
A Bit-Vector Solver with

Word-Level Propagation

Wenxi Wang, Harald Søndergaard, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

Abstract. Reasoning with bit-vectors arises in a variety of applications
in verification and cryptography. Michel and Van Hentenryck have pro-
posed an interesting approach to bit-vector constraint propagation on
the word level. Each of the operations except comparison are constant
time, assuming the bit-vector fits in a machine word. In contrast, bit-
vector SMT solvers usually solve bit-vector problems by bit-blasting,
that is, mapping the resulting operations to conjunctive normal form
clauses, and using SAT technology to solve them. This also means gen-
erating intermediate variables which can be an advantage, as these can
be searched on and learnt about. Since each approach has advantages
it is important to see whether we can benefit from these advantages by
using a word-level propagation approach with learning. In this paper we
describe an approach to bit-vector solving using word-level propagation
with learning. We provide alternative word-level propagators to Michel
and Van Hentenryck, and give the first empirical evaluation of their ap-
proach that we are aware of. We show that, with careful engineering,
a word-level propagation based approach can compete with (or comple-
ment) bit-blasting.

1 Introduction

Since most time-critical and safety-critical software is built on fixed-width inte-
gers, it is vital to reason about fixed-width integers correctly and accurately in
a software verification context. We consider the problem of how to support this
reasoning with modern constraint solving techniques.

SAT Modulo Theory (SMT) solvers are the most common tools in this area,
and almost all the modern SMT solvers ultimately rely on bit-blasting [4, 5, 9,
13, 17] to solve bit-vector constraints, that is, translating constraints to propo-
sitional logic form. But bit-blasting tends to cause two problems. First, it may
result in very large propositional formulas that even the most powerful cur-
rent SAT solvers struggle to handle. Second, it disperses important word level
information during the encoding—much is obscured in translation. Here we in-
vestigate alternatives to bit-blasting, replacing it with word-level propagation
entirely to produce a pure word-level bit-vector SMT solver.

Using word-level propagation was suggested by Michel and Van Henten-
ryck [18] who viewed the problem as a Constraint Satisfaction Problem (CSP).

Each variable is associated with a “bit-vector domain” which is progressively
tightened using word-level constraint propagation rules (we will make these clear
shortly). The idea is appealing, as the propagation rules can be made to run in
constant time (as long as the bit width of the bit-vector is less than or equal to
the size of machine registers). An additional rule to check if a tightened domain
remains valid also runs in constant time. However, we are not aware of any exper-
imental evaluation of the method. Moreover, there is no “learning” mechanism in
Michel and Van Hentenryck’s proposal. We show that real improvement relies on
the communication of explanations for the propagated bits. We also propose al-
ternative (“decomposed”) word-level propagators for some operations, based on
insights in Warren’s compendium [22] and we investigate the relative strengths
and weaknesses of decomposed and composed propagators.

Additionally we use our solver to investigate different algorithmic possibili-
ties. In a learning solver we can generate explanations in a “forward” manner, as
propagation progresses, as is done in a SAT solver, or we can generate them in a
“backward” manner during conflict analysis, as in an SMT solver. Forward ex-
planation is simpler to implement, while backward explanation may require less
explanation work overall. In our experiments we compare the two approaches.

Another potential benefit of word-level propagation is deeper conflict anal-
ysis. Normally, using bit-blasting, conflict analysis starts as soon as the first
conflict is found. In the word-level solver, we could do the same, to find the
first conflict clause and backtrack to the level indicated by this conflict (we
call this “standard backjumping”). With word-level propagation, since we can
discover several conflicts at once, we may find several learnt clauses at once, cor-
responding to several backtrack levels. We choose the smallest level from them
in order to backtrack to the highest level of the search tree and add all the
learnt clauses along the way to prevent all the conflicts from happening again
(we call this “multi-conflict backjumping”). We also offer a comparison of these
two approaches.

To construct the solver we have extended MiniSAT [6] so that it can keep
track of opportunities for word-level propagation and intersperse this kind of
propagation with unit propagation. Our word-level propagators contribute to
MiniSAT’s powerful search and learning mechanism by providing clauses as ex-
planations for word-level propagated bits. In this way, the word level propagators
become lazy clause generators [20] for a SAT solver extended with constraint
programming technology [21]. In summary the main contributions of this paper
are:

– a word-level propagating (but bit-level explaining) constraint solver;
– algorithms for generation of explanations for word-level propagators;
– an investigation of the algorithmic design space in building word-level prop-

agation with explanation;
– the first (as far as we know) empirical evaluation of the proposal by Michel

and Van Hentenryck [18], and comparison with the standard bit-blasting
approach to these problems;

– results suggesting that, with careful engineering, a word-level propagation
approach can be competitive with, or a useful supplement to, bit blasting.

2

The remainder of the paper is arranged as follows. Section 2 introduces bit-
vector constraints and notation. Section 3 outlines the architecture of MiniSAT
extended with word-level propagation. Section 4 introduces the propagators used
in our solver. Section 5 explores several options for the design of the word-level
solver and Section 6 evaluates these options and also compares to pure bit-
blasting through experiments using standard benchmarks. Section 7 outlines
related work and Section 8 concludes. The reader is assumed to have a basic
understanding of modern SAT-solving technology.

2 Bit-Vector Constraints

In the following we shall need to distinguish word-level logical operations from
Boolean operations carefully. As bit-wise operations we use

˜
, &, |, and ⊕ for bit

complement, conjunction, disjunction, and exclusive or, respectively. As Boolean
connectives, we use ¬, ∧ and ∨ for negation, conjunction, and disjunction, re-
spectively.

A bit-vector x[w] is a sequence of w binary digits (bits) and xi denotes the
ith bit in this sequence. The elements of the sequence are indexed from right
to left, starting with index 0 : x = xw−1...x1x0. Here we take Boolean variables
as bit-vectors of length 1. A “trit-vector” (for bit-width w) is a sequence of w
elements taken from {0, 1, ∗}. Here the ∗ represents an undetermined bit, so a
trit-vector x corresponds to the cube (

∧

i∈I0
¬xi) ∧ (

∧

i∈I1
xi), where I0 is the

set of index positions that hold a 0, and I1 is the set of index positions that hold
a 1.

In an implementation, the trit-vector can be represented by a pair of bit-
vectors: 〈lo(x), hi(x)〉, where lo(x) and hi(x) are bit-vectors representing the lower
and upper bound of x respectively, with

lo(x)i =

{

0 if xi = ∗
xi otherwise

hi(x)i =

{

1 if xi = ∗
xi otherwise

For example, trit-vector z= 011*0*11 is written 〈01100011, 01110111〉 in this
“lo-hi” form. The advantage of this form is that, as long as the bit width of a
trit-vector x is less than or equal to the size of machine registers, lo(x) and
hi(x) can be treated as unsigned integers, that is, z is 〈99, 119〉. Supported
by an implementation language (such as C) that can utilise word-level oper-
ations, we can rephrase bit-propagation on a trit-vector as word-level opera-
tions on its bounds. For an example, consider y=*1110*** corresponding to
〈01110000, 11110111〉, and the constraint y = z. We can utilize the word-level
rule: lo(y) = lo(z) = lo(y) | lo(z), hi(y) = hi(z) = hi(y) & hi(z) to obtain the new
lo-hi form of y (and z): 〈01110011, 01110111〉 representing 01110*11. Instead of
propagating the bits one by one, we effectively fix the bits y7, y1, y0 and z4
simultaneously with the word-level operations on the bounds.

The lo-hi form allows for invalid representations of trit-vectors. That happens
when, for some x, a bit in lo(x) is 1 while the corresponding bit in hi(x) is 0. As

3

will be seen, propagation can produce such invalid forms, but this happens when,
and only when, an inconsistency is present in the current set of constraints. The
validity checking rule is simple:

valid(x) =
˜
lo(x) | hi(x) (1)

The result for a valid bit-vector lo-hi form should be a bit-vector of all 1 bits
with the same bit width of the bit-vector variable; otherwise it is invalid, and
the 0 bits in the result are the bits that cause the invalidity.

The following predicates on trit-vectors will prove useful:

fixed(x) ≡ lo(x) = hi(x)
msb(x[w]) = xw−1

lit(b) =

{

pbq if lo(b) = 1
p¬bq if hi(b) = 0

pos(x) = {lit(xi) | lo(xi) = 1}
neg(x) = {lit(xi) | hi(xi) = 0}
lits(x) = pos(x) ∪ neg(x)

We use fixed(x) to return a Boolean value indicating whether every bit in bit-
vector x is fixed. We use msb(xw) to denote the most significant bit of bit-vector
x. We use lit(b) to return the literal corresponding to the Boolean bit b under
the condition that b is fixed (hence the use of Quine corners). We use pos(x)
(neg(x)) to return the set of literals fixed to 1 (resp. 0) in bit-vector x, and
lits(x) to return the set of fixed literals in x. In the later algorithms, we take the
set of literals to mean the conjunction of the literals.

Our solver handles all operations in the QF BV category of SMT-LIB2 ex-
cept for multiplication, division, modulus and remainder. The operations have
the usual semantics [15]. We summarize the most important constraints:

Logical Constraints. Logical constraints include bitwise equality x = y, bit-
wise negation x =

˜
y, bitwise conjunction z = x & y, bitwise disjunction

z = x|y, bitwise exclusive-or z = x⊕y, bitwise nand, bitwise nor, reified equality
b ⇔ x = y, and if-then-else operation ite(b, x, y) = z where b is Boolean. The
semantics of ite(b, x, y) = z is (b ∧ (z = x)) | (¬b ∧ (z = y)).

Arithmetic Constraints. Arithmetic constraints include (fixed-width) addi-
tion x + y = z, two’s complement unary minus y = −x which is equivalent to
y =

˜
x + 1, subtraction z = x − y which is equivalent to z = x + (

˜
y + 1),

unsigned inequality b ⇔ x ≤u y, b ⇔ x <u y, b ⇔ x ≥u y, b ⇔ x >u y, and the
corresponding signed inequality constraints. Signed inequality constraints can
be translated into unsigned inequality constraints. For instance, b ⇔ x ≤s y is
equivalent to b ⇔ (x ≤u y)⊕ xw−1 ⊕ yw−1.

Structural Constraints. Structural constraints include left shift(≪), unsigned
and signed right shift (≫u, ≫s), left and right rotate (rotl , rotr), concatena-
tion (::), extraction (extract(x, n,m) = y) where y is the extraction of bits
n down to m from x, signed and unsigned extension (extu, exts), and repeat
(repeat(x, n) = y) where y is the concatenation of n copies of x.

4

Algorithm 1 General algorithm for MiniSAT and word-level solver

add the input into the system ⊲ initialization; CNF or word-level formulas
if Propagate() 6= true then ⊲ unit/word-level propagation; top level conflict

return UNSAT
while true do

if Propagate() = true then ⊲ no conflict
if all variables are assigned then

return SAT
else

decide()

else ⊲ conflict happens
if top-level conflict found then

return UNSAT
else

learnt clause := conflict analyze()
backjump(learnt clause)

3 Extending MiniSAT

MiniSAT [6] is a small, complete, and efficient SAT solver which was designed
with domain specific extension in mind. The general algorithm for both the
MiniSAT and word-level SAT based solver is suggested in Algorithm 1 [15, 6],
based on the architecture shown in Figure 1.

3.1 The Architecture and SAT Solving Process in MiniSAT

The input to MiniSAT is a CNF formula, that is, the conjunction of clauses. Each
clause is the disjunction of literals, that is, Boolean variables or their negation.
The output is either the assignment of all the variables that satisfies the input
CNF formula, or “UNSAT” if the formula is unsatisfiable.

First, a literal ℓ is dequeued from the propagation queue, to see if any new
literal can be propagated based on this literal, by looking up the Boolean watch
list of this literal (BWatch(ℓ)) and sending the related clauses to do the unit
propagation. The unit propagation is the only propagation method applied in
MiniSAT which finds clause C where all literals except for one literal ℓ have
been made false, then propagates ℓ to true. After each round of unit propagation,
either a new literal may be propagated in which case this literal will be enqueued
into the Boolean propagation queue (BPQueue), and the clause C will be added
to the explanation database as the reason for this variable b (Reasons(b)); or
a conflict happens in which case the clause C becomes the conflict clause. If
clause C is at the top-level then it means the whole problem is unsatisfiable;
otherwise the conflict clause is analyzed based on the explanations of the fixed
literals and a learnt clause is synthesized to direct “back-jumping”. In addition,
the learnt clause is added into the clause database to avoid the same conflict
from occurring in the future, which is known as “no-good learning”.

5

unit
propagation

word-level
propagation

conflict
analysis

BPQueue

WPQueue

Reasons

b0

b1

b2
...

ci

cj

ck

BWatch

ℓ0

ℓ1

ℓ2
...

WWatch

x0

x1

x2

...

original

& learnt

clauses

pi pj

pk

propagators

look up

clauses

look up

and enqueue propagators

conflict
clause

en
qu
eu
e
ℓ

de
qu
eu
e
ℓ

enqueue
ℓ

1

explain

explain

2

co
nfl
ic
t
cl
au
se3

explanation

learnt

clauses

dequeue
propagator

Fig. 1. Overall architecture: MiniSAT (top) and word-level mechanism (bottom)

3.2 Architecture and Solving Process in Word-Level Solver

The extended architecture for our word-level SAT based solver is shown in the
bottom part of Figure 1. The input of the word-level solver is both the word-level
formulas which are for bit-vector operations, and the CNF formulas which are for
Boolean operations. A separate static watch list (WWatch(x)) for the word-level
propagators of each related bit-vector is added to MiniSAT. Correspondingly, a
separate word-level propagator queue (WPQueue) for the word-level propagators
is added (it will have a lower priority than the Boolean propagation queue). Note
that at the beginning, we put all the propagators into the propagator queue and
run them to the fix-point.

The extended solving process is shown in Algorithm 2. Once a bit ℓ of an
integer x is newly propagated, both this literal is enqueued into the Boolean

6

Algorithm 2 Extended solving process in word-level SAT based solver

function Enqueue(literal ℓ, clause C)
BPQueue.enqueue(ℓ)
b := var(ℓ) ⊲ get the corresponding boolean variable b

Reasons[b] := C ⊲ add the explanation C for b to the explanation database
if ℓ is in a bit-vector then

x := word(b) ⊲ get the corresponding bit-vector x
for p in WWatch(x) do

if p is not in WPQueue then
WPQueue.enqueue(p) ⊲ enqueue propagators not in WPQueue

function Propagate()
clause confl := true
while confl = true do ⊲ no conflict

while ¬BPQueue.isEmpty() ∧ confl = true do
ℓ := BPQueue.dequeue()
confl := unit prop(ℓ)

if confl = true then ⊲ BPQueue is empty, no conflict
p := WPQueue.dequeue()
confl := word prop(p)

return confl

propagation queue, and all the related word-level propagators of integer x in the
word-level watch list are enqueued into the propagator queue. When a literal
is dequeued from the Boolean propagation queue, the corresponding Boolean
constraints in the Boolean watch list are invoked to do the unit propagation.
Only when the Boolean propagation queue is empty do we start to dequeue
propagators from the propagator queue. We thus favour unit propagation since
it is faster but weaker, while the word level propagation is more powerful but
slower. In addition, since the previously learnt clauses are in the priority queue,
previous conflicts can be avoided earlier.

As can be seen from Figure 1, the interactions1 between MiniSAT (top part)
and the word-level mechanism (bottom part) are the propagated literals 1 ,
explanations 2 , and the conflict clauses 3 . The word-level propagators are re-
quired to return explanations for the literals they propagate and return conflict
clauses when they detect conflict. Without these capabilities, word-level propa-
gators cannot benefit from the learning capabilities of the SAT solver, including
back-jumping and powerful autonomous search.

4 Word-Level Propagators with Bit-Level Explanation

Bit-blasting is the most common approach to bit-vector constraint solving. Bit-
blasting rewrites all the word level formulas into large number of low-level propo-
sitional formulas although many of them may be redundant and never used in

1 The algorithms below point out where/when the interactions 1 , 2 , 3 occur.

7

the solving process. Instead of doing bit-blasting, we use word-level propagation.
The propagators perform propagation, and they also generate explanations in
the form of clauses, for literals fixed by propagation. They can be seen as lazy
clause generators, generating clauses only as these are needed.

The input of the word level propagators are all bit-vectors. Inside the prop-
agator, we utilize and also extend the propagation rules introduced in [18] to do
the propagation on the word level. At the same time we explain every propagated
bit at the bit level. After each round of propagation for the bit-vector interval,
validity checking (1) is applied on the new intervals. After the checking, either
some bits are propagated, or a conflict happens which means a conflict clause (or
several conflict clauses) should be returned. The explanation for the propagated
bit is a set of literals which are the reason for making the propagated bit fixed.
Note that the explanation for each fixed bit can also explain the conflict which
happens because of this bit.

Logical Constraints. The detailed word-level propagation rules for the logical
constraints can be found in [18]. The explanations for the basic logical constraints
are as following. We take the bitwise equality (x = y) as an example: when the
ith bit of integer xi is fixed to 1, we know that the reason is that yi is already
fixed to 1. So the clause c2 : ¬yi ∨ xi is the explanation that could explain why
xi is fixed to 1. The explanation for reified equality constraint b ↔ x = y is
introduced in Section 5.1.

– Bitwise Equality (x = y):
c1 : ¬xi ∨ yi c2 : ¬yi ∨ xi

– Bitwise Conjunction (z = x ∧ y):
c1 : ¬zi ∨ xi c2 : ¬zi ∨ yi c3 : ¬xi ∨ ¬yi ∨ zi

– Bitwise Negation (x =
˜
y):

c1 : ¬xi ∨ ¬yi c2 : xi ∨ yi
– Bitwise Disjunction (z = x ∨ y):

c1 : ¬xi ∨ zi c2 : ¬yi ∨ zi c3 : xi ∨ yi ∨ ¬zi
– Bitwise Exclusive Or (z = x⊕ y):

c1 : xi ∨ yi ∨ ¬zi c2 : xi ∨ ¬yi ∨ zi c3 : ¬xi ∨ yi ∨ zi
c4 : ¬xi ∨ ¬yi ∨ ¬zi

– Bitwise Conditional (ite(b, x, y) = z):
c1 : ¬b ∨ ¬xi ∨ zi c2 : ¬b ∨ xi ∨ ¬zi c3 : b ∨ ¬yi ∨ zi
c4 : b ∨ yi ∨ ¬zi c5 : ¬xi ∨ ¬yi ∨ zi c6 : xi ∨ yi ∨ ¬zi

Arithmetic Constraints. A constraint z = x+y is translated into constraints
that introduce two new variables: c for the sequence of carry-ins, and d for carry-
outs. As pointed out by Michel and Van Hentenryck [18], a full adder can then
be captured with the constraints

z = x⊕ y ⊕ c

d = (x& y) | (c& (x⊕ y))
c = d ≪ 1

8

where the last constraint connects the carry-in bit-vector c and carry-out bit-
vector d. By adding the intermediate variables into the addition constraint, the
propagator for addition can be divided into several decomposed propagators
which solve the basic constraints individually. The explanations for the addi-
tion constraint simply combines the explanations of these basic constraints. The
propagation rules and explanations for inequality constraints will be introduced
in Section 5.1.

Structural Constraints. We have extended the propagation rules mentioned
in [18] to solve all the structural constraints in the QF BV category of SMT-
LIB2. We can take the structural constraints as the variants of the bitwise
equality constraints for bit manipulation. Therefore, the propagation rules for
structural constraints are based on the propagation rules of the bitwise equality
constraints but with different “masks” to fixing the particular bits to be 1 or
0. The explanations for the structural constraints are also similar to the bitwise
equality constraints but with some bit shift (≪,≫u, ≫s, rotl, rotr), or fixing
some bits value (≪, ≫u, ≫s, extu, exts).

5 Word-Level Propagation Solving

5.1 Propagators: Composed vs Decomposed

To solve a complicated constraint, one way we can proceed is to create a single
“composed” propagator. This propagator may be complex to implement, and
may end up finding long explanations. In many cases it can be worth splitting
the complicated constraint into several smaller constraints thus decomposing
it. Not only are the decomposed components easier to implement, but more
importantly, in a learning solver, the intermediate variables introduced may be
useful for both search as well as making explanations shorter. Of course the
end line for this approach is effectively full bit-blasting. On the other hand, the
composed propagators are compact, while the decomposed propagators need the
communication among the components. We propose both single propagators and
decompositions to implement the reified equality constraint b ⇔ x = y and the
reified inequality constraint b ⇔ x ≤u y.

Composed Propagators. Propagators return a conflict clause (“true” indi-
cates no conflict) and enqueue the propagated literals together with their expla-
nations.

We can implement a propagator for the reified equality constraint: b ⇔ x =
y as shown in Algorithm 3. The propagator reuses the implementation of the
propagators for x = y and x 6= y, or checks that x = y in the current domain in
which case it explains b, or that x 6= y in the current domain, in which case it
explains ¬b.

The propagator for x 6= y (Algorithm 4) first checks whether x and y are
known to be equal and if so, returns a failure explanation. If x and y are known

9

Algorithm 3 Propagator for b ⇔ x = y

function Prop ReifEq(bit b, bit-vec x, y)
if lo(b) = 1 then

return Prop Eq(x, y) 3
else if hi(b) = 0 then

return Prop DisEq(x, y) 3
else

if fixed(x) ∧ fixed(y) ∧ lo(x) = lo(y) then ⊲ x = y

Explanation := lits(x) ∧ lits(y) → b

Enqueue(b, Explanation) 1 2
else

z := lo(x) &˜ hi(y) | ˜ hi(x) & lo(y)
if z 6= 0 then ⊲ x 6= y

choose i with zi = 1
Explanation := lit(xi) ∧ lit(yi) → ¬b
Enqueue(¬b, Explanation) 1 2

return true

to differ, it simply returns true. Otherwise if there is at most one unfixed bit,
and they are otherwise equal it explains why the unfixed bit should be set to the
opposite value of the corresponding fixed bit in the other variable. For example,
if x = 11010, y = 110 ∗ 0, we propagate bit y1 = 0, the explanation is x4 ∧ x3 ∧
¬x2 ∧ x1 ∧ ¬x0 ∧ y4 ∧ y3 ∧ ¬y2 ∧ ¬y0 → ¬y1.

Algorithm 4 Propagator for x 6= y

function DisEq(bit-vec x, y)
if fixed(x) ∧ (lo(x) = lo(y) ∨ lo(x) = hi(y)) then ⊲ x fixed; y possibly not fixed

f := lo(y)⊕ hi(y)
if unique 1 bit in f then ⊲ only one bit of y is unknown

find i with fi = 1
if lit(xi) = xi then ℓ := ¬yi else ℓ := yi
Explanation := lits(x) ∧ lits(y) → ℓ

Enqueue(ℓ, Explanation) 1 2

return true

function Prop DisEq(bit-vec x, y)
if fixed(x) ∧ lo(x) = lo(y) then ⊲ x = y

return lits(x) ∧ lits(y) → false 3

if lo(x) &˜ hi(y) | ˜ hi(x) & lo(y) then ⊲ x 6= y

return true
DisEq(x, y)
DisEq(y, x)
return true

10

Algorithm 5 Propagator x ≤u y

if lo(x) >u hi(y) then
f := lo(x) &˜ hi(y)
i := first 1 bit position in f ⊲ find first bit pair: 1 bit of x and 0 bit of y
return pos(x) \ {xj | j < i} ∧ neg(y) \ {¬yj | j < i} → false 3

for i := w − 1 downto 0 do ⊲ propagate the bits in x

if ¬fixed(xi) then
xl := lo(x) | (1 ≪ i) ⊲ pretend ith bit is fixed to 1
if xl >u hi(y) then

ℓ := ¬xi ⊲ fix xi to 0
f := lo(xl) &˜ hi(y)
i := first 1 bit position in f

Explanation := pos(x) \ {xj | j < i} ∧ neg(y) \ {¬yj | j < i} → ℓ

Enqueue(ℓ, Explanation) 1 2
else

break
/* the similar algorithm to propagate the bits in y */
return true

Similar to the way of solving the equality constraint, for the inequality con-
straint b ⇔ x ≤u y, we also need two propagators, one for the constraint x ≤u y

and one for x >u y. Since the propagation rules and the way of generating the
explanations of these two constraints are similar, we show only the propagator
for x ≤u y, as Algorithm 5. First, we still need to check if there is a conflict, that
is, if the lower bound of x is (unsigned) greater than the upper bound of y, in
which case a conflict clause needs to be returned. To generate the conflict clause,
we go through every bit of x and y bit by bit from the most significant bits to
find the first “bit pair” of 1 bit in x and 0 bit in y, and add all the 1 bits in x and
0 bits in y before the “bit pair” (included) to the conflict clause. For example, if
x = 10010**, y = 1000*11 then the conflict clause is x6∧x3∧¬y5∧¬y4 → false .

After the conflict checking, we start the propagation which utilizes the prop-
agation rules introduced in [18]. We take the propagation for the bits in variable
x as an example. In the propagation of constraint x ≤u y, we can only fix x to
0. But we pretend to fix the first free bit (from left) of x to 1 to see if there is
a conflict in which case we know that this free bit must be fixed to 0; otherwise
we cannot propagate anything. The way of generating the explanation for this
fixed bit is similar to how the conflict clause was generated, but with the pre-
tend lower bound of x. For example, if x = 1100*1* and y = 11000** then xl =
1100110, and the explanation is x6 ∧ x5 ∧ ¬y4 ∧ ¬y3 ∧ ¬y2 → ¬x2.

The explanations generated by the composed propagators are often large,
especially when the bit width of the involved bit-vectors is large. In comparison,
each explanation for a basic constraint introduced in Section 4 contains at most
three literals.

11

Decomposed Propagators. The decomposed propagator for equality con-
straint b ⇔ x = y is based on this observation [22]:

b = msb(
˜
((x − y) | (y − x)))

We add intermediate variables to split this constraint into several basic con-
straints which can be processed by the word level propagators already intro-
duced. Note that the m1 = x−y constraint will be further split as the arithmetic
constraint introduced in Section 2 and Section 4. The explanation for the reified
equality constraint b ⇔ x = y is made up by those of the basic constraints—
several small explanations with the intermediate literals involved.

m1 = x− y; m2 = −m1; m3 = m1 |m2; m4 =
˜
m3; b = msb(m4)

The decomposed propagator for inequality constraint b ⇔ x < y is also based
on this observation:

b = msb((
˜
x | y) & ((x⊕ y) |

˜
(y − x)))

The way to solve an inequality constraint with decomposed propagators is the
same as for the equality constraint.

It is worth pointing out that the two kinds of propagator do not lead to
identical search trees. The presence of intermediate variables introduced by the
decomposition makes a considerable difference to activity based search, since
there are new variables to search on and different initial activities.

5.2 Explanation: Forward vs Backward

Normally in a SAT solver, for every fixed Boolean literal, a reason why it be-
came true is required for conflict analysis. Therefore, normally when we fix a
Boolean literal in our word-level propagator, we return an explanation for it
eagerly, so-called “forward explanation.” Another approach, standard for SMT
theory solvers [19] and discussed by Gent et al. [10], is to generate the expla-
nation only during conflict analysis where the reason for a propagated literal is
required. Compared to the forward explanation method, this has the advantage
that explanations are only generated as needed. Furthermore, the “backward
explanation” is especially good for our word-level propagator. Our propagators
have two parts: one is the propagation part, the other is the explanation gener-
ation part which is the more time consuming. Therefore, backward explanation
makes propagation faster, but possibly makes conflict analysis slower.

5.3 Conflict Analysis: First vs Highest Level

As already mentioned we can detect conflicts in many bit positions simultane-
ously. But to choose which one to do the conflict analysis on remains a question.

With bit-blasting, as soon as the first conflict is found, conflict analysis is
started, returning a learnt clause of the form C ∨ ℓ, where ℓ is the unique literal

12

Table 1. Forward explanation vs backward explanation and standard backjumping vs
multi-conflict backjumping (times are in seconds)

Problem F + S B + S B + M

name number time TO time TO time TO

sage: app1 1176 727 0 432 0 416 0

sage: app2 475 8 0 5 0 5 0

sage: app5 990 44 0 27 0 29 0

sage: app6 245 0 0 0 0 0 0

sage: app7 339 4 0 3 0 3 0

sage: app8 1760 662 1 447 1 542 0

sage: app9 2096 370 1 732 0 587 0

sage: app12 4905 2118 0 1226 0 1262 0

stp samples 424 18 0 13 0 13 0

bench ab 284 0 0 0 0 0 0

Total 12694 3951 2 2885 1 2857 0

Overall time 4951 3385 2857

brummayerbiere3 42 495 33 310 33 271 33

spear: cvs v1.11.22 5 0 4 0 4 0 4

spear: openldap v2.3.35 6 0 6 0 6 0 6

spear: samba v3.0.24 4 0 4 0 4 494 3

rubik 7 524 2 308 2 407 1

uclid contrib smtcomp09 7 149 6 90 6 72 6

Total 71 1168 55 708 55 1244 53

Overall time 28668 28208 27744

(UIP) at the current decision level, and the maximum decision level in the re-
mainder of the clause C determines the level to backjump to. One way to manage
conflict analysis for word-level propagation is to choose the first conflict to do
the conflict analysis as usual for SAT. We call this “standard backjumping”.

An alternative approach is to generate a conflict clause for each bit position
that is in conflict. We can then add all the learnt clauses generated to the clause
database and then jump to the highest decision level indicated by one of them.
This has the advantage of generating more information from the failure, and
potentially higher backjumps. We call this “multi-conflict backjumping”.

6 Experimental Evaluation

For the experimental data, we pick the folders from the QF BV category of SMT-
LIB2 benchmarks which do not make use of multiplication, division, modulus
and remainder, and the bit width for the bit-vector operations is no greater than
64 (the size of our machine register). In total there are more than 12000 test
cases. We split them into two categories: easy and difficult, according to the
per-problem solve time of the bit-blaster baseline solver. We use a time limit

13

Table 2. Resource consumption: bit-blaster vs word-level bit-vector solver and com-
posed propagators vs decomposed propagators (memory is in MB)

Problem bit-blaster Deq + Dle Ceq + Dle Deq + Cle Ceq + Cle

name time TO mem time TO mem time TO mem time TO mem time TO mem

app1 393 0 27 416 0 25 381 0 23 1985 32 16 905 32 12

app2 9 0 7 5 0 11 60 1 11 252 18 10 6311 1 8

app5 49 0 23 29 0 20 271 1 15 1505 15 16 1025 17 10

app6 0 0 7 0 0 8 0 0 8 0 0 8 0 0 8

app7 3 0 7 3 0 8 3 0 8 1 14 8 1 14 8

app8 1127 0 16 542 0 16 828 1 14 2062 2 13 1585 2 10

app9 863 0 15 587 0 14 303 2 13 2122 1 12 1387 3 9

app12 1052 0 19 1262 0 20 994 2 16 972 6 17 595 8 11

stp sam 37 0 39 13 0 31 8 0 23 13 0 30 7 0 20

bench ab 1 0 7 0 0 8 0 0 8 0 0 8 0 0 8

Total 12694 0 167 2857 0 161 2848 7 139 8912 88 138 11816 77 104

Overall time 3534 2857 6348 52912 50316

brumm3 402 31 33 271 33 41 422 33 31 228 32 27 208 32 16

cvs 688 2 9 0 4 10 0 4 9 0 5 10 0 5 8

openldap 176 5 353 0 6 240 0 6 46 0 6 238 0 6 47

samba 0 4 1005 494 3 676 24 0 124 0 4 751 5 0 87

rubik 87 2 7 407 1 16 838 1 11 589 1 13 56 2 10

uclid 0 7 7 72 6 109 710 3 25 0 7 138 393 4 25

Total 1353 51 1414 1244 53 1092 1994 47 246 817 55 1177 662 49 193

Overall time 26853 27744 25494 28317 25162

of 500 seconds. In Tables 1 and 2, “time” means the total time in seconds for
all the successful test cases in the folder; “TO” is the number of cases that
timed out; “Total” is the total time of all successful test cases; “Overall time”
is “Total” plus 500 seconds penalty for each unsuccessful case, which gives an
overall “score” similar to what is used in SMT competitions. All the experiments
were performed on a commodity computer with a Core-i7 CPU (2.7 GHz) and
5 GB RAM.

The first experiment compares forward explanation (F) versus backward ex-
planation (B), as well as standard backjumping (S) versus multi-conflict back-
jumping (M). We implemented three variants of the word-level bit-vector solvers
which all use the decomposed word-level propagators for equality and inequality
constraints. The reason we only look at three variants is that the two parameters
(F/B, S/M) do not interact with each other. Table 1 shows that, first, backward
explanation outperforms the forward explanation significantly, especially when
the test cases becomes time consuming. Second, the multi-conflict backjumping
outperforms the standard backjumping considerably in both categories.

The second experiment compares bit-blasting with word-level bit-vector solv-
ing using composed and decomposed propagators. We implemented a vanilla
bit-blaster as a baseline to compare against, which uses the decomposition of
equality and inequality applied in the decomposed word-level solver Deq+Dle.

14

Table 3. Conflicts and inspections during the search (a ’-’ indicates a time of 0)

Problem bit-blaster Deq + Dle

name fail/sec insp(k)/sec fail/sec insp(k)/sec

app1 2.6 14.4 3.1 12.6

app2 4.8 20.3 9.2 24.0

app5 1.0 6.3 2.1 9.1

app6 - - - -

app7 76.3 66.0 61.3 36.7

app8 2.6 21.3 4.5 11.7

app9 2.2 16.0 3.8 10.4

app12 1.5 4.2 1.4 3.2

stp sam 0.3 10.1 1.1 10.4

bench ab 2.0 23.0 - -

Problem bit-blaster Ceq + Cle

name fail/sec insp(k)/sec fail/sec insp(k)/sec

brumm3 41.5 507.0 109.9 297.0

cvs 1507.7 6041.5 11134.8 6645.2

openldap 211.5 2404.3 930.7 1833.7

samba 84.0 2675.5 200.0 1800.0

rubik 280.6 4155.5 875.0 2141.1

uclid 198.9 335.1 3506.5 7354.8

Since Table 1 suggests the B+M combination has merit, all word-level bit-vector
solvers listed in Table 2 use backward explanation and multi-conflict backjump-
ing. However, they use different combinations of composed propagators (C) and
decomposed propagators (D) for equality (eq) and inequality constraints (le).
Table 2 shows the resource consumption including the running time and aver-
age memory usage (mem) in MB. The results show that the Deq+Dle word-level
propagator is typically faster than bit-blasting on the easy cases, using less mem-
ory. For the difficult cases, the Ceq+Cle word-level propagator outperforms the
bit-blasting in some cases and also uses much less memory. But in general the
bit-blasting method is more robust.

Table 3 shows the average number of conflicts per second (fail/sec), and
the average number of inspections2 in thousand per second (insp(k)/sec) that
occur during the search. We compare bit-blasting only against the best word-
level solver as identified above, that is, Deq+Dle for easy cases and Ceq+Cle
for difficult cases. Note that the bit-blasting often finds fewer conflicts during
the search with more propagation, while the word-level solvers often find more
conflicts with less propagation. That is because propagating and checking the
conflicts at word-level is parallel in some sense, resulting in a higher rate of
conflict-finding as well as the reduction in inspections.

2 A call to a unit or word-level propagator (which may or may not result in fixing new
bits).

15

7 Related Work

Word-level reasoning on bit-vector logic is NEXPTIME-complete [14]. In spite
of this, the problem has received much attention recently, albeit with limited
progress. Current related work falls into one of or the combination [1] of three
categories:

Word-level reasoning based on lazy SMT techniques: Hadarean et al. [12]
propose two word-level solvers an equality solver and inequality solver as the the-
ory solver in their lazy bit-vector solver. But they cannot express the conflict
at the bit-level which significantly affects the efficiency of the method as they
showed in [12].

Word-level reasoning based on constraint programming: Bardin et al. [2]
propose two word-level propagators based on the Constraint Logic Programming
framework. One is called Is/C which is to solve linear arithmetic constraints, and
the other is the BL (Bit-List) propagator which runs in linear time to solve the
linear bitwise constraints. Constraint propagators for modular arithmetic con-
straints have been proposed by Gotlieb et al. [11] who utilize so-called clockwise
intervals in a linear fragment of modular integer constraints. None of these CP
approaches support learning, or compare with bit-blasting.

Word-level reasoning based on linear programming: This approach is
to transform the problem into linear programming constraints [3, 23]. For RTL
verification, the performance of LP solvers are often no better than SMT solvers
as reported in [16].

8 Conclusion

We have extended word-level propagation algorithms of Michel and Van Hen-
tenryck [18] to produce an explaining solver. We have introduced decomposed
counterparts to the proposed propagators, as these were not constant time. We
also utilize a concept of multi-conflict backjumping, capitalizing on the fact
that word-level propagation can detect multiple failures simultaneously. We have
given an empirical comparison of word-level propagation versus bit-blasting, the
standard approach to these problems. Our solver is a prototype, still to be tuned.
Nevertheless it shows that, with careful engineering, a word-level propagation
solver can compete with bit-blasting, particularly on easier problems.

For future work, it may be advantageous to apply some word-level simplifi-
cation as done with the linear solver in STP [8, 9]. We also need to deal with
non-linear arithmetic operations, one way or other. Finally, an interesting line
of research would be to combine word-level propagation with word-level search,
especially stochastic local search as recently suggested by Fröhlich et al. [7].

Acknowledgment

This work is supported by the Australian Research Council under ARC grant
DP140102194.

16

References

1. Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint
integer programming: A new approach to integrate CP and MIP. In L. Perron and
M. A. Trick, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, volume 5015 of Lecture Notes in
Computer Science, pages 6–20. Springer, 2008.

2. Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An alternative to
SAT-based approaches for bit-vectors. In J. Esparza and R. Majumdar, editors,
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’10),
volume 6015 of Lecture Notes in Computer Science, pages 84–98. Springer, 2010.

3. Raik Brinkmann and Rolf Drechsler. RTL-datapath verification using integer linear
programming. In VLSI Design, pages 741–746. IEEE Computer Society, 2002.

4. Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-
vectors and arrays. In S. Kowalewski and A. Philippou, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’09), volume 5505 of
Lecture Notes in Computer Science, pages 174–177. Springer, 2009.

5. Byron Cook, Daniel Kroening, and Natasha Sharygina. Cogent: Accurate theo-
rem proving for program verification. In Computer Aided Verification (CAV’05),
volume 3576 of Lecture Notes in Computer Science, pages 296–300. Springer, 2005.

6. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In E. Giunchiglia and
A. Tacchella, editors, Theory and Applications of Satisfiability Testing (SAT’04),
volume 2919 of Lecture Notes in Computer Science, pages 333–336. Springer, 2004.

7. Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Yussef Hamadi.
Stochastic local search for satisfiability modulo theories. In E. Giunchiglia and
A. Tacchella, editors, Proceedings of the 29th AAAI Conference on Artificial Intel-
ligence, pages 1136–1143. AAAI Press, 2015.

8. Vijay Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers. PhD
thesis, Stanford University, 2007.

9. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In W. Damm and H. Hermanns, editors, Computer Aided Verification (CAV’07),
volume 4590 of Lecture Notes in Computer Science, pages 519–531. Springer, 2007.

10. Ian P. Gent, Ian Miguel, and Neil C. A. Moore. Lazy explanations for constraint
propagators. In M. Carro and R. Pena, editors, Practical Aspects of Declarative
Languages, volume 5937 of Lecture Notes in Computer Science, pages 217–233.
Springer, 2010.

11. Arnaud Gotlieb, Michel Leconte, and Bruno Marre. Constraint solving on mod-
ular integers. In Proceedings of the Ninth International Workshop on Constraint
Modelling and Reformulation (ModRef ’10), 2010.

12. Liana Hadarean, Clark Barrett, Dejan Jovanović, Cesare Tinelli, and Kshitij
Bansal. A tale of two solvers: Eager and lazy approaches to bit-vectors. In A. Biere
and R. Bloem, editors, Computer Aided Verification (CAV’14), volume 8559 of Lec-
ture Notes in Computer Science, pages 680–695. Springer, 2014.

13. Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. Boosting verifica-
tion by automatic tuning of decision procedures. In Formal Methods in Computer
Aided Design (FMCAD’07), pages 27–34. IEEE Comp. Soc., 2007.

14. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the complexity of fixed-
size bit-vector logics with binary encoded bit-width. In Proceedings of SMT12,
pages 44–55, 2012.

17

15. Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point
of View. Springer, 2008.

16. Sarvani Kunapareddy, Sriraj D. Turaga, and Solomon S. T. M. Sajjan. Compar-
ison between LPSAT and SMT for RTL verification. In Proceedings of the 2015
International Conference on Circuit, Power and Computing Technologies, pages
1–5. IEEE Computer Society.

17. Rhishikesh S. Limaye and Sanjit A. Seshia. Beaver: An SMT solver for quantifier-
free bit-vector logic. Master’s thesis, EECS Department, University of California,
Berkeley, May 2010.

18. Laurant D. Michel and Pascal Van Hentenryck. Constraint satisfaction over bit-
vectors. In M. Milano, editor, Constraint Programming: Proceedings of the 2012
Conference, volume 7514 of Lecture Notes in Computer Science, pages 527–543.
Springer, 2012.

19. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

20. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy
clause generation. Constraints, 14(3):357–391, 2009.

21. Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.
ACM Transactions on Programming Languages and Systems, 31(1):2:1–2:43, 2008.

22. Henry S. Warren Jr. Hacker’s Delight. Addison Wesley, 2003.
23. Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A unified approach to RTL satis-

fiability. In Design, Automation and Test in Europe (DATE’01), pages 398–402.
IEEE Press, 2001.

18

