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Abstract. For all 8192 combinations of Allen’s 13 relations between one task
with origin oi and fixed length `i and another task with origin o j and fixed length
` j, this paper shows how to systematically derive a formula F(o j, o j, `i, ` j), where
o j and o j respectively denote the earliest and the latest origin of task j, evaluating
to a set of integers which are infeasible for oi for the given combination. Such
forbidden regions allow maintaining range-consistency for an Allen constraint.

1 Introduction

More than 30 years ago Allen proposed 13 basic mutually exclusive relations [1] to
exhaustively characterise the relative position of two tasks. By considering all poten-
tial disjunctions of these 13 basic relations one obtains 8192 general relations. While
most of the work has been focussed on qualitative reasoning [8,5] with respect to these
general relations, and more specifically on the identification and use of the table of
transitive relations [11], or on logical combinators involving Allen constraints [4,10],
no systematic study was done for explicitly characterising the set of infeasible/feasible
values of task origin/length with respect to known consistencies. In the context of range
consistency the contribution of this paper is to derive from the structure of basic Allen
Relations the exact formulae for the lower and upper bounds of the intervals of in-
feasible values for the 8192 general relations and to synthesised a corresponding data
base [2].

After recalling the definition of Basic Allen’s relations, Section 2.1 gives the forbid-
den regions for these basic Allen’s relation, Section 2.2 unveils a regular structure on the
limits of those forbidden regions, and Section 2.3 shows how to systematically compute
a compact normal form for the forbidden regions of all the 8192 general relations.
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Definition 1 (Basic Allen’s relations). Given two tasks i, j respectively defined by their
origin oi, o j and their length `i > 0, ` j > 0, the following 13 basic Allen’s relations
systematically describe relationships between the two tasks, i.e. for two fixed tasks only
one basic Allen’s relation holds.

• b : oi + `i < o j
• m : oi + `i = o j

• o :
oi < o j∧

oi + `i > o j∧

oi + `i < o j + ` j

• s :
oi = o j∧

oi + `i < o j + ` j

• d :
o j < oi∧

oi + `i < o j + ` j

• f :
o j < oi∧

oi + `i = o j + ` j

• e :
oi = o j∧

oi + `i = o j + ` j

The basic relations bi, mi, oi, si, di and fi are respectively derived from b, m, o,
s, d and f by permuting task i and task j. The expression i r j denotes that the basic
relation r holds between task i and task j.

Definition 2 (Allen’s constraint). Given two tasks i, j respectively defined by their ori-
gin oi, o j and their length `i > 0, ` j > 0, and a basic relation r, the Allen(r, oi, `i, o j, ` j)
constraint holds if and only if the condition i r j holds.

if r = b then
propagate oi + `i < o j

else if r = m then
propagate oi + `i = o j

else if . . . then
. . .

end if

Note that oi, o j, `i, ` j are integer vari-
ables. Similarly, the basic relation r is an inte-
ger variable r, whose initial domain is included
in {b, bi,m,mi, o, oi, s, si, d, di, f, fi, e}. This con-
straint could be decomposed as on the right-hand
side, but such a decomposition would propagate
nothing until r has been fixed, whereas our for-
mulae capture perfect constructive disjunction for all the 8192 general relations, e.g.
for use in a range-consistency propagator.

2 Range Consistency

Given an integer variable o, D(o), o, o respectively denote the set of values, the smallest
value, the largest value that can be assigned to o. The range of a variable o is the interval
[o..o] and is denoted by R(o). A constraint ctr is range consistent (RC) [3] if and only
if, when a variable o of ctr is assigned any value in its domain D(o), there exist values
in the ranges of all the other variables of ctr such that the constraint ctr holds.

2.1 Forbidden Regions Normal Form of Basic Allen’s Relations

For each of the 13 basic Allen’s relations column RC of Tab. 1 provides the correspond-
ing normalised forbidden regions.

Lemma 1. (a) The correct and complete forbidden region for oi + ` < o j is oi < [o j −

`..+∞). (b) The correct and complete forbidden region for o j+` < oi is oi < (−∞..o j+`].



Table 1. Inconsistent values for RC for the 13 basic Allen’s relations between two tasks
i and j respectively defined by their origin oi, o j and their length `i and ` j subject to
Allen’s relation i r j with r ∈ {b, bi, . . . , e} (for reasons of symmetry we only show the
filtering of task i).

rel RC
parameter cases inconsistent values

b oi < [o j − `i.. +∞)

bi oi < (−∞..o j + ` j]

m oi < (−∞..o j − `i − 1] ∪ [o j − `i + 1.. +∞)

mi oi < (−∞..o j + ` j − 1] ∪ [o j + ` j + 1.. +∞)

o
`i > 1 ∧ ` j > 1 ∧ `i ≤ ` j: oi < (−∞..o j − `i] ∪ [o j.. +∞)

`i > 1 ∧ ` j > 1 ∧ `i > ` j: oi < (−∞..o j − `i] ∪ [o j + ` j − `i.. +∞)
`i = 1 ∨ ` j = 1: oi < (−∞.. +∞)

oi

`i > 1 ∧ ` j > 1 ∧ `i ≤ ` j: oi < (−∞..o j + ` j − `i] ∪ [o j + ` j.. +∞)

`i > 1 ∧ ` j > 1 ∧ `i > ` j: oi < (−∞..o j] ∪ [o j + ` j.. +∞)
`i = 1 ∨ ` j = 1: oi < (−∞.. +∞)

s
`i < ` j: oi < (−∞..o j − 1] ∪ [o j + 1.. +∞)
`i ≥ ` j: oi < (−∞.. +∞)

si
` j < `i: oi < (−∞..o j − 1] ∪ [o j + 1.. +∞)
` j ≥ `i: oi < (−∞.. +∞)

d
`i + 1 < ` j: oi < (−∞..o j] ∪ [o j + ` j − `i.. +∞)
`i + 1 ≥ ` j: oi < (−∞.. +∞)

di
` j + 1 < `i: oi < (−∞..o j + ` j − `i] ∪ [o j.. +∞)
` j + 1 ≥ `i: oi < (−∞.. +∞)

f
`i < ` j: oi < (−∞..o j + ` j − `i − 1] ∪ [o j + ` j − `i + 1.. +∞)
`i ≥ ` j: oi < (−∞.. +∞)

fi
` j < `i: oi < (−∞..o j + ` j − `i − 1] ∪ [o j + ` j − `i + 1.. +∞)
` j ≥ `i: oi < (−∞.. +∞)

e
` j = `i: oi < (−∞..o j − 1] ∪ [o j + 1.. +∞)
` j , `i: oi < (−∞.. +∞)



Proof. (a) Given oi + ` < o j then clearly oi < o j − ` and hence oi < [o j − `..+∞). Given
v < o j − ` then oi = v, o j = o j is a solution of the constraint. (b) Given o j + ` < oi then
clearly oi > o j + ` and hence oi < (−∞..o j + `]. Given v < o j + ` then oi = v, o j = o j is
a solution of the constraint. �

Lemma 2. Given constraint c ≡ c1 ∧ c2 if oi < R1 is a correct forbidden region of c1
and oi < R2 is a correct forbidden region of c2 then oi < R1 ∪ R2 is a correct forbidden
region of c.

Proof. Since there can be no solution of c1 with oi ∈ R1 and no solution of c2 with
oi ∈ R2 there can be no solution of c with oi ∈ R1 ∪ R2. �

Theorem 1. Forbidden intervals of consecutive values shown in column RC of Table 1
are correct and complete.

Proof. We proceed by cases and omit relations bi, mi, oi, si, di, fi for which the reasoning
is analogous to b, m, o, s, d, f.

b Follows from Lem. 1(a).
m Correctness: given i meets j then oi + `i = o j thus oi + `i ≤ o j ∧ oi + `i ≥ o j thus

oi + (`i − 1) < o j ∧ o j + (−`i − 1) < oi. From Lem. 1 we have that [o j − `i + 1..+∞)
and (−∞..o j−`i−1] are correct forbidden regions and by Lem. 2 correctness holds.
Completeness: choose v ∈ [o j − `i..o j − `i] then oi = v, o j = v + `i is a solution.

o Correctness: given i overlaps with j we have oi < o j∧oi + `i > o j∧oi + `i < o j + ` j.
Suppose `i = 1 then this implies oi < o j∧oi+1 > o j contradiction, or suppose ` j = 1
then this implies oi + `i > o j ∧ oi + `i < o j + 1 contradiction hence (−∞.. +∞) is a
correct forbidden region. Lemma 1 gives us correct forbidden regions (−∞..o j−`i],
[o j +` j−`i..+∞), [o j..+∞). If `i ≤ ` j this is equivalent to (−∞..o j−`i]∪ [o j..+∞).
If `i > ` j this is equivalent to (−∞..o j − `i] ∪ [o j + `i − ` j.. + ∞). Completeness:
when `i = 1 or ` j = 1 then completeness follows from the contradiction. Choose
v ∈ [o j − `i + 1..o j + min(0, ` j − `i) − 1] then oi = v, o j = v + `i − 1 is a solution.

s Correctness: If `i ≥ ` j then the constraints are unsatisfiable and (−∞.. + ∞) is
a correct forbidden region. Otherwise from s we have that oi < o j + 1 ∧ oi >
o j−1∧oi +`i < o j +` j and Lem. 1 gives us correct forbidden regions [o j +1..+∞),
(−∞..o j−1] and [o j +` j−`i..+∞). If `i < ` j then this gives (−∞..o j−1]∪[o j +1..+
∞). Completeness: If `i ≥ ` j then completeness follows from the unsatisfiability.
Otherwise choose v ∈ [o j..o j] then oi = v, o j = v is a solution.

d Correctness: If `i + 1 ≥ ` j then oi + `i ≥ oi + ` j − 1 ≥ o j + ` j but this contradicts
oi + `i < o j + ` j hence (−∞.. +∞) is a correct forbidden region. Otherwise Lem. 1
gives us correct forbidden regions (−∞..o j] and [o j + ` j − `i.. +∞) whose union is
the correct forbidden region. Completeness: The contradiction proves completeness
when `i +1 ≥ ` j. Otherwise choose v ∈ [o j +1..o j +` j−`i−1] then oi = v, o j = v−1
is a solution.

f Correctness: Suppose `i ≥ ` j then o j < oi = o j + ` j − `i ≤ o j, a contradiction, hence
(−∞..+∞) is a correct forbidden region. Otherwise o j + ` j = oi + `i is equivalent to



o j+` j−1 < oi+`i∧o j+` j+1 > oi+`i. From these two inequalities and from o j < oi,
Lem. 1 gives us correct forbidden regions (−∞..o j +` j−`i−1], [o j +` j−`i +1..+∞)
and (−∞..o j]. Since `i < ` j the correct union is (−∞..o j + ` j− `i−1]∪ [o j + ` j− `i +

1.. + ∞). Completeness: If `i ≥ ` j then the contradiction gives the completeness.
Otherwise choose v ∈ [o j + ` j − `i..o j + ` j − `i] then oi = v, o j = v + `i − ` j is a
solution.

e Correctness: Suppose `i , ` j then the constraints oi = o j ∧ oi + `i = o j + ` j

contradict and (−∞.. + ∞) is a correct forbidden region. When `i = ` j Lemma 1
gives us correct forbidden regions (−∞..o j−1], [o j +1..+∞) from both constraints,
and their union is the correct answer. Completeness: If `i , ` j then the contradiction
proves completeness, otherwise choose v ∈ [o j..o j] then oi = v, o j = v is a solution.
�

2.2 Structure of the Normalised Forbidden Regions

All forbidden regions of the basic Allen’s relations given in Section 2.1 consist of one
or two intervals of the form (−∞..up], [low.. + ∞) or (−∞.. + ∞). Indeed, only the
forbidden regions for b and bi consist of a single (nonuniversal) forbidden region. In
the following, we call upper limit (resp. lower limit) the terms up (resp. low). In the
case of a single universal forbidden region, up = +∞ and low = −∞.

We show that all upper limits (resp. lower limits) can be totally ordered provided
we know the relative order between the lengths `i and ` j of the corresponding tasks.
This is because all upper limits (resp. lower limits) correspond to linear expressions
involving +o j (resp. +o j). Fig. 1 illustrates this for the case `i < ` j, where each limit
is a node mentioning the associated formula, the basic Allen’s relation(s) from which it
is generated and the restriction on the parameters. We also show that we always have
that the kth upper limit is strictly less than the k + 1th lower limit. This is because the kth

upper limit and the k + 1th lower limit are issued from the same basic Allen’s relation.
Within Fig. 1 a solid arrow from a start node to an end node indicates that the limit
attached to the start node is necessarily strictly less than (resp. strictly less by one than)
the limit attached to the end node.

o j − `i − 1
m ∈ R
>

o j − `i

o ∈ R
> 1

o j − 1
s ∈ R
>

o j

d ∈ R
�

o j + ` j − `i − 1
f ∈ R
>

o j + ` j − `i

oi ∈ R
> 1

o j + ` j − 1
mi ∈ R
>

o j + ` j

bi ∈ R
>

+∞

bi < R
>

1 2 3 4 5 6 7 8 9

CASE
`i < ` j

(upper limits)

−∞

b < R
>

o j − `i
b ∈ R
>

o j − `i + 1
m ∈ R
>

o j
o ∈ R
> 1

o j + 1
s ∈ R
>

o j + ` j − `i
d ∈ R
�

o j + ` j − `i + 1
f ∈ R
>

o j + ` j
oi ∈ R
> 1

o j + ` j + 1
mi ∈ R
>

0 1 2 3 4 5 6 7 8(lower limits)

Meaning of restrictions on task lengths: > : true > 1 : `i > 1 ∧ ` j > 1 �: `i + 1 < ` j �: `i > ` j + 1

Fig. 1. Ordering the upper limits (resp. lower limits) of the forbidden regions of a general Allen
relation R depending on the relative length of the two tasks i and j when `i < ` j; a solid arrow
from a limit x to a limit y represents an inequality of the form x < y, while a dashed arrow
represents an inequality of the form x + 1 < y. Upper (resp. lower) limits of each of the three
cases are identified by a unique identifier located on the corresponding lower rightmost corner.



2.3 Normal Form for the Forbidden Regions

Given any general Allen’s relation R we now show how to synthesise a normalised
sequence of forbidden regions for this relation under the different cases regarding the
relative sizes of the two tasks to which R applies (i.e., `i < ` j, `i = ` j, `i > ` j). This will
lead to a data base [2] of normalised forbidden regions for the 8192 general relations.
A typical entry of that data base, for instance for relation {b, bi, d, di, e, f, fi,m,mi, si},
looks like:

[o j − `i + 1..o j] ∪ [o j + ` j − `i + 1..o j + ` j − 1] if `i < ` j ∧ `i > 1

[o j..o j] if `i = 1 ∧ ` j > 1

∅ if ` j = 1
[o j − `i + 1..o j + ` j − `i − 1] ∪ [o j + 1..o j + ` j − 1] if `i ≥ ` j ∧ `i > 1 ∧ ` j > 1

(1)

Each case consists of a normalised sequence of forbidden regions F and of a condi-
tion C involving the lengths of the tasks; such a case will be denoted as (F if C). Gen-
erating such cases is done by using the normalised forbidden regions of the 13 Allen’s
basic relations given in column RC of Tab. 1, as well as the strong ordering structure
between the limits (see Fig. 1) of these forbidden regions we identified in Sect. 2.2 in
three steps as follows.

1. Extracting the lower/upper limits of forbidden regions of basic Allen’s Rela-
tions in R

(a) First, we filter from the considered general Allen’s relation R those basic re-
lations which are neither mentioned in the upper nor in the lower limits of the
forbidden regions attached to the relevant case (i.e., `i < ` j, `i = ` j, `i > ` j).
This is because such Allen’s basic relations generate one single forbidden re-
gion of the form (−∞..+∞) and can be therefore removed from the disjunction.
For the same reason, we also filter from R those basic relations for which the
parameter restriction does not hold.

(b) Second, we group together the set of restrictions attached to the remaining basic
Allen’s relations. This leads to a set of restrictions in {>, `i > 1∧` j > 1, `i +1 <
` j, `i > ` j + 1}. For those restrictions different from > we consider all possible
combinations where each relation holds or does not hold. When the relation
does not hold we remove the corresponding Allen’s basic relation for the same
reason as before. This gives us a number of cases for which we will generate
the forbidden regions using the next steps. Since to each lower limit correspond
an upper limit we remain with n lower limits lowαk (with 0 ≤ α1 < α2 < · · · <
αn ≤ n) and n upper limits upβk

(with 1 ≤ β1 < β2 < · · · < βn ≤ n + 1). A case
for which n = 0 means a full forbidden region (−∞.. +∞).

2. Combining the limits of forbidden regions of basic Allen’s relations to get the
forbidden regions of R

Second, the forbidden regions of the considered general Allen’s relationR are given
by
⋃

k∈[1,n]|αk,βk
[lowαk ..upβk

].
3. Removing empty forbidden regions of R

Using the following steps, we eliminate from
⋃

k∈[1,n]|αk,βk
[lowαk ..upβk

] the intervals
that are necessarily empty when the origin of task j is fixed.



(a) if `i < ` j ∧ `i = 1 then eliminate [low..up] such that low (resp. up) is attached
to a limit associated with m (resp. s). In the following, for simplicity, we just
say eliminate [m, s]. Similarly we eliminate [f,mi].

(b) if `i < ` j ∧ `i + 1 = ` j then eliminate [s, f].
(c) if `i = ` j ∧ `i = 1 then eliminate [m, e] and [e,mi].
(d) if `i > ` j ∧ ` j = 1 then eliminate [m, fi] and [si,mi].
(e) if `i > ` j ∧ ` j + 1 = `i then eliminate [fi, si].

We now show that the previous three steps procedure generates a symbolic normal
form for the forbidden regions of a general relation R.

Lemma 3. For a general relation R by systematically combining the three cases `i <
` j, `i = ` j, `i > ` j with all possible restrictions from {>, `i > 1∧ ` j > 1, `i + 1 < ` j, `i >
` j + 1} we generate all possible cases for that relation R.

Proof. The Cartesian product of {`i < ` j, `i = ` j, `i > ` j} × {>} × {`i > 1 ∧ ` j >
1} × {`i + 1 < ` j} × {`i > ` j + 1} is considered. �

Lemma 4. For a general relation R consider one of its case generated in step 1 and
the corresponding limits lowαk and upβk

. The forbidden regions of R are given by⋃
k∈[1,n]|αk,βk

[lowαk ..upβk
].

Proof. A forbidden region of R is an interval of consecutive values that are forbidden
for all basic relations of R. Since both the lower limits lowαk and the upper limits upβk

are sorted in increasing order, and since [lowp..upq] = ∅ for all p ≥ q we pick up for
each start of a forbidden region lowαk the smallest end upβk

of the forbidden region that
was starting before lowαk . �

Lemma 5. When o j is fixed the intervals removed by step 3 are the only empty intervals
[lowp..upq] where p < q.

Proof. The other cases being similar we only show the proof for the lower limit o j−`i+1
that was generated from m when `i < ` j.

– Within the case `i < ` j, o j−`i+1 is the lower limit of index 2 in Fig. 1. Consequently
we first look at the upper limit of index 3, namely o j − 1 that was generated from s.
Since we want to check when o j − `i + 1 will be strictly greater than o j − 1 when o j

is fixed, we get o j − `i + 1 > o j − 1, which simplifies to −`i + 1 > −1 and to `i ≤ 1,
which means that we can eliminate [m, s] when `i = 1.

– We now need to compare o j−`i +1 with the next upper limit, namely the upper limit
of index 4, i.e. o j. We get o j − `i + 1 > o j, which simplifies to `i < 1 which is never
true. Consequently the interval [m, d] is not empty when o j is fixed. This implies
that the other intervals [m, f], [m, oi], [m,mi], [m, bi] are also not empty when o j is
fixed since their upper limit are located after the upper limit of index 4. �

Example 1. Assuming `i < ` j we successively illustrate how to generate the normalised
forbidden regions for the relation R1 = {b,m,mi, bi} (i.e. nonoverlapping), for R2 =

{b,m}, and for R3 = {b, s, bi}.



1. By keeping the limits related to the basic relations b, m, mi, bi of R1 we get α1 = 1,
α2 = 2, α3 = 8 and β1 = 1, β2 = 7, β3 = 8. Since α1 = β1 and α3 = β3 we only keep
α2 and β2 and get the interval [lowα2 ..upβ2

] = [low2..up7] = [o j − `i + 1..o j + ` j −1],
the expected result for a nonoverlapping constraint between two tasks.

2. By keeping the limits related to the basic relations b, m of R2 we get α1 = 1,
α2 = 2 and β1 = 1, β2 = 9. Since α1 = β1 we only keep α2 and β2 and get the
interval [lowα2 ..upβ2

] = [low2..up9] = [o j − `i + 1.. +∞).
3. By keeping the limits related to the basic relations b, s, bi of R3 we get α1 =

1, α2 = 4 and β1 = 3, β2 = 8, which leads to [lowα1 ..upβ1
] ∪ [lowα2 ..upβ2

] =

[low1..up3] ∪ [low4..up8] = [o j − `i..o j − 1] ∪ [o j + 1..o j + ` j].

Merging Similar Cases For a given Allen’s general relation R, two cases (D1 if C1)
and (D2 if C2) can be merged to a single case (D12 if C12) if the following conditions
all hold:

– C12 is equivalent to C1 ∨ C2 and can be expressed as a conjunction of primitive
restrictions.

– D1, D2, and D12 consist of the same number of intervals.
– For every interval [b1, u1] ∈ D1 there are intervals [b2, u2] ∈ D2 and [b12, u12] ∈ D12

at the same position such that:
• b1 = b12 and u1 = u12, for any values taken by `i and ` j such that C1 holds.
• b2 = b12 and u2 = u12, for any values taken by `i and ` j such that C2 holds.

We used a semi-automatic approach to discover such endpoint generalisation rules.
For every Allen’s general relation, using these rules, we identified and merged pairs and
triples of cases until no more merging was possible. As the result of this process, the
data base [2] consists of 32396 cases covering all the 8192 general relations. In this data
base, the maximum number of intervals for a case is 5, the average number of intervals
is 2.14 and the median is 2.

Acknowledgment. The Nantes authors were partially supported both by the INRIA
TASCMELB associated team and by the GRACeFUL project, which has received fund-
ing from the European Union’s Horizon 2020 research and innovation programme under
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3 Conclusion

This work belongs to the line of work that tries to synthesise in a systematic way con-
straint propagators for specific classes of constraints [6,7,9]. Future work may gener-
alise this for getting a similar normal form for other families of qualitative constraints.
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