExpl uses our propagator with naive explanations (i.e. all fixed
elements in the graph are in the explanation). All use the same strategy.

As we can see in Table 1, the use of the propagator is absolutely benefi-
cial. The total time is improved by 48.02% when using the propagator without
explanations against no propagator. Furthermore, our version with explanation
(Expl) is 90.5% faster than the version without explanations (NoExpl) and
95.1% faster than the version with no propagator at all. Also, our total time is
36.6% shorter than NRS. Most of the tests with NoProp and Choco3 got to
the optimal solution, but timed-out when proving optimality. This also illustrates
the need for this propagator.

In CP, the number of nodes represents the size of the search space explored
before proving optimality. Here we see an obvious dominance of Expl as it
almost always has less nodes than other versions. It also has an improvement on
the total number of nodes for all benchmarks of 99.4% over NoProp and 99.0%
over NoExpl. Additionally, it has an improvement of 96% over NRS.

The comparison between Expl and NaiveExpl shows that computing our
explanations is worthwhile. The NaiveExpl uses the same algorithms as de-
scribed throughout this paper, only the explanations contain all the fixed cn

Instance NoProp NoExpl NaiveExpl Expl Choco3 NRS (IBM OPL)
|N | |E| D Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

15 105 4 6825 0.45 784 0.23 448 0.2 447 0.19 6256 1.92 1044 0.08
15 105 5 35322 2.28 1921 0.39 1003 0.39 1001 0.38 301269 44.36 2850 0.22
15 105 6 133259 10.31 5997 0.63 2235 0.48 2101 0.45 160445 37.06 6960 0.28
15 105 7 258317 22.91 5873 0.54 2312 0.41 2221 0.41 2182510 300 8240 0.38
15 105 9 493166 39.80 6049 0.47 1968 0.21 1731 0.19 2623006 300 11743 0.47
15 105 10 550536 40.93 24259 1.95 2872 0.39 2831 0.29 898948 156.63 11830 0.41

20 190 4 192965 20.39 2651 1.86 1261 1.70 1266 1.69 200651 82.51 3143 0.20
20 190 5 1869837 186.76 9387 4.85 4452 4.56 4432 4.48 2064050 300 18283 1.06
20 190 6 2585912 300 49673 14.97 9018 4.55 8462 4.08 862115 300 35383 2.03
20 190 7 2661381 300 16690 4.67 4252 2.04 4288 1.97 1857850 300 19142 0.97
20 190 9 2433234 300 157236 34.43 6336 1.71 5972 1.60 1738525 300 119906 5.01
20 190 10 2628419 300 315618 52.61 9050 3.96 8645 3.56 1067170 300 151969 6.08

25 300 4 1898689 300 20202 58.53 6166 17.10 6217 17.1 592738 300 28842 1.48
25 300 5 2415919 300 86662 93.57 32787 80.62 26547 68.88 1553235 300 37608 2.83
25 300 6 2262702 300 402861 300 16150 17.66 15147 15.99 847691 300 534222 39.14
25 300 7 2045173 300 449104 210.13 76272 87.72 61098 63.68 1448142 300 812957 56.06
25 300 9 1929801 300 462886 300 21195 18.66 19724 17.43 1270399 300 2655810 114.14
25 300 10 1961836 300 620555 261.71 21453 11.86 21565 11.50 586552 300 1126130 55.47

20 50 4 14548 0.48 1219 0.05 558 0.05 558 0.05 4489 0.61 389 0.05
20 50 5 55748 2.58 307392 10.87 2258 0.26 2227 0.24 426762 40.91 3611 0.17
20 50 6 52217 2.34 68384 0.75 1574 0.10 1475 0.08 41892 5.28 2678 0.13
20 50 7 66676 3.45 25043 0.68 1381 0.12 1238 0.09 1389117 133 1975 0.14
20 50 9 274583 16.59 14016 0.33 1117 0.06 1261 0.06 3820792 300 13040 0.45
20 50 10 310688 18.93 410 0.01 564 0.03 564 0.02 329333 42.87 17937 0.64

40 100 4 3426079 300 45199 6.27 13766 4.41 13901 4.30 1180714 300 130480 5.44
40 100 5 3261615 300 9596291 300 36496 14.22 26970 9.69 3196955 300 161961 7.31
40 100 6 4836734 300 8161773 300 10708 2.59 5037 0.84 1851687 300 91022 4.72
40 100 7 4709441 300 5979528 300 38153 11.03 18504 4.49 2989047 300 778669 34.38
40 100 9 3646022 300 4468371 300 88837 25.12 36572 7.08 2873734 300 769161 40.16

Total 47017644 4868.2 31306034 2530.50 414642 312.21 302002 240.81 38365804 6245.15 7556985 379.84

Table 1. Comparison in time (seconds) and nodes for the DCMST models.

and ce. This makes the explanations more strict and thus less reusable. As we
would expect, this makes the explanations much longer: the average length in
the explanations for NaiveExpl is 128.88 literals, whereas the length of our
explanations is 73.18 literals in average. We see the consequences of this in the
Table 1: naive explanations most often slow down the solving step. The version
Expl is 22.9% faster and has 27.2% less nodes.

We observe that our propagator dominates specially when the diameter is
big. This is because in that case, the lower bound is more accurate as it violates
fewer diameter constraints. When the diameter is small, Algorithm 1 is not aware
of it and just computes an MST thus rapidly violating the diameter constraints.

5 Conclusion

In this paper we have given an efficient algorithm to compute explanations for
the lower bound for the WST constraint, and we have implemented an already
existing propagation rule in our solver. Our major contribution is the compu-
tation of explanations that, as we can see in the experiments, are absolutely
beneficial to solve large instances of optimization problems on spanning tree.
Acknowledgement. Diego de Uña thanks “la Caixa” Foundation for partially
funding his Ph.D. studies at The University of Melbourne.

References

1. Achuthan, N., Caccetta, L., Caccetta, P., Geelen, J.: Algorithms for the minimum
weight spanning tree with bounded diameter problem. Optimization: techniques
and applications 1(2), 297–304 (1992)

2. Akgün, İ., Tansel, B.Ç.: Min-degree constrained minimum spanning tree problem:
New formulation via miller–tucker–zemlin constraints. Computers & Operations
Research 37(1), 72–82 (2010)

3. Bala, K., Petropoulos, K., Stern, T.E.: Multicasting in a linear lightwave network.
In: INFOCOM’93. Proceedings. Twelfth Annual Joint Conference of the IEEE
Computer and Communications Societies. Networking: Foundation for the Future,
IEEE. pp. 1350–1358. IEEE (1993)

4. Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Information Sys-
tems 16(4), 387–400 (1991)

5. Chandy, K.M., Lo, T.: The capacitated minimum spanning tree. Networks 3(2),
173–181 (1973)

6. Chu, G., Stuckey, P.J.: Dominance breaking constraints. Constraints 20(2), 155–
182 (2015)

7. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011)

8. Dooms, G., Katriel, I.: The minimum spanning tree constraint. In: Principles and
Practice of Constraint Programming-CP 2006, pp. 152–166. Springer (2006)

9. Dooms, G., Katriel, I.: The not-too-heavy spanning tree constraint. In: Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, pp. 59–70. Springer (2007)

10. Gruber, M., Raidl, G.R.: A new 0–1 ILP approach for the bounded diameter min-
imum spanning tree problem. In: Gouveia, L., Mourão, C. (eds.) Proceedings of
the 2nd International Network Optimization Conference 2005. vol. 1, pp. 178–185.
Lisbon, Portugal (2005), https://www.ac.tuwien.ac.at/files/pub/gruber-05.pdf

11. Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diam-
eter minimum spanning tree problem. In: Hansen, P., Mladenovi, N., Pérez,
J.A.M., Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings of the 18th Mini
Euro Conference on Variable Neighborhood Search. Tenerife, Spain (2005),
https://www.ac.tuwien.ac.at/files/pub/gruber-05a.pdf

12. Gruber, M., Raidl, G.R.: (meta-) heuristic separation of jump cuts in a
branch&cut approach for the bounded diameter minimum spanning tree problem.
In: Matheuristics, pp. 209–229. Springer (2010)

13. Klein, A., Haugland, D., Bauer, J., Mommer, M.: An integer programming model
for branching cable layouts in offshore wind farms. In: Modelling, Computation
and Optimization in Information Systems and Management Sciences, pp. 27–36.
Springer (2015)

14. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning tree. Computers &
Operations Research 7(4), 239–249 (1980)

15. Noronha, T.F., Ribeiro, C.C., Santos, A.C.: Solving diameter-constrained mini-
mum spanning tree problems by constraint programming. International Transac-
tions in Operational Research 17(5), 653–665 (2010)

16. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009), http://dx.doi.org/10.1007/s10601-008-9064-x

17. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
travelling salesman problem. Journal of Algorithms 5(2), 231–246 (1984)

18. Prud’homme, C., Fages, J.G., Lorca, X.: Choco3 Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2014), http://www.choco-
solver.org

19. Ravi, R., Goemans, M.: The constrained minimum spanning tree problem. Algo-
rithm TheorySWAT’96 pp. 66–75 (1996)

20. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems (TOCS) 7(1), 61–77 (1989)

21. Régin, J.C.: Simpler and incremental consistency checking and arc consistency
filtering algorithms for the weighted spanning tree constraint. In: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 233–247. Springer (2008)

22. Régin, J.C., Rousseau, L.M., Rueher, M., van Hoeve, W.J.: The weighted spanning
tree constraint revisited. In: Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pp. 287–291. Springer
(2010)

23. dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained mini-
mum spanning tree problems in dense graphs. Springer (2004)

24. de Uña, D.: Weighted spanning tree benchmarks (2015),
http://people.eng.unimelb.edu.au/pstuckey/wst/

25. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Steiner tree problems with side
constraints using constraint programming. In: Proceedings of the Thertieth AAAI
Conference on Artificial Intelligence. p. to appear. AAAI Press (2016)

26. Wang, S., Lang, S.: A tree-based distributed algorithm for the k-entry critical sec-
tion problem. In: Parallel and Distributed Systems, 1994. International Conference
on. pp. 592–597. IEEE (1994)

