
Scheduling with Fixed Maintenance, Shared
Resources and Nonlinear Feedrate Constraints:

a Mine Planning Case Study

Christina N. Burt, Nir Lipovetzky, Adrian R. Pearce, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Parkville Australia

Abstract. Given a short term mining plan, the task for an operational
mine planner is to determine how the equipment in the mine should be
used each day. That is, how crushers, loaders and trucks should be used
to realise the short term plan. It is important to achieve both grade
targets (by blending) and maximise the utilisation (i.e., throughput) of
the mine. The resulting problem is a non-linear scheduling problem with
maintenance constraints, blending and shared resources. In this paper, we
decompose this problem into two parts: the blending, and the utilisation
problems. We then focus our attention on the utilisation problem. We
examine how to model and solve it using alternative approaches: specif-
ically, constraint programming, MIQP and MINLP. We provide a repair
heuristic based on an outer-approximation, and empirically demonstrate
its effectiveness for solving the real-world instances of operational mine
planning obtained from our industry partner.

1 Introduction
In open-pit mines, a common form of materials handling is through truck and
loader fleets [16], where the loaders excavate the material from blocks and the
trucks haul it to dumpsites, stockpiles, run–of-mine (rom) stockpiles, or directly
to the crusher. In this paper, we will consider a challenging scheduling problem
that arises in the context of this form of materials handling. We denote the
movement of material by a movement, which is a representation of the material,
its source location (a block or stockpile), its destination location (a crusher or
stockpile) and the grade of material. In Figure 1, we represent the movements of
material by edges. Our task is to schedule these movements subject to constraints
on the plants and equipment. At most one loader may excavate a movement.
Since loader traversal is slow (≈5km/h), it is preferable to sequence the loader’s
tasks in such a way that loader traversal doesn’t prohibit flow of material to
the crusher. That is, at least one loader should always be working at any given
time. Thus, we can think of the task of sequencing the loaders as sequencing
the movements. The loaders transfer material to the trucks, which haul the
material to one of various destinations. Importantly, the trucking resources are
limited and shared between all loaders. The material flow to the crusher is key to
measuring productivity of the mine, and therefore it is important to maximise
the feedrate to the crusher at any moment in time.

Fig. 1. An abstract representation of a mine. The squares are movement sources; the
edges are movements; loaders excavate the movements at the source; trucks haul ma-
terial from the loaders to the crusher or the various stockpiles. Icon images adapted
from [4] and [8].

In open-pit mining operations, there are several levels of planning, each of
which pass down restrictions in decisions. That is, long-term plans (strategic) are
handed down to short-term planners, who in turn generate plans for operations
planners (tactical). At each of these levels of planning, the task is to determine
the order in which material movements should be mined and how they should be
processed, such that blending and utilisation targets are met. Additionally, all of
the equipment, including crushers, are subject to maintenance tasks which cre-
ate periods of unavailability. The operations planners have the task of enacting
the plans—physically, with trucks and loaders—such that the mine performance
goals are met. At the core of our work is a nonlinear scheduling problem with
shared resources, blending, and maintenance constraints. The goals of interest
in our research are (a) correct blending of materials, and (b) utilisation of equip-
ment. The output of a tactical mine plan is a sequence of builds (i.e., small,
short-term stockpiles) with an allocation of partial movements to builds such
that the builds have the correct blend and the crusher is maximally utilised.

In this paper, we investigate principled approaches for both modelling and
solving a subproblem of tactical mine planning, which requires flexible partition-
ing of tasks to facilitate fixed maintenance tasks. We arrive at the subproblem by
first decomposing the global problem into the blending and utilisation problems.
We then derive event-based formulations for the latter subproblem: exploring
formulations in constraint programming and mathematical programming. Mo-
tivated by finding a more computationally efficient solving approach, we derive
an outer-approximation and repair heuristic which utilises aspects from each of
our formulations.

The contributions of this paper are:

• a new modelling and solution approach for an operational mine scheduling
problem with flexible partitioning, that allows for fixed maintenance tasks;

• a comparison of modelling approaches for this problem, using CP and OR
techniques;

• a repair heuristic for obtaining efficient solutions to the subproblem; and
• a detailed set of experiments on real-world instances of the problem.

In previous work [12], we consider a different version of the build planning
problem. The model in [12] does not consider maintenance, and does not include
the crusher requirements. These considerations were considered crucial by our
industry partner, and lead to a nonlinear problem. Another critical difference is
that the modelling approach to the build planning problem in this paper uses
CP and MIP/MINLP technology, whereas in [12] we use planning technology to
account for state-dependent components that we do not include in this paper.
Overall, this paper results from moving to a more realistic version of the problem
we addressed in [12].

In the literature, scheduling problems with fixed maintenance have been ad-
dressed for up to 2 machines [1, 11, 15] and m machines [13, 9]. None of these
works consider the side constraints of shared resources, blending or feedrate con-
straints. The latter, [9], does consider a nonlinear objective function and provides
a linearisation of the model. In [10], the authors consider an integrated scheduling
problem, which is equivalent to the loader sequencing problem without mainte-
nance tasks. However, it is clear from the scheduling with maintenance literature
that the problem we consider here has not been addressed.

In the mining literature, the shared resources and blending constraints have
been addressed. In particular, [2] develop an outer-approximation and repair
heuristic for nonlinear blending constraints at stockpiles. This problem is the
most similar to ours from the literature that we could find. However, as these
authors consider a longer planning horizon, they do not consider the traversal
of equipment or the feedrates at the crushers. The key difference between the
nonlinear blending at stockpiles and the nonlinear feedrate at the crushers is
that it is not possible to obtain tight bounds on the feedrate at the crushers.
Apart from this, the nonlinear constraints that arise are both bilinear in form.

The remainder of the paper is organised as follows. We first describe the
subproblem that addresses the problem of scheduling the equipment and se-
quencing the movements to keep the crushers busy. We formulate this problem
using event-based models, allowing for mixed fleets, in Section 3. Then, we ex-
tend these formulations to account for maintenance constraints in Section 4. We
provide a heuristic approach based on outer-approximation and feasibility repair
in Section 5. We provide experiments across all models in Section 6. We conclude
with a discussion of our experience in Section 7.

2 Problem Description

For our industry partner, operations planning and grade control—which together
form the tactical mine scheduling problem—are performed separately. The grade
controller (at the build) is interested in minimising deviation of the grade blend.
Once the grade control plan is constructed we need to solve the utilisation prob-
lem to complete it as efficiently as possible.

In this sense, if there are multiple pits in a mine, each with their own crusher,
then it is important that the scheduled tasks are aligned, i.e. complete at the
same time. That is, there may be multiple crushers that create one build at the
end of the supply chain. Therefore, these subproblems within pits (for example)
are not completely independent.

Problem Description 1 (Tactical mine scheduling). Given a set of move-
ments to be mined, determine the mining sequence such that the movements form
builds with correct blend bounds, the crushers contributing to a build are aligned,
and the utilisation of the crusher is maximised.

In practical applications, the sequence must respect movement precedences, which
determine which movement is accessible first. For example, it may be required to
clear all movements associated with a particular location before another move-
ment (or set of movements) is possible. Additionally, all of the equipment—
trucks, loaders and crushers—are subject to maintenance at pre-defined periods.
The sequencing should therefore also account for maintenance of equipment.

In previous work (see [12]), we decomposed this problem into the blending
and utilisation problems. In this paper, we will adopt the same scheme with the
additional requirement that we align the crusher tasks contributing to the same
build. We then focus completely on the utilisation problem in the remainder of
this paper. For a general description of the decomposition approach, see [3].

In our decomposition approach, we partition the problem into two subprob-
lems. We first model the blending subproblem as a mixed-integer program. We
add new constraints that approximate the time required to mine a build, for
each crusher, in the context of a mine with multiple crushers. To achieve this,
we ensure that the contribution (in tonnes) of each crusher to the build, is pro-
portional to the maximum feedrate of the crusher itself. That is:

Ci
Φ̄i

=
Cj
Φ̄j
,

where Ci is the total quantity of material contributed to the build from crusher i,
and Φ̄i is the maximum feedrate of crusher i. To improve robustness, we introduce
these alignment constraints in the objective function: i.e., as soft constraints. The
output of this first partition is an allocation of movements to builds such that
the blending constraints are met, and the builds are aligned.

The utilisation subproblem amounts to the question: how should the equip-
ment be used so that our mining goals are met and the equipment is maximally
utilised? The components of this problem include:

1. sequencing the loaders—this allows the loader traversal times between
movements to be counted, and allows a feedrate to be allocated to each
movement.

2. allocating the trucks—the cycle time (i.e., round trip travel time between
pick-up and dumping locations and back) is accounted for.

3. maximising feedrate at crusher—the incoming ore feedrate is limited by
the capacity of the crusher, and yet the crusher should not be scheduled to
be underutilised.

And, key to this problem, we must allow for maintenance events. We assume that
we have obtained a sub-set of the movements from a solution to the blending
subproblem, such that the blending constraints are already met.

Problem Description 2 (Build Planning). Given a set of movements that
together meet blending constraints, determine the mining sequence that max-
imises the crusher utilisation, such that loading and truck fleet capacity con-
straints are met, and maintenance events are accounted for.

The underlying challenges in this problem arise from the essential non-linearity
of determining the mining rate (tonnes/minute) of a movement m. The feedrate
of a movement, φm, is determined by the capacity, CTt , of each truck, t, assigned
to the movement divided by the cycle time of the truck travelling from movement
source to the crusher and back again, TTm,t. Conversely, the duration of mining
the movement is the ratio of the size of the movement to the movement feedrate.
Summing up the feedrates of the movements currently being sent to the crusher
will determine the current crusher utilisation. Summing up the trucks assigned
to all movements currently mined must remain below the trucking capacity limit.
Hence we have a scheduling problem with variable durations and resource usages
where we are trying to maximise utilisation of resources.

The fact that the movements themselves are discrete leads to an intuitive dis-
cretisation of the problem. That is, it is intuitive to assign a feedrate and truck
allocation to each movement. However, this is actually an unnatural restriction
on the problem—it might be better to, for example, change the truck alloca-
tion part way through mining the movement. This is not only important for
optimising the solution (or finding feasible solutions in very tightly constrained
instances), but also for accounting for maintenance.

With maintenance events, it is possible that the discretisation will lead di-
rectly to poor quality solutions in terms of crusher utilisation. Consider, for
example, the case where the durations between maintenance events are so small
that the given movement sizes cannot be mined, subject to operational con-
straints. In this case, it would be ideal to determine ways to partition the move-
ments such that good solutions can be obtained.

3 Build Planning Models
We begin by addressing the problem of scheduling the crusher without mainte-
nance tasks. In this section, we formalise our approaches as event-based models.
This is, in part, inspired by Automated Planning encodings, and in part by the
logical representation of Constraint Programming.

3.1 Discretised Approach: Constraint Programming

We define the build planning problem by a set of movements, m ∈ M, with a
defined size (in tonnes), CMm , a source location, Om, a destination location, Dm,
and precedences between movements, p ∈ P, defined by p = (m′,m) ∈ M×M
that require a specific movement, m’, is completed before another, m, can begin.
Additionally, the problem has a set of loaders, l ∈ L, a set of crushers, κ ∈ F , a
set of truck types, t ∈ T , and the number of trucks of each type, NT

t .

For each crusher we have a maximum feed rate, Φ̄κ. For each loader we have
a maximum dig rate, Φ̄Ll , and a time to traverse from the source location of
movement m to the source location of movement m′, TLm,m′,l. For each truck

type, we have a truck capacity, CTt , and a cycle time for each movement m,
TTm,t—that is, how long it takes the truck to go from the source location Om to
the destination Dm and back to Om. In addition, we assert a maximum number
of movements per loader, NM

l .
The principal decisions to be made are:

• for each loader l, the sequence of movements dl,i ∈ M∪ {⊥}, i = 1, . . . NM
l

it will complete (with ⊥ representing dummy unused movements),
• for each movement, τm,t is the number of trucks of different types, t ∈ T ,

assigned to the movement.

Auxiliary variables give:

• the start, sm, duration, tm, and end times, em, for each movement,
• the movement rate, φm, (tonnes/minute) for each movement,
• the loader assigned to each movement, λm,
• indicator variables, z∧m,m′ , for which movements m are running when move-

ment, m′, is started.

The constraints are:

• Precedence constraints are satisfied:

em ≤ sm′ , (m,m′) ∈ P. (1)

• Dummy movements ⊥ are at the end

dl,i = ⊥ → dl,i+1 = ⊥, l ∈ L, i ∈ 1 . . . NM
l − 1. (2)

• The next task cannot begin until the loader has moved there:

edl,i + TLm,m′,l ≤ sdl,i+1
, l ∈ L, i ∈ 1 . . . NM

l − 1, dl,i+1 6= ⊥. (3)

• Each movement is assigned to at most one loader (assuming ⊥ = 0):

all different except 0([dl,i | l ∈ L, i ∈ 1 . . . NM
l]). (4)

• Ensure the λm and dl,i variables agree:

dl,i = m→ λm = l, m ∈M, l ∈ L, i ∈ 1 . . . NM
l , (5)

λm = l→ ∃i∈1...NM
l
dl,i = m. (6)

• The feedrate for a movement is constrained by loader dig rate:

φm ≤ Φ̄Lλm
, m ∈M. (7)

• Movement rate is constrained by trucking capacity assigned:

φm ≤
∑
t∈T

τm,t × CTt /TTm,t, m ∈M. (8)

• Duration of a movement is given by the tonnage divided by move rate:

tm =
CMm
φm

, m ∈M. (9)

• Start and end times are related by movement duration:

sm + tm = em, m ∈M. (10)

• Crusher is not overloaded:∑
m∈{M|Dm=κ}

z∧m,m′φm + φm′ ≤ Φ̄κ, κ ∈ F ,m′ ∈ {M | Dm′ = κ}, (11)

We only test overload at the start time of any movement, since that is the
only time when more can be fed to a crusher.

• Trucking capacities are respected:

cumulative(sm, tm, [τm,t|m ∈M], NT
t), t ∈ T . (12)

• Indicator variables for coinciding events are correct:

z∧m,m′ ↔ (sm ≤ sm′ ∧ em > sm′ ∧m 6= m′). (13)

The objective function is to minimise the makespan, i.e. minimise maxm∈M em.
Our search strategy first assigns a movement to each loader, dl,i ∈ M, then as-
signs the earliest possible start times, sm, and tries to assign the maximum
feedrate, φm, while minimising the number of trucks assigned, τm,t.

3.2 Discretised Approach: Mixed-integer Quadratic Programming

For a mathematical programming approach, we wish to keep the event-based
representation and linearise the constraints as much as possible. The loader se-
quencing problem is represented by a graph where nodes are movement source
locations, and edges are traversals of loaders from one movement source to an-
other. Loader traversal decisions are represented by flow variables, xm,m′,l, which
take a non-zero integer value if loader l performs movement m followed directly
by m′. We extend the movement setM to include a dummy source, σ, and sink,
σ′, such that M∪ {σ, σ′} =M′.

We encode the loader sequences constraints with a node-disjoint multi-commodity
flow formulation, which effectively allocates loaders to movements and derives
their traversal sequence. That is,

∑
m′∈M′,l

xm′,m,l −
∑

m′∈M′,l

xm,m′,l =

min{|M|, |L|} if m = σ,
−min{|M|, |L|} if m = σ′,
0 otherwise,

∀ m ∈M, (14)

∑
l,m′∈M′

xm′,m,l = 1 ∀ m ∈M′, (15)

em′ +
∑
l

TLm′,m,lxm′,m,l −MS(1−
∑
l

xm′,m,l) ≤ sm ∀ m′∈M′ (16)

m ∈M
m 6= m′,

where MS represents the maximum possible makespan. In constraint (14), we
create sequences for each loader. However, if the number of blocks is less than
the number of loaders, we must restrict the sequences to the smaller number.
Constraint (15) ensures that all blocks are visited by exactly one loader. We use
a big-M formulation for constraint (16) to ensure the travel time for each loader
is accounted for, but only if that edge is traversed by that loader.

We can now use the flow variables to indicate which loader performs a task—
this permits us to encode the loader maximum dig-rate bounding the movement
feedrate:

φm ≤
∑
l,m′

Φ̄Ll xm′,m,l ∀ m ∈M. (17)

To encode the cumulative constraints we must determine whether two events
coincide. To do this, we reason that, for any two events, if they both end after
the other began, then the two events coincide. To formalise this, we introduce
binary variables z�m,m′ to indicate that movement m finishes after m′ starts.

Recall that z∧m,m′ indicates that event m occurs at the same time as the start of

event m′. The constraints to activate these variables are:

MSz�m,m′ ≥ em − sm′ ∀ m ∈M,m′ ∈M, (18)

z∧m,m′ ≥ z�m,m′ + z�m′,m − 1 ∀ m ∈M,m′ ∈M, (19)

z∧m,m′ ≤
z�m,m′ + z�m′,m

2
∀ m ∈M,m′ ∈M. (20)

The cumulative trucking capacity constraints can now be encoded as∑
m∈M\{m′}

τm,tz
∧
m,m′ + τm′,t ≤ NT

t ∀ m′ ∈M, t ∈ T . (21)

The crusher feed rate constraints are similarly encoded as∑
m∈{M\{m′}|Dm=κ}

φmz
∧
m,m′ + φm′ ≤ Φ̄κ ∀ m′ ∈ {M|Dm′ = κ}. (22)

With the exception of the nonlinear duration calculation, the remaining con-
straints as presented in the constraint programming model are linear, and can
be used directly in the mathematical programming model. The constraints (22)
and (21) can be linearised exactly, leaving us with a mixed-integer quadratic
programming formulation with positive semi-definite form of constraint (9).

We linearise (21) and (22) by introducing two ancillary variables φ
′

m,m′ and

τ
′

m,m′,t, which will take on the value of φm if z∧m,m′ is 1, and zero otherwise. Let

Φ̄ and τ̄m be the upper bounds on their respective variables. Then,

φ
′

m,m′ ≥ φm − (1− z∧m,m′)Φ̄ ∀ m,m′ ∈ {M | Dm = κ,Dm′ = κ}, (23)

φ
′

m,m′ ≤ φm + (1− z∧m,m′)Φ̄ ∀ m,m′ ∈ {M | Dm = κ,Dm′ = κ}, (24)

τ
′

m,m′,t ≥ τm,t − (1− z∧m,m′)τ̄m ∀ m,m′,m 6= m′, t, (25)

τ
′

m,m′,t ≤ τm,t + (1− z∧m,m′)τ̄m ∀ m,m′,m 6= m′, t. (26)

Then, we alter constraints (21) and (22) as follows:∑
m∈M\{m′}

τ
′

m,m′,t + τm′,t ≤ NT
t ∀ m′ ∈M, t ∈ T , (27)

∑
m∈{M\{m′}|Dm=κ}

φ
′

m,m′ + φm′ ≤ Φ̄κ ∀ m′ ∈ {M|Dm′ = κ}. (28)

We improve computational performance with the following valid inequalities:∑
m,m′∈M′

xm′,m,l ≤ 1 ∀ l ∈ L, (29)

∑
m′∈M′,l

xm′,m,l = 1 ∀ m ∈M, (30)

∑
m′∈M′,l

xm,m′,l = 1 ∀ m ∈M, (31)

em ≤MS
∑

m′∈M′,l

xm′,m,l ∀ m ∈M, k ∈ K, (32)

z∧m,m′ = z∧m′,m ∀ m ∈M,m′ ∈M′. (33)

In the objective function and constraint (34), we represent the makespan as
a max function over all movement event end times. Thus we obtain a model of
the discretised heterogeneous crusher scheduling problem as follows:

MIQPDisc : min ω

s.t. ω ≥ em ∀ m ∈M, (34)

(1), (8)–(10), (14)–(20), (23)–(33),

z∧m,m′ , z�m,m′ ∈ {0, 1},

xm,m′,l, φ
′

m,m′ , τm,t, τ
′

m,m′,t,φm, tm, ω, sm, em ∈ R+.

3.3 Overview: Discretised Approach

As we will see in the experiments section (Section 6), the models we presented
solve easily in constraint programming, mixed-integer nonlinear programming
and mixed-integer quadratic programming solvers for realistic sized instances.
One key issue with this approach, however, is that the trucking fleet is allocated
to one movement for the entirety of the mining event. This is equivalent to
fixing the feedrate for the entire event. On one hand, this alone can lead to poor
crusher utilisation. On the other hand, we wish to introduce maintenance tasks,
which too can lead to poor crusher utilisation. For example, consider a scheduling
problem with one loader and one movement. Suppose the minimum duration of
the event is 1000, and the maintenance task occurs between 999 ≤ t ≤ 1099.
This will force the makespan to be 2099, while the crusher is doing nothing for
the first 1099 time units.

This strongly motivates a need to be able to partition the movements on-
the-fly. In the following section, we will extend our models to allow for this type

of flexible partitioning. For simplicity, we present only the loader maintenance
constraints, from which it is straightforward to extend the model to account for
truck and crusher maintenance.

4 Build Planning Models with Flexible Partitioning

In this section, we extend the formulations from previous sections by introducing
a flexible partitioning of each movement. We restrict our formulation to the case
of two partitions. However, further partitions are an easy extension, but with
particular attention paid to the symmetry constraints. The flow constraints are
sufficient in the form of constraints (14)–(15). The variables sm, em, τm,t, z

�
m,m′ ,

z∧m,m′ , φm and tm extend with an additional index representing the partition.
The new partitions have unknown size. Therefore, we require a variable, cm,k,

to represent the size of the partition (in tonnes), where the total size must equal
the original size of the movement:∑

k

cm,k = Cm ∀ m ∈M. (35)

Importantly, this leads to an expression for feedrate that is no longer positive
semi-definite:

φm,k =
cm,k
tm,k

∀ m ∈M, k ∈ K. (36)

Symmetry is a big issue when we can partition a movement anywhere and
then alternate the order of the partitions. To restrain this computational issue,
we introduce the following constraint (in combination with a restriction on k
and k + 1 in constraint (38)):

sm,k+1 ≥ em,k ∀ m ∈M (37)

k < |K| − 1,

em′,k+1 +
∑
l

TLm′,m,lxm′,m,l −MS(1−
∑
l

xm′,m,l) ≤ sm,k ∀ m ∈M (38)

m′ ∈M′

m 6= m′

k < |K| − 1.

We first ensure that the k + 1th partition follows the kth partition (of the
same movement) with respect to start time—see constraint (37). Then, we ensure
that only the first partition includes the loader traversal time.

We incorporate maintenance tasks for the loaders into the partition model
as follows. Each maintenance task has a predefined start (sHl) and finish (eHl)
time. We require that each maintenance task does not overlap with the scheduled
tasks

edl,i,k ≤ sHl ∨ sdl,i,k ≥ eHl ∨ dl,i = ⊥, ∀ l ∈ L, k ∈ K, i ∈ 1 . . . NM
l . (39)

We can encode this for MIP models by introducing variables indicating a move-
ment has finished before, zH,≺m,k,l, or after, zH,�m,k,l, each maintenance task l, and
use a big-M approach as follows:

em,k ≤ sHl + (1− zH,≺m,k,l)MS + (1−
∑
m′

xm′,m,l)MS ∀ m, k, l, (40)

sm,k ≥ eHl − (1− zH,�m,k,l)MS − (1−
∑
m′

xm′,m,l)MS ∀ m, k, l, (41)∑
m′

xm′,m,l = zH,≺m,k,l + zH,�m,k,l ∀ m, k, l. (42)

Thus we obtain the following mixed-integer nonlinear program:

MINLPexact : min ω

s.t. (1)
∗
, (8)

∗
, (10)

∗
, (14)

∗
–(15)

∗
,(17)

∗
–(20)

∗
, (34)

∗
, (35)–(38), (40)–(42),

zH,≺m,k,l, z
H,�
m,k,l, z

∧
(m,k),(m′,k′),z

�
(m,k),(m′,k′) ∈ {0, 1},

τm,k,t, xm,m′,l, φm,k, φ
′

(m,k),(m′,k′)cm,k,τ
′

(m,k),(m′,k′), tm,k, ω, sm,k, em,k ∈ R
+.

Constraints marked with (∗) are extended to account for partitions in the
obvious way.

Since the partition is flexible, it seems plausible that the MINLP represen-
tation provides an optimal solution to the utilisation subproblem. However, this
is not the case, as we show in the following theorem.

Theorem 1. Let m1 be a movement that can be flexibly partitioned, and let all
remaining movements, {M\m1}, be fixed such that they cannot be partitioned.
Further, let maintenance tasks only exist for loaders. Then, the minimum number
of partitions required for m1 to guarantee a solution optimality for the overall
problem is

|Km1 | ≥
∑
l

|Maint(l)|+ |M|.

Proof. Suppose there are L > 1 loaders operating and there are no maintenance
tasks. W.l.o.g, let l1 mine only movement m1 during the makespan of the build,
and the remaining loaders mine the remaining |M| − 1 movements. Since the
remaining movements are fixed, if we consider |M| partitions, then we have con-
sidered all possible |M|−1 event end times, and therefore guarantee optimality.
Now suppose each loader, l, has its own set of maintenance tasks, Maint(l).
Since each task may introduce a new event partition end time, we must consider
a further

∑
i∈Maint(l)
∀l∈L

i partitions in order to guarantee optimality. ut

Furthermore, when we allow all movements to partition, then the number of par-
titions (per movement) to guarantee optimality depends on the number of parti-
tions introduced in all the movements. That is, there is a recursive relationship.
The take-home message here is that the number of partitions required cannot
be determined a priori, and therefore should be determined during search.

5 Outer-Approximation and Repair Heuristic

We can obtain a completely linear outer-approximation by introducing Mc-
Cormick inequalities to represent the bilinear term φm,k tm,k. While a solution to

this model is not feasible for the original problem, it may provide us with useful
information, such as a suggestion of the partitioning point for the movements.
This gives rise to an Outer-Approximation and Repair Heuristic.

We approximate the bilinear term φm,k tm,k, using the upper (Φ̄,T̄Mm) and

lower (Φ,TMm) bounds on the variables, with constraints analogous to (23)–(26)
to arrive at an ancillary variable, µm,k. We substitute the ancillary variable into
our feedrate constraint:

µm,k ≥ cm,k ∀ m, k. (43)

The outer-approximation model is therefore:

MIPouter : min ω

s.t. (1)
∗
, (8)

∗
, (10)

∗
(14)

∗
–(15)

∗
, (17)

∗
–(20)

∗
,(23)

∗
–(26)

∗
, (34)

∗
, (35)–(42), (43),

z∧(m,k),(m′,k′), z
�
(m,k),(m′,k′) ∈ {0, 1},

τm,k,t, µm,k, φm,k, φ
′

(m,k),(m′,k′), xm,m′,l, cm,k,τ
′

(m,k),(m′,k′), tm,k, ω, sm,k, em,k ∈ R
+.

We use this model to obtain new partition breakpoints of existing move-
ments. Specifically, we take the partitioned movement capacity, cm,k, solution
and fix this variable. This reduces the problem to a form that can be solved using
MIQPDisc. This translation requires the following steps. We set the number
of movements to be equal to the number of active partitions (i.e., movement
partitions with capacity greater than zero). All movements that are split have
their new indexes saved in a split movement set,MS . We perform a translation
on all data indexed by movements.

Algorithm 1 The outer-approximation and repair heuristic for partitioning
movements in the presence of maintenance tasks.

1: Solve MIPouter model using a MIP solver.
2: if Optimal or Feasible then
3: Partition movements according to cm,k solution.
4: Fix new Cm = cm,k.
5: Solve MIQPDisc model using MIQP solver.
6: end if

This repair heuristic is guaranteed to find a feasible partition and will never
provide a solution worse than MIQPDisc, however it is not guaranteed to find
an improved solution. In fact, when there are no maintenance constraints, the
cm,k variables are not driven to find good solutions by any mechanism and we
expect to obtain solutions equivalent to those found in MIQPDisc. However,
once maintenance tasks are added, the cm,k variables have a strong bound and
will snap to the maintenance tasks. Therefore, we expect much better quality
solutions from the repair heuristic for problems with maintenance.

The quality of the repair heuristic is bounded from below by an optimal
solution to MIQPDisc. Furthermore, if the repair heuristic is run with the same
number of partitions as MINLPexact, then the quality of the repair heuristic
is bounded from above by an optimal solution to MINLPexact.

6 Experiments
We validated all models by cross-checking the objective values on a set of val-
idation instances. We created a set of test instances by extending a set of real
instances provided by our industry partner. The base set included three weeks
of movements, to be subdivided into five builds per week across three pits. In
the context of our experiments, the equipment in the three pits are independent;
they have their own crusher and truck and loader fleets. We therefore have 45
instances in the base set. On average there are 4.6 blocks and 1.4 stockpiles per
pit—the biggest pit containing 9 blocks. The blocks and stockpiles range in size
from 1.2kt up to 90kt. One pit has a mixed fleet of 5 loaders (4 types) and 13
trucks (1 type), while the other two pits have a mixed fleet of 6 loaders (2 types),
and 17 trucks (2 types). We extend every pit instance in the following ways:

• Symmetry : we double the number of loaders from 5 and 6 to 10 and 12;
• Truck constrained : we decrease trucks from 13 and 17, to 6 and 8.
• Maintenance: for every pit, we schedule maintenance for the complete loader

fleet in a cascade, each for 8 hours, decreasing the available loaders by 1 at
any time. To make the instances more sensible to these events, we decreased
the number of loaders available to 3 in total.

• Extreme Maintenance as failure: for every pit, we schedule maintenance for
the complete loader fleet for 1000 minutes, thus allowing the crusher to be
fed only by stockpiles1 if they are available.

We run experiments on the base set and all extension sets: thereby obtaining
225 instances. Each instance is tested with a time-out of 5 and 300 seconds.
We solve the blending problem using Cplex version 12.6 with default settings—
all instances solved within milliseconds, and therefore the solver required no
intervention to improve computational efficiency. We solve MIQPDisc and
MIPouter with Gurobi version 5.6.3, using tuned parameters GomoryPasses = 0
and PrePasses = 2. We tested the quadratic models using numerical stability
settings (i.e., Presolve = 0, FeasTol = 1e− 9, Quad = 1), but found these had
no impact on the validity of solutions. We model MINLPexact using Pyomo
version 3.5. We solve MINLPexact with the Scip Optimization Suite version
3.1.0, using IpOpt version 3.11.8, coinHSL version 2014.01.10 [7] and Cplex ver-
sion 12.6. We model the constraint programming (CP) approach using MiniZ-
inc [14], and solve it using Gecode 4.2.1 [6]. None of the solvers reach the max-
imum memory allowed of 4GB. MIQPDisc and MIPouter were able to find
a solution for all tested instances, CP failed solving only 2 instances of the
constrained benchmark, MINLPexact failed between 3 to 6 instances in all
benchmarks when the time limit was set to 5 seconds.

In Table 1, we show the average (CPU) time for solving each instance,
the average makespan of each build (M. [min]), and the average completion
time difference of the slowest and fastest crusher within the same build (M.
D.). MIQPDisc is consistently the fastest solver in terms of CPU time, and
achieves the best (lowest) average makespan in 5 out of the 8 tested benchmarks.

1 Stockpiles have dedicated loaders and do not require a loader to be moved. In practice
we extend our models to accommodate this restriction.

Table 1. When 5 or 300 is not followed by any tag, it refers to the original benchmark
with their respective timeouts. Tags sym, const, maint, and maint e stand for the
symmetric, constrained, maintenance and extreme maintenance variations. CPU stands
for average CPU time in seconds, M [min] stands for average Makespan in minutes,
M. D. stands for the average build-crushers alignment difference in minutes.

Bench. Id MIQdisc MIPouter MINLPexact CP
CPU M. [min] M. D. CPU M. [min] M. D. CPU M. [min] M. D. CPU M. [min] M. D.

‖5‖ 1.3 1699 284 1.3 1709 288 4.9 2095 1557 3.7 1738 364
‖5‖sym‖ 0.7 1642 157 1.2 1693 267 5.0 1771 972 3.9 1708 291
‖5‖const‖ 1.4 2405 1412 1.7 2405 1420 5.2 2167 2169 4.2 2408 1853
‖300‖ 23.0 1654 186 34.9 1652 174 235.0 1774 455 164.8 1713 308
‖300‖sym‖ 4.6 1642 157 20.4 1653 178 240.8 1761 414 173.3 1699 272
‖300‖const‖ 44.3 2369 1393 51.0 2368 1393 268.1 2341 1542 208.9 2357 1770
‖300‖maint‖ 26.7 2011 750 45.2 2013 758 188.9 1978 779 – – –
‖300‖maint e‖ 10.7 2521 1263 62.0 2317 1139 152.0 2277 1049 – – –

MIPouter have a similar performance in terms of makespan quality, outper-
forming MIQPDisc significantly in the extreme maintenance benchmark, which
benefits from the flexible partitioning. In the other benchmarks, if MIPouter is
able to solve the problem optimally, its makespans are as good or substantially
better than MIQPDisc. This is not reflected on average, as MIPouter performs
worse than MIQPDisc in those instances where it only finds a primal solution in
the allotted time. Similarly, MINLPexact outperforms all other solvers in both
maintenance and constrained benchmarks, when 300 CPU seconds are allowed.
We remark that the only solver that substantially benefits from the increase of
maximum computation time is MINLPexact. Therefore, we tested MIPouter
and MINLPexact with a timeout of 900 seconds, but it did not result in the
same quality improvement that we observed by changing from 5 to 300 seconds,
so we omit those results. The CP approach has a competitive performance with
respect to MIP solvers, but is not the best solver in any benchmark. CP failed
solving the flexible partition model, and therefore we did not run this model on
the maintenance sets. In terms of crusher alignment (M.D.), clearly the best re-
sults are achieved in the original benchmarks with 300 seconds, and even better
in the symmetric version where more loaders were available. Crusher alignment
is strongly correlated to the success of each solver on achieving 100% crusher
utilisation, as we assumed the crushers operated at 100% efficiency in the blend-
ing model to help allocate the right proportion of tons for each pit. Whenever
the average crusher feedrate decreases, the alignment is likely to be harmed.
In Table 2, we provide the crusher and truck utilisation statistics. The best
crusher utilisation is achieved by MIQPDisc in the 300 CPU time symmetric
benchmark, which coincides with the best alignment achieved in Table 1.

MIQPDisc is the best model, achieving a crusher utilisation factor up to
96.9%. The constrained and maintenance benchmark variations harm the ability
to fully utilise the crusher. Note that in those variations, it is not possible to
achieve a 100% utilisation. The constrained version harms most significantly the
CP approach, while the best models in the constrained version are MIQPDisc
and MIPouter. The best models to handle maintenance tasks are MIPouter
and MINLPexact, achieving an improvement of 6% and 7% respectively over
MIQPDisc. Again, this highlights the benefits of flexible partitions.

Table 2. When 5 or 300 is not followed by any tag, it refers to the original benchmark
with their respective timeouts. Tags sym, const, maint, and maint e stand for the
symmetric, constrained, maintenance and extreme maintenance variations. Cr. Util.
stands for crusher utilization in (%); Tr. Util. is truck utilization in (%).

Bench. Id MIQdisc MIPouter MINLPexact CP
Cr. Util. Tr. Util. Cr. Util. Tr. Util. Cr. Util. Tr. Util. Cr. Util. Tr. Util.

‖5‖ 94.3 53.5 94.0 52.2 79.8 46.5 93.4 55.8
‖5‖sym‖ 96.9 54.9 94.8 53.2 81.6 56.7 93.9 56.7
‖5‖const‖ 74.3 75.5 74.3 75.4 71.5 59.9 67.8 32.6
‖300‖ 96.3 55.0 96.4 54.2 91.7 56.2 94.0 56.3
‖300‖sym‖ 96.9 55.3 96.2 55.3 91.8 59.5 94.2 56.8
‖300‖const‖ 75.1 76.7 75.1 76.6 72.4 70.9 68.8 32.8
‖300‖maint‖ 81.7 42.6 81.7 42.0 83.7 50.6 – –
‖300‖maint e‖ 66.3 34.2 72.1 36.5 73.1 46.2 – –

Loader utilisation is not shown in the table, as this resource is unconstrained
in practice. We observe that in the data given to us by our industry partner,
truck fleet availability is not too constrained either. As they pointed out, truck
resources can become scarce in other data sets. To confirm this statement, we
observed in the original benchmark that the most extremely truck constrained pit
solved by MIQPDisc resulted in truck utilisation of 99.06% with 90% crusher
utilisation, which highlights the ability of the solvers to push the truck utilisation
to the maximum if it is required.

7 Discussion
An advantage of modelling the full problem using a high-level language, such as
MiniZinc, is that it can lead to a more intuitive and natural representation of the
problem. This simplified the extensions to a compact mathematical programming
form, where the linearisations and logical constraints can sometimes be inelegant
and cumbersome to de-bug. In this sense, it was beneficial to have multiple
models from which we could validate the others results.

Beyond constraint programming and mathematical programming, the flexible
partition scheduling problem could also be cast as a temporal planning problem
over continuous variables with processes and events. We modelled this problem
using the high-level Planning Domain Description Language (PDDL 2.1) [5], but
no solver technology could handle the model. However, the flavour of planning
encodings—event-driven modelling—is still present in our modelling approach.

Our industry partner solves this problem with an experienced planner and
grade-controller, who develop plans by hand. They aim to achieve 80% utilisation
at the crushers, after all practical constraints have been taken into account.
While we cannot claim to have modelled all practical constraints, it it clear that
these models will provide our partner with a useful decision-making tool with
huge potential to push their crusher utilisation well beyond 80% where possible.

Acknowledgments
The authors wish to thank Mike Godfrey, Jon Lapwood, Vish Baht and John
Usher from Rio Tinto for extensive discussions throughout our research. This re-
search was co-funded by the Australian Research Council linkage grant LP11010015
“Making the Pilbara Blend: Agile Mine Scheduling through Contingent Plan-
ning” and industry partner Rio Tinto.

References
1. Aggoune, R.: Minimizing the makespan for the flow shop scheduling problem with

availability constraints. European Journal of Operational Research 153(3), 534–543
(2004)

2. Bley, A., Boland, N., Froyland, G., Zuckerberg, M.: Solving mixed integer nonlin-
ear programming problems for mine production planning with stockpiling. Tech.
rep., University of New South Wales (2012), http://web.maths.unsw.edu.au/ froy-
land/bbfz.pdf

3. Burt, C.N., Lipovetzky, N., Pearce, A.R., Stuckey, P.J.: Approximate uni-
directional benders decomposition. In: Proceedings of PlanSOpt-15 Workshop on
Planning, Search and Optimization AAAI-15 (2015)

4. Coal Shovel Clip Art: Accessed: 17/11/2014 (2014), gofreedownload.net/
5. Fox, M., Long, D.: PDDL2. 1: An extension to PDDL for expressing temporal

planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)
6. Gecode Team: Gecode: Generic constraint development environment (2006), avail-

able from http://www.gecode.org

7. HSL: (2013) a collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk

8. Immersive Technologies: Accessed: 17/11/2014 (2014),
http://www.immersivetechnologies.com/

9. Jamshidi, R., Esfahani, M.M.S.: Reliability-based maintenance and job scheduling
for identical parallel machines. International Journal of Production Research 53(4),
1216–1227 (2015)

10. Khayat, G.E., Langevin, A., Riopel, D.: Integrated production and material han-
dling scheduling using mathematical programming and constraint programming.
In: Proceedings CPAIOR (2003)

11. Kubzin, M.A., Strusevich, V.A.: Planning machine maintenance in two-machine
shop scheduling. Operations Research 54(4), 789–800 (2006)

12. Lipovetzky, N., Burt, C.N., Pearce, A.R., Stuckey, P.J.: Planning for mining opera-
tions with time and resource constraints. In: Proceedings of the Twenty-Fourth In-
ternational Conference on Automated Planning and Scheduling, ICAPS-14 (2014)

13. Moradi, E., Ghoma, S.F., Zandieh, M.: Bi-objective optimization research on in-
tegrated fixed time interval preventive maintenance and production for schedul-
ing flexible job-shop problem. Expert Systems with Applications 38(6), 7169–7178
(2011)

14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard CP modelling language. In: Principles and Practice of
Constraint Programming–CP 2007, pp. 529–543. Springer (2007)

15. Sbihi, M., Varnier, C.: Single-machine scheduling with periodic and flexible periodic
maintenance to minimize maximum tardiness. Computers & Industrial Engineering
55(830–840) (2008)

16. Ta, C., Kresta, J., Forbes, J., Marquez, H.: A stochastic optimization approach to
mine truck allocation. International Journal of Surface Mining 19, 162–175 (2005)

