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Abstract. Modeling ecological connectivity is an area of increasing in-
terest amongst biologists and conservation agencies. In the past few
years, different modeling approaches have been used by experts in the
field to understand the state of wildlife distribution. One of these ap-
proaches is based on modeling land as a resistive network. The analysis
of electric current in such networks allows biologists to understand how
random walkers (animals) move across the landscape. In this paper we
present a MIP model and a Local Search approach to tackle the prob-
lem of minimizing the effective resistance in an electrical network. This
is then mapped onto landscapes in order to decide which areas need
restoration to facilitate the movement of wildlife.

1 Introduction

In the past decades, the natural habitat of different species across the globe
have become disrupted and fragmented. This is considered to be a major threat
to the conservation of biodiversity by biologists and conservation experts [24].
As pointed out by Rosenberg et al. [24] and Pimm et al. [22] among other
experts, the isolation of groups of animals can easily lead to extinction. For
this reason, restoration needs to be undertaken in order to maintain a suitable
environment where wildlife can move, feed and breed. Landscape restoration is
part of Computational Sustainability, which has been increasingly attractive for
researchers in our community as it presents interesting computational problems
that happen to be NP-hard [10, 14, 17, 26, 27].

In ecology, patches of landscape are characterized by their resistance. This
corresponds to how hard it is for wildlife to traverse a land patch. For instance, a
low resistance value might be caused by soil of good quality that allows plants to
spread more easily, or an open field might have high resistance for small rodents
(that may be targets for birds of prey). Of course, this measure depends on the
species being studied: some animals may be able to cross rivers more easily than
others. Lower resistance means the land patch is more suitable for the species
studied. Therefore, a suitable environment for wildlife would be one where their
core habitats are connected by low resistance patches, so that animals can freely
travel between core habitats to breed and feed.



To improve landscape connectivity, ecologists have used the idea of corridors
[7, 15]. A corridor connects core habitats of animals using uninterrupted paths
through which the animals can move. A common measure of the quality of a
corridor is know as the Least-Cost Corridor (LCC) [1, 6]. LCCs are chosen to
minimize the total sum of the resistance in the corridor. There has been extensive
work in the Constraint Programming, AI and OR communities in helping identify
the best corridors to be built (e.g. [10, 17, 27]).

Other work has addressed the problem of habitat conservation without en-
forcing connectivity. For instance, Crossman et al. [9] wrote a MIP model for
habitat conservation. In their case, the intention was to minimize the number of
sites to be restored while keeping a desired area for the animals and maintaining
safe distances to roads and other dangers.

Although LCC is a valid model that is broadly used, it has been criticized for
over simplifying the actual movement of species [20]. McRae [19, 21] proposed
the use of electric circuit theory to measure the total connectivity of a landscape.
This model is called Isolation By Resistance (IBR). In particular, it was shown
[20] how the IBR model better matches the empirical evidence of genetic distance
amongst a distributed species measured with two standard statistical models
(fixation index and a step-wise mutation model). The IBR model has since been
used to study the effects of habitat loss in birds [3, 4], for instance.

In the IBR model, the land patches are modeled as nodes in an electric
circuit. The transition between contiguous patches is modeled by a branch of
the electric circuit carrying a resistor. The resistance of the resistor in Ohms
gives the resistance of moving between adjacent patches. The circuit is then
connected to a 1A current source in a core habitat, while another core habitat
is connected to the ground (0V). The effective resistance between two habitats
in the electric circuit is the measure used for connectivity in the IBR model. It
physically corresponds to the real resistance between two points of the circuit.
An example of such circuit with 16 land patches (i.e. 16 nodes) can be seen on the
left of Figure 2. Experts use the tool Circuitscape [25] for this model. Its task is
to compute the currents, voltages and effective resistance that are then viewable
by experts in geographic visualization software. Nevertheless, Circuitscape does
not make conservation decisions, it only builds a linear system and solves it for
the experts.

The model is justified by the fact that the commute time between two nodes
s and t is given by 2mRst where m is the number of edges in the graph, and Rst

is the effective resistance between s and t in the underlying electrical network
(Theorem 4.1 in [18]). The goal is therefore to lower the effective resistance
between core habitats, as this directly translates into decreasing the commute
time between habitats. Previous work by Doyle and Snell [12] also proved this
property, and gave an interpretation of current ixy through a branch (x, y) of
the underlying electrical network. The current gives the net number of times a
random walker would walk from x to y using that branch. This is exactly what
is used by biologists to detect areas where wildlife concentrates most in the IBR
model [21]. As an example, consider Figure 1. On the right side the landscape



is plotted showing the conductance values in Ω−1 (inverse of resistance). On the
left, a heatmap of the current at each patch of land. We can observe that, when
moving out of their habitats, animals tend to walk using high conductance areas:
indeed the [0.2, 1] areas of the heatmap tend to coincide with high conductance
areas on the conductance map.

Fig. 1. Example of landscape. Left: The heatmap shows the current (in Amperes) in
the electric circuit. The three darkest/red patches correspond to core habitats. This
model predicts that animals will walk on the high current areas (' 0.2A, yellow/orange)
often and less often in low current (/ 0.2A, green) areas. Right: Map of conductance
(in Ω−1). Darker/green areas are land where the resistance is low and easy for animals
to move across.

For habitat and ecologic planning using the Isolation By Resistance model,
we are interested in minimizing the effective resistance between habitats. To do
so, biologists need to decide where improving the habitat is more beneficial. An
improvement could mean planning for reforestation, building highway bridges
for animals or improving the quality of the soil, among other actions. Our goal
here will be to choose the right spots for these investments, subject to a budget.
Note how the technical term effective resistance is often substituted by resis-
tance distance in the biology literature. Also, in a non-reactive circuit with no
alternating current, effective resistance and equivalent resistance are equal. For
consistency we will always refer to effective resistance.

A similar problem was addressed by Ghosh et al. [13], but their problem was
continuous. The continuous variant does not apply in our habitat conservation
planning, as it is not possible to invest an infinitesimal fraction of budget in one
location. In the real world, reforestation areas are typically well defined discrete
interventions.

Section 2 is a brief summary on some basic electric circuit theory that we use
later on. In Section 3 we discuss our Mixed-Integer Programming (MIP) model
in detail. Section 4 discusses the problems of our model and presents our Local
Search (LS) approach. Lastly, Section 5 presents our experimental results.



2 Preliminaries

The effective resistance corresponds to the real resistance between two nodes in
the circuit. During the rest of this paper we will note Rxy the effective resistance
between x and y.

In electric circuits, the effective resistance can be computed by solving a
system of linear equations [2, 11]. Such linear system can be obtained by doing
nodal analysis or mesh analysis. A more systematic way of obtaining the same
system of linear equations is by using the nodal admittance matrix [5], also
known by graph theoreticians as the Laplacian matrix. Let adj(n) be the set
of nodes adjacent to a node n in an electric circuit, and gij the conductance of
branch (i, j). For an electric circuit of n nodes, the Laplacian is an n×n matrix
defined as follows:

Li,j =


−gij if (i, j) is a branch of the circuit∑

k∈adj(i) gik if i = j

0 otherwise

For any two nodes s and t in an electric circuit of Laplacian L, we can
calculate the effective resistance Rst between those nodes by simply solving the
linear system given by Ltv = f where Lt is L without the tth row and column,
and f is a vector with all its elements equal to 0 except for the sth, which is
equal to 1. The effective resistance we are after will be found in vs.

This is strictly equivalent to nodal analysis. In classic nodal analysis, we
would connect a source of 1A to s and connect t to the ground. Then we obtain
an equation for each node of the form

∑
y∈adj(x) ixy = 0 (flow conservation of the

current), except for the node s where the flow of current is 1 since it’s connected
to the source, and the node t where the flow is -1 for being connected to the
ground. Ohm’s law gives us that, for any branch, ixy = gxy(vx−vy) where vx and
vy are the voltages at nodes x and y and gxy is the conductance of the resistor
between x and y. Then any node can be selected as reference or datum node,
setting its voltage to 0. We select t as the datum node. Then by substituting
with Ohm’s law and the value of the datum node in the nodal analysis equations
we obtain the same system as with the Laplacian. Solving the system yields the
voltage of node s, among others. Since the source of current was 1A, Ohm’s law
gives us that Rst = (vs− vt)/1 = vs. It is therefore only necessary to look at the
sth component of the solution vector to obtain the effective resistance. This is
exactly the method implemented in Circuitscape [25], software used nowadays
for landscape planning by experts.

Note how the definition of effective resistance only allows the computation
of one effective resistance at a time: the current source needs to be connected
to exactly one node, s, and only one node, t, must be connected to the ground.
Therefore, the effective resistance between three or more nodes is undefined.
Instead, we will consider the total effective resistance for three nodes a, b and
c to be Rab + Rac + Rbc. These have to be computed by solving three different
equation systems. In general, for f nodes, we will need f(f−1)/2 linear systems.



3 Problem Formulation

We define the problem of finding the Minimum Effective Resistance in a Circuit
with Binary Investments (MERCBI) as follows.

We are given an electric network G∅ = (N,E, g∅) where N are the nodes,
E are the edges (i.e. branches in circuit theory) and g∅ : E 7→ R+ is a function
giving the value of the original conductances that are placed on each edge. We
are also given a function gE : E 7→ R+ of new improved conductances for each
edge. These functions are such that ∀e ∈ E, g∅(e) ≤ gE(e). Lastly, we are given
a set of pairs of focal nodes (i.e. core habitats) P = {〈s1, t1〉, ..., 〈s|F |, t|F |〉}, a
budget B, and a cost function c : E 7→ R+. The pairs in P are the pairs of core
habitats between which we want to improve the resistance. It typically contains
all the possible pairs of habitats in the studied landscape, but not necessarily.

We note GA for A ⊆ E the network given by GA = (N,E, gA) where gA is
a function defined by g∅ for all e 6∈ A and gE for all e ∈ A. Similarly, RA

xy will

refer to the effective resistance between x and y in GA.

Our goal is to find a set S ⊆ E such that we minimize RS =
∑|F |

i=1R
S
siti while

keeping the sum of the investment costs below B. We say that the edges in S
are investments. The edges in E\S are wild edges. Note that it may be the case
that gS forms an open circuit (i.e. there is no way for current to go from some si
to some ti due to 0-conductance branches). In such case, RS =∞ by definition,
which can happen if there is not enough budget to ensure connectivity.

Formally, the model is translated into a Mixed Integer Program with the
following additional variables:

– be is a binary decision on whether the edge e of the circuit is part of the
selected solution S.

– v
〈s,t〉
x is the voltage at node x when s is connected to a 1A source and t to

the ground.

– p
〈s,t〉
(a,b),c is an intermediate variable for the product gS((a, b)) ∗ v〈s,t〉c .

Minimize

|F |∑
i=1

v〈si,ti〉si (1)

s.t.

e=|E|∑
e=0

bec(e) ≤ B (2)

∀〈si, ti〉 ∈ P, ∀x ∈ N\{si, ti},
∑

y∈adj(x)

p
〈si,ti〉
(x,y),x −

∑
y∈adj(x)\{ti}

p
〈si,ti〉
(x,y),y = 0 (3)

∀〈si, ti〉 ∈ P,
∑

y∈adj(si)

p
〈si,ti〉
(si,y),si

−
∑

y∈adj(si)\{ti}

p
〈si,ti〉
(si,y),y

= 1 (4)

∀〈si, ti〉 ∈ P, ∀e = (x, y) ∈ E,∀z ∈ {x, y},
p〈si,ti〉e,z = beg

E(e)v〈si,ti〉z + (1− be)g∅(e)v〈si,ti〉z (5)

Equation 1 is our objective: minimize the sum of effective resistances between
focal nodes. Equation 2 is our budget constraint. Equation 3 constrains the flow



of current to be 0 in all nodes, except the nodes directly connected to the source.
Equation 4 indicates that the flow at the source nodes has to be 1. Note how
the equations at the sinks with flow -1 have been removed as they are linearly
dependant from the others. Equation 5 chooses the value of the p variables based
on the values of the Booleans.

In Eqs. 3 and 4, the first sum correspond to the diagonal terms in the Lapla-
cian matrix, whereas the second sum is the non-diagonal terms of the Laplacian
matrix.

Furthermore, Eqs. 3, 4 and 5 are repeated for each pair of focal nodes in
P . Therefore, the equations obtained by nodal analysis are repeated C = |P |
times, one per pair in P . Nonetheless, these C systems are not equivalent, as
the source of 1A is connected at different nodes, and the voltages are therefore

different in each system. That is, it is not necessarily the case that v
〈si,ti〉
x =

v
〈sj ,tj〉
x , ∀i, j, x, i 6= j. We say that our model contains C circuits.

3.1 Complexity

We now prove that the MERCBI problem is NP-hard by reduction from the
Steiner Tree Problem on graphs (STP). The STP, as formulated by Karp [16] in
his paper where he proved its NP-completeness, is: Given a graph G = (N,E),
a set R ⊆ N , weighting function w on the edges and positive integer K, is there
a subtree of G weight ≤ K containing the set of nodes in R?

We apply the following reduction:

– The electric circuit is the graph G.
– The cost function is w.
– The original resistance of edges is infinite (i.e. g∅(e) = 0,∀e ∈ E).
– The resistance upon investment of all edges is 1 (i.e. gE(e) = 1,∀e ∈ E).
– The budget is K.
– The set of pairs of focal nodes P is the set of all pairs of distinct nodes in
R, which can be built in O(|R|2).

Assume we have an algorithm to solve the MERCBI problem that gives a
solution S. Clearly, by investing in the selected edges S we will obtain a resistance
RS ∈ R iff there is enough budget K, and RS =∞ otherwise:

1. If the resistance is∞, then there is no Steiner Tree of cost less than K, since
we could not connect focal nodes with 1Ω resistors.

2. If the resistance is 0 then we can obtain a graph G∗ by restricting GS to the
edges that have been invested. Clearly, G∗ is of cost ≤ K and a subgraph of
G that connects all pairs in P . Because P is the set of all pairs of nodes from
R, this means that all nodes in R are connected pairwise in G∗. Although
G∗ may not be a tree, we can extract a tree T from it by breaking any cycle
G∗ contains while maintaining its connectivity. The tree T is a Steiner tree
of cost at most K.

We have therefore shown that if we have a solver for the MERCBI problem,
we have one for the STP. Thus, the MERCBI problem is NP-hard.



4 Solving Approach

4.1 Greedy algorithm

We first devise a greedy algorithm for the problem based on the following obser-
vation: increasing the conductance of an edge with low current has little impact
in the overall effective resistance. This intuition is easily justifiable: if the current
of an edge corresponds to the net number of times a random walker uses that
edge, the lower that number, the less impact improving that area would have on
the total commute time. Clearly edges near focal nodes or near low resistance
areas tend to concentrate more current and be used by more random walkers.
Thus increasing the conductance of those edges will likely have a stronger impact
in lowering the effective resistance. Our greedy algorithm is presented in Alg. 1.

Algorithm 1 Greedy algorithm

1: procedure Greedy(G = (N,E), F, g∅, gE , c, B)
2: lp← BuildModel(G,F, g∅, gE , c, B) . Build the model from Section 3
3: lp.setBinariesFalse(E) . Sets all the binaries to false
4: lp.solve() . Solve the LP, with all binary variables fixed
5: i[e]← 0, ∀e ∈ E . Array of currents
6: for all (si, ti) ∈ P do
7: for all e = (x, y) ∈ E do

8: i[e]← i[e] + |g∅(e) ∗ (v
〈si,ti〉
x − v〈si,ti〉y )| . Ohm’s law

9: se← Reverse(SortBy(E, i)) . Array of edges sorted by decreasing current
10: S ← ∅; b← 0; j ← 0
11: while b < B ∧ j < |E| do
12: if g∅(se[j]) < gE(se[j]) ∧ b+ c(se[j]) ≤ B then
13: S ← S ∪ se[j]; b← b+ c(se[j]) . Select edges with high current.

14: j ← j + 1
return S

The algorithm solves the conductance LP once to find the voltages at each
node, then calculates the currents in each edge (with no investments being made),
and greedily selects the edges with most current to invest in, that fit within the
budget.

As we will see in the experiments, this algorithm performs surprisingly well
despite not providing optimal solutions. In next sections we will try to obtain
better solutions than the ones provided by this algorithm.

4.2 Performance of the Pure MIP Model

The MIP model expressed in Section 3 is a direct mapping of the nodal analysis
performed in the electric circuit into a MIP model. In our implementation equa-
tion 5 was split into two indicator constraints which are supported by the IBM
ILOG CPLEX 12.4. solver as follows:

∀〈si, ti〉 ∈ P, ∀e = (x, y) ∈ E,∀z ∈ {x, y},
be =⇒ p〈si,ti〉e,z = gE(e)v〈si,ti〉z (6)

¬be =⇒ p〈si,ti〉e,z = g∅(e)v〈si,ti〉z (7)



Finding Bounds for the Variables To help CPLEX tackle the problem, we
need to compute bounds on the variables. We apply basic circuit analysis to find
these bounds. To do so, we need an initial assignment for the binary variables:
this could be assigning all to false, or to the value of some initial solution that
respects the budget constraint (either a random solution, or obtained with Alg.
1). Without loss of generality, let us assume that all the binaries are set to false,
thus g∅ gives the conductance for all edges.

t

s

1A

≡

t

INo

s

1A

Rst
≡

t

VTh

s

Rst

Fig. 2. Conversion from the circuit built for calculating effective resistance to an equiv-
alent circuit with one resistor, and application of Thévenin’s theorem.

When we are computing the effective resistance between nodes s and t of a
circuit, we connect a current source between s and t as in Fig. 2. This can be
converted into an equivalent circuit as seen in the center of the figure. The value
of Rst is actually the value of the effective resistance when all our binary variables
are fixed. To obtain bounds for the voltages at the nodes marked , we observe
that the circuit in the center is a Norton circuit, thus we can apply Thévenin’s
theorem [8] to it to obtain an equivalent circuit with a voltage source instead of a
current source (circuit on the right). Because the current in that Norton’s circuit
is 1A, the voltage of Thevenin’s equivalent source will be VTh = INoRst = Rst.
Thus, the upper bound of vs is Rst. Since t is connected to the ground, vt = 0V .
All the voltage at points between s and t are necessarily bounded by the voltages
at these points, because voltage can only drop. Therefore, the bounds for all

voltage variables are: ∀〈si, ti〉 ∈ P,∀x ∈ N, 0 ≤ v
〈si,ti〉
x ≤ R∅siti . From these

bounds it is easy to derive bounds for the p variables: ∀〈si, ti〉 ∈ P, ∀e =

(x, y) ∈ E,∀z ∈ {x, y}, g∅(e)v
〈si,ti〉
z ≤ p〈si,ti〉e,z ≤ gE(e)v

〈si,ti〉
z .

Motivation for Local Search Approaches We attempted to solve the MIP
model using IBM ILOG CPLEX 12.4. The major challenge we discovered while
running our experiments was that the linear relaxation of the model performed
poorly. The gap between the LP relaxation and the best integer solution found
in less than 5 hours was usually bigger than 40% even for small 10× 10 grid-like
networks, as reported by CPLEX. As a small example, consider a 3 × 3 grid
with ∀e, g∅(e) = 0.01 and gE(e) = 1, a budget of 2 and 2 core habitats. The
proven optimal solution gives a resistance of 49.15, whereas the linear relaxation
achieves a resistance as low as 0.50. With such a big gap, the linear relaxation
cannot help pruning branches. We observed these gaps both when using indicator



constraints and without them (using an alternative encoding of the product of
continuous and binary variables as linear inequalities).

Since the linear relaxation is so weak, we decided to try a Local Search
approach.

4.3 Local Search

Although solving the MIP problem is time consuming, once all binary variables
are fixed, the problem becomes a Linear Program, which can be solved efficiently.
The idea of local search is to repeatedly destroy part of the solution and build
a new one from the remaining solution.

Our Local Search (LS) moves are based on two stages: first choose areas
where we invested but we are no longer interested in investing, then choose new
areas where we would like to invest. In this section we will discuss different
techniques we use to make moves in the LS.

Destroying Investments We start from a solution s where we have selected a
set S of edges to be investments. We call d the destruction rate of investments.

To destroy investments, we select a subset Sd of S such that |Sd| = d. We
will convert these d investments into wild edges, thus freeing part of the budget
to be used elsewhere. We implemented 3 ways of selecting those d edges:

1. InvRand: Choose d invested edges randomly.
2. InvLC: Choose the d invested edges with lowest current in s.
3. InvLCP: Choose d invested edges based on a probability distribution that

favors low current edges in s being selected.

The way to compute the current of an edge is by simply using Ohm’s law,
as in line 8 of Alg. 1. Because we are solving C linear systems for C circuits at
once, the current across an edge will be the sum of the currents of that edge in
the C different circuits.

As for the probability distribution, the total current across an edge is pro-
portional to the inverse of its probability. Therefore edges with low current will
have a higher tendency to be chosen than edges with high current: ∀e = (x, y) ∈
E, Pr(e) ∝

(∑
〈si,ti〉∈P |g

S(e) ∗ (v
〈si,ti〉
x − v〈si,ti〉y )|

)−1
.

Making New Investments Let s′ be the solution s with investments S\Sd,
that is all investments of s except those selected for destruction. After destroying
investments Sd, we have gotten part b = Σe∈Sd

c(e) of our budget back, so we
are ready to choose new places to invest. To do so, we have 4 different strategies
to choose new edges to invest in:

1. WilRand: Choose a set W of wild edges randomly.
2. WilBFS: Choose a set W of wild edges by doing a Breath-First Search

(BFS) in the graph. The origin of the BFS is chosen according to a probabil-
ity distribution that favors high current nodes. This ensures that the chosen
edges are close to each other.



3. WilHC: Choose a set W of wild edges that have the highest current in s.
4. WilHCP: Choose a set W of wild edges based on a probability distribution

that favors high-current wild edges.

For all these strategies, we ensure that
∑

e∈W c(e) = b−ε and we select those
edges greedily to get the smallest slack ε.

The second strategy, WilBFS, requires computing the current at a node.

We define it as cx =
∑

(si,ti)∈P
1
2

∑
y∈adj(x) |gS((x, y)) ∗ (v

〈si,ti〉
x − v〈si,ti〉y )|. That

is, the sum of the accumulated current of the surrounding edges of the node.
As for the probability distributions used by both WilBFS and WilHCP, we

could not use a distribution as simple as for InvLCP. The reason is that, even
though the probability of choosing a particular node (or edge) of high current
is much higher than the probability of choosing particular node (or edge) of low
current, because there are many more nodes and edges with low current, the
probability of choosing a low current node or edge would be much higher.
To overcome this, we will only allow the choice of nodes or edges that have a
current higher than 10% of the current of the highest node or edge, plus a certain
number γ of low current elements (i.e. below that 10%). We choose γ to be
equal to the number of nodes or edges above 10% of the maximum current. The
probability of choosing an element with a current below 10% of the maximum
is now the same as the probability of choosing an element with a current above
that threshold.

Initial solution Local Search needs to start with an initial solution. Our ap-
proach was to take the output of the greedy algorithm as the initial solution for
the LS.

Using Simulated Annealing As it is well known, Local Search can get stuck
into a local minimum if we are only accepting improving solutions. Therefore,
we implement the simulated annealing approach introduced by Ropke et al. for
the Pickup and Delivery Problem with Time Windows [23].

Here the idea is that we will always have 3 solutions at hand: sbest (for a set
of invested edges Sbest), s, and snew (for Snew). The first is the solution found
so far with lowest resistance. The second is the current solution maintained
in the search (called accepted in [23]). The last, is the new solution which we
obtained by modifying the solution s using the destruction and investment phases
described earlier. If we accept a solution snew only when it is better than the
current solution we might get trapped in a local minimum. With simulated
annealing, we accept a solution snew with probability e−(snew−s)/T , where T is
the temperature. The temperature decreases at each iteration by a factor called
the cooling rate: Ti+1 = cr ∗Ti. This allows us to accept solutions that are worse
than our currently accepted solution, thus allowing us to get out of local minima.

Initially we will have a higher tendency to accept worsening solutions, and as
the temperature drops slowly over the iterations, we will only accept improving
solutions. We discuss the value of the initial temperature in Section 5.



Even using simulated annealing, it is easy to see how the combined usage of
InvLC and WilHC can perform the exact same destruction over and over once
it hits a local minimum. To avoid that, when we are using these two destruction
techniques together and we don’t accept a solution, we switch to WilHCP
for one iteration, which will put us in another neighborhood to explore (like a
restart).

5 Experiments

All the following experiments use IBM ILOG CPLEX 12.4 on an Intel R© Core
TM

i7-4770 CPU machine @ 3.40GHz with 15.6GB of RAM running Linux 3.16.

5.1 Instances

We could not obtain real-world instances. Nonetheless we generated artificial
landscapes while trying to keep them realistic. In papers like [3, 4] where the
IBR model is used on empirical data, high resistance areas have an approximate
resistance between 10 and 100 times bigger than areas with low resistance.

Our instances were built in the form of grids with 4 neighbor nodes (except
at the border of the landscape where nodes have 2 or 3 neighbors). The values
of conductances (i.e. inverse of resistances) are chosen following a probabilistic
beta-distribution with parameters α = 5 and β = 80.

0 0.2 0.4 0.6 0.8 1
0

5

10

15
α = 5, β = 80

Fig. 3. Plot of Beta Distribution for α = 5, β = 80.

Using this distribution, most conductances are in the desired range, still al-
lowing the unlikely possibility of having some high conductances scattered on the
map. Then, for each instance of size n×n we select n nodes, and their neighbors,
to be oases. All the edges coming out of oasis nodes have a conductance of 1,
that is the same as if we had invested. This is to account for areas that are not
considered core habitats but are friendly to the animals: wild trees, fresh water
lakes, etc. Figure 1 shows, on the right, an example of such map in a 50 × 50
grid (the scale being in Ω−1).

Regarding the budget cost, we created instances with homogeneous costs
(labelled Homo) where each edge costs 1. The reason for homogeneous costs is
that the main application for our problem is in wild land and specifically on
National Parks, where rehabilitation costs are typically fairly uniform across a



large area. Typically these kind of projects are used to recover land that has
been damaged by bush fires, flooding or landslides or that has been fragmented
by urbanization that cannot be torn down or purchased. We also constructed
instances where the cost of an investments is a uniform random number between
0.1 and 10 (labeled Rand).

Furthermore, the locations of core habitats are selected from a uniform dis-
tribution. For each size of grid and number of habitats, we generated 20 different
instances, totalling 500 instances. Values reported are arithmetic means.

5.2 Improvement Over the Initial Landscape

To measure the quality of a solution, we look at the ratio between the effective
resistance in the solution and the original resistance when no investment is made.
Table 1 shows the average of these ratios. All the results reported on that table
had a budget equal to twice the side of a grid (e.g., for a grid of 50×50, we have
a budget of 100). The ratio of the budget to the number of edges where we could
invest is shown in the third column. The destruction rate here is fixed to 10 for
instances of size 20×20 and 25×25, and 25 for bigger instances. The number of
iterations the LS does for these tests is 200. We do not show the results obtained
by random selections for destruction as they perform worse than the ones shown
here. The initial temperature is chosen such that a solution 50% worse than the
initial solution is accepted with a probability of 10%. The cooling rate is 0.98
for all experiments.

Table 1. Averages of the ratios of updated resistance over original resistance. Budgets
are always twice the side of a grid.

Cost
Type

Size
Budget
Ratio

Habitats Greedy
InvLC InvLCP

WilBFS WilHC WilHCP WilBFS WilHC WilHCP

Homo 20×20 0.11 2 0.30 0.24 0.25 0.25 0.29 0.26 0.27
Homo 25×25 0.09 2 0.30 0.22 0.23 0.24 0.28 0.24 0.26
Homo 25×25 0.09 3 0.38 0.29 0.30 0.29 0.37 0.31 0.35
Homo 30×30 0.07 2 0.37 0.26 0.27 0.28 0.35 0.29 0.31
Homo 30×30 0.07 3 0.42 0.33 0.33 0.33 0.42 0.35 0.41
Homo 50×50 0.04 2 0.44 0.34 0.35 0.36 0.44 0.37 0.40
Homo 50×50 0.04 3 0.48 0.42 0.40 0.41 0.48 0.43 0.48
Homo 50×50 0.04 4 0.52 0.46 0.44 0.45 0.52 0.47 0.52
Homo 100×100 0.02 2 0.49 0.39 0.38 0.41 0.42 0.39 0.37
Homo 100×100 0.02 3 0.53 0.42 0.43 0.42 0.53 0.42 0.50
Homo 100×100 0.02 4 0.55 0.49 0.47 0.46 0.55 0.49 0.55
Homo 100×100 0.02 5 0.58 0.49 0.46 0.50 0.58 0.48 0.58

Rand 20×20 0.11 2 0.44 0.34 0.34 0.38 0.39 0.35 0.40
Rand 25×25 0.09 2 0.45 0.33 0.32 0.36 0.39 0.33 0.38
Rand 25×25 0.09 3 0.53 0.41 0.39 0.38 0.47 0.40 0.44
Rand 30×30 0.07 2 0.52 0.45 0.42 0.44 0.51 0.45 0.48
Rand 30×30 0.07 3 0.57 0.53 0.51 0.52 0.57 0.52 0.56
Rand 50×50 0.04 2 0.56 0.54 0.51 0.53 0.56 0.53 0.56
Rand 50×50 0.04 3 0.60 0.59 0.55 0.58 0.60 0.58 0.60
Rand 50×50 0.04 4 0.63 0.62 0.60 0.63 0.63 0.62 0.63
Rand 100×100 0.02 2 0.61 0.51 0.53 0.52 0.66 0.61 0.65
Rand 100×100 0.02 3 0.64 0.59 0.57 0.60 0.63 0.60 0.64
Rand 100×100 0.02 4 0.65 0.58 0.60 0.62 0.62 0.61 0.64
Rand 100×100 0.02 5 0.68 0.60 0.59 0.62 0.63 0.62 0.65



Our first observation is that even with a very low budget, proportionally to
the mass of land, we manage to have significant drops of resistance. We infer that
our approach is placing the investments in the right places. The greedy algorithm
performs very well too. The Local Search is able to reduce the resistance of the
greedy algorithm by up to 11%.

We can observe how in general the InvLC approach to destroy bad invest-
ments outperforms InvLCP. Regarding the selection of new investment locations
it seems there is no clear winner, although WilBFS and WilHC tend to choose
investments in places nearby or directly connected, and that seems to give them
the advantage.

Fig. 4. Example of a solution obtained with InvLC+WilHC for the same instance as
shown in Fig. 1.

As an example, Fig. 4 shows the solution found to the instance of Fig. 1 On
the left, the heatmap shows the places of investment (marked lines) which redi-
rect most of the animals, as these become more suitable for them. On the right,
we see how the best investments tend to be aligned to connect low resistance ar-
eas that already existed. Notice how they do not force a complete corridor: some
investments may not be used to maintain connectivity and are instead moved to
areas where they might be more useful.

5.3 Optimality Gap

In this section we look at the difference between the solution obtained and the
proven optimum for some instances. We could not obtain the optimal value for
instances of the size given in the previous subsection. For this reason, we ran
this experiment on 10 × 10 grids. These took, in some cases, up to 8 hours to
prove optimality, even given the small size. It is clearly impractical to use the
pure MIP formulation.



Table 2. Average (across 20 instances) of ratio between LS and proven optimum for
10×10 instances (200 iterations).

InvLC InvLCP
WilBFS WilHC WilHCP WilBFS WilHC WilHCP

Average 1.06 1.07 1.07 1.11 1.05 1.07

As it can be seen in Table 2, the LS approach does not deviate much from
the optimum. Once again we see no clear domination between the different tech-
niques applied, although InvLCP+WilBFS seems slightly worse than others.
The LS even managed to find optimal solution of two instances.

5.4 Number of Iterations

We now study the effect of the number of iterations. We are interested to know
how quickly we get improvements in our solutions. To evaluate this, we looked
at the 50×50 instances with homogeneous investment cost and a budget of 100
(same instances as in Table 1). We compute the ratio between the best solution
found so far at the xth iteration to the non-investment resistance. We average
this ratio across the 60 Homo 50 × 50 instances (2, 3 and 4 habitats) for each
iteration. The results are plotted in Figure 5. Based on the results seen in Table 1
and this plot, we can see that InvLCP+WilBFS and InvLCP+WilHCP are
not only the ones that perform the worse, but we also only find better solutions
very rarely. The InvLC+WilHC shows the quickest drop, but then slows down.
Since the drop happens in the first 20 iterations, the temperature is still high,
thus suggesting that it does not get trapped in a local minimum, instead it is
most likely moving towards the global optimum (as we also saw on the optimality
gap results). All other techniques have a slower slope.
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Fig. 5. Ratio between the best solution found and the value of the initial resistance
over the number of iterations for 6 destruction strategies (50× 50 Homo grids, 2 to 4
habitats).

Regarding the time spent to perform these 200 iterations: no instance needed
more than 5 minutes in our machine. Therefore this number of iterations is also
suitable for use by habitat planners during their work.



5.5 Destruction Rate

In this subsection we will look at the effects of the choice of destruction rate.
Recall, the destruction rate corresponds to how many edges are converted from
investments into wild edges for the next iteration of the LS. We ran these ex-
periments on the 50×50 instances for 2, 3 and 4 habitats with a budget of 100
and homogeneous costs. Table 3 reports the average ratio between our solution
and the original resistance across the 60 instances depending on the destruction
rate. The number of iterations is once again 200.

Table 3. Ratio of solution found over initial landscape resistance for 50×50 grids with
different destruction rates, over 200 iterations.

Destruction
Rate

InvLC InvLCP
WilBFS WilHC WilHCP WilBFS WilHC WilHCP

5 0.40 0.38 0.40 0.47 0.39 0.45
10 0.40 0.38 0.39 0.48 0.39 0.46
15 0.40 0.39 0.39 0.48 0.40 0.46
20 0.40 0.39 0.40 0.48 0.41 0.47
25 0.41 0.39 0.41 0.48 0.42 0.47
30 0.42 0.40 0.41 0.48 0.43 0.47
35 0.43 0.40 0.42 0.48 0.44 0.47

As we can see in Table 3, the choice of destruction rate only marginally
affects the quality of the solution. This shows that our local search approach is
robust and no matter what parameter is used (within a reasonable range), the
algorithm is likely to give similarly good solutions.

6 Conclusions and Future Work

In this paper we have introduced a new problem, the MERCBI problem, in
habitat conservation. We have clearly defined it and given a MIP model. We
have provided a series of heuristics used to implement a Local Search. The results
show that this approach yields good quality solutions.

In future work we would like to investigate the idea of extending patches of
land to more than a node: a golf course, or a farm could cover more than one node
at a time and then we might consider purchasing part of them. Also, we could
take into account distance for patches with different shapes where purchasing a
thin part of it may be more interesting than purchasing the entire land. Also, we
could look at having more than one species and take into account their predatory
behavior or possibly favor endangered species.
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