
From High-Level Model to Branch-and-Price
Solution in G12

Jakob Puchinger1, Peter J. Stuckey1, Mark Wallace2, and Sebastian Brand1

1 NICTA Victoria Laboratory
Department of Computer Science & Software Engineering

University of Melbourne, Australia
{jakobp,pjs,sbrand}@csse.unimelb.edu.au

2 School of Computer Science and Software Engineering
Monash University, Melbourne, Australia

mgw@mail.csse.monash.edu.au

Abstract. The G12 project is developing a software environment for
stating and solving combinatorial problems by mapping a high-level
model of the problem to an efficient combination of solving methods.
Model annotations are used to control this process. In this paper we ex-
plain the mapping to branch-and-price solving. G12 supports the selec-
tion of specialised sub-problem solvers, the aggregation of identical sub-
problems, automatic disaggregation when required by search, and the
use of specialised branching rules. We demonstrate the benefits of the
G12 framework on three examples: a trucking problem, cutting stock,
and two-dimensional bin packing.

1 Introduction

Combinatorial optimisation problems are easy to state, but hard to solve, and
they arise in a huge variety of applications. Branch-and-price is one of many
powerful methods for solving them. This paper describes how Dantzig-Wolfe
decomposition, column generation and branch-and-price are integrated into the
hybrid optimisation platform G12 [25]. The G12 project is developing a software
environment for stating and solving combinatorial problems by mapping a high-
level model of the problem to an efficient combination of solving methods. We call
such a combination of methods a hybrid algorithm. Because there is no method
for choosing the best way to solve a given problem, we believe the (human)
problem solver must be able to experiment with different hybrid algorithms. To
meet this purpose the G12 project is developing user-controlled mappings from
a high level model to different solving methods. These mappings must satisfy
three conflicting objectives:

– They must be efficient, enabling the human problem solver to tightly control
the behaviour of the algorithm if necessary for performance;

– They must be flexible, allowing plug-and-play between different sub-
algorithms;



2 Jakob Puchinger, Peter J. Stuckey, Mark Wallace, and Sebastian Brand

– They must be easy-to-use and easy-to-change for efficient experimentation
with alternative hybrid algorithms.

The mapping to branch-and-price presented in this paper is designed to meet
all three objectives (in reverse order):

– The user can select branch-and-price and control its behaviour by annotating
a high-level model of the problem.

– The generated algorithm can use a separate solver for the subproblem. The
user can control the decomposition and select the subproblem solver by fur-
ther annotations.

– Inefficiencies arising as a result of identical subproblems are avoided by ag-
gregating them, but the user is still enabled to express search control in
terms of variables in the original model. The system also supports specialised
branching rules, allowing fine-grained control of search where necessary.

The G12 platform consists of three major components, the modelling lan-
guage Zinc [10], the model transformation language Cadmium [8], and sev-
eral different internal and external solvers written and/or interfaced using the
general-purpose programming language Mercury [24]. All solvers and solver
instances are specified in terms of their specific capabilities, i.e. the type of
problems they can solve, the type of information they can return, and how they
solve a problem.

On the Mercury level these specifications are described using type classes.
Basic solvers such as a FD solver or an LP solver can be used as building blocks
for other solvers. The column generation and branch-and-price modules use and
implement such solver type classes. This system of pluggable components allows
us to quickly design new hybrid algorithms and to combine existing solvers in
innovative ways.

Trucking problem. Consider the following trucking problem, inspired by [5].
We are given N trucks; each truck has a cost and an amount of material it can
load. We are further given T time periods; in each time period a given demand
of material has to be shipped. Each truck also has constraints on usage: in each
consecutive k time periods it must be used at least l and at most u times. The
Zinc model of the problem follows:

Trucking.zinc

int: P; type Periods = 1..P;
int: T; type Trucks = 1..T;
array[Periods] of int: Demand; array[Trucks] of int: Cost;
array[Trucks] of int: Load; array[Trucks] of int: K;
array[Trucks] of int: L; array[Trucks] of int: U;
array[Periods] of var set of Trucks: x;

constraint forall(p in Periods)(sum_set(x[p], Load) >= Demand[p]);

constraint forall(t in Trucks)(
sequence([bool2int(t in x[p]) | p in Periods], L[t], U[t], K[t]));

solve minimize sum(p in Periods)(sum_set(x[p], Cost));
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At each time period we need to choose which trucks to use in order to ship
enough material and satisfy the usage limits. The sum set(s, f) function returns
Σe∈sf(e), while the sequence([y1, . . . , yn], l, u, k) constrains the sum of each
subsequence of length k, yi + · · · + yi−k−1, 1 ≤ i ≤ n − k + 1 to be between l
and u inclusive. As it stands this model is directly executable in an FD solver
which supports set variables. There exist specialised propagators for sum set
and sequence. In Zinc we can control the search by adding an annotation on
the solve item, for example:

solve :: set_search(x, "first_fail", "indomain", "complete")
minimize sum(p in Periods)(sum_set(x[p], Loads) >= Demand[p]);

which indicates we label the set variables with smallest domain first
(first fail) by first trying to exclude an unknown element of the set and
then including it (indomain) in a complete search.

Plan of the paper. We first introduce Dantzig-Wolfe decomposition and column
generation. We then describe how those techniques are used in the G12 system
and present computational experiments using the trucking example. In Section 4
we describe how the G12 column generation implementation deals with identical
subproblems. We use the cutting stock problem as an example and present re-
sults of some computational experiments. We show how our system allows for the
implementation of specialised branching rules and report computational experi-
ments for the two-dimensional bin-packing problem in Section 5. Finally related
work is discussed, conclusions are drawn, and some future research directions
are pointed out.

2 Dantzig-Wolfe Decomposition and Column Generation

Dantzig-Wolfe decomposition. This is a standard way to decompose an
integer programming model into a master problem and one or several subprob-
lems [?,7]. The bound resulting from the LP relaxation of the decomposed model
is usually (if the subproblem does not have the integrality property) stronger
than the bound of the original formulation. This can result in a smaller search
space in LP-based branch-and-bound algorithms.

Given an Original Problem of the form:

OP : minimise
∑K

k=1
ckxk

subject to
∑K

k=1
Ak

jx
k ≥ bj ∀j = 1 . . .M

xk ∈ Xk k = 1 . . .K

where the Xk = {xk ∈ ZNk
+ | xk satisfies some constraints} consist of a finite

number of vectors xk
p, ∀p ∈ P k, P k being the index-set of those vectors, which

can be represented as

Xk = {xk ∈ RNk | xk =
∑

p∈P k
λk

px
k
p,

∑
p∈P k

λk
p = 1, λk

p ∈ {0, 1} ∀p ∈ P k}.
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Substituting for xk we obtain the Dantzig-Wolfe Master Problem:

MP : minimise
∑K

k=1

∑
p∈P k

ckxk
pλ

k
p

subject to
∑K

k=1

∑
p∈P k

Ak
jx

k
pλ

k
p ≥ bj ∀j = 1 . . .M∑

p∈P k
λk

p = 1 k = 1 . . .K

λk
p ∈ {0, 1} ∀p ∈ P k, k = 1 . . .K

Removing the integrality constraint from MP we obtain a linear relaxation,
which can be solved using column generation.

Column generation. After decomposing a model using Dantzig-Wolfe decom-
position, it typically consists of a huge number of variables. In order to deal
with a possibly exponential number of variables, delayed column generation [7]
is used. Starting from a restricted LP-relaxation of the original problem, the Re-
stricted Master Problem (RMP), variables (columns) are lazily included in order
to find an optimal solution.

The simplex algorithm for solving linear programs proceeds from one basic
feasible solution to the next one, always in direction of a potential improvement
of the objective function. This is achieved by adding a variable with profitable
reduced cost to the basis and by removing some other variable from it. Re-
duced costs can be seen as an optimistic estimate of the amount of improvement
achieved by a unit increase of their corresponding variable. This is the crucial
property of the simplex algorithm exploited in column generation. For every
Xk, a subproblem is solved to determine such variables. In case of minimisation
problem, the objective is to find feasible columns xk with negative reduced cost:

(ck − πAk)xk − µk

where π are the dual variable values corresponding to the constraints of the RMP
and µk is the dual value of the k-th convexity constraint. We do not need to find
a column with maximum profit; adding a “good” column is sufficient.

3 Solving with G12

The G12 system allows one to take a model written in Zinc, transform it to
various underlying solvers using Cadmium, and then execute it. We can use
standard or user-defined Cadmium transformations. Mappings from Zinc to
finite-domain constraint programming (FD) or linear programming are avail-
able [6]. To control these transformations the user can annotate the model. The
trucking problem example illustrates the use of an annotation to define search
for an FD solver.

At the solver programming language (Mercury) level, G12 defines inter-
faces to solvers such as an FD solver, a continuous interval constraint solver,
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and linear programming solvers using type classes. Various implementations of
these interfaces are provided, e.g. for LP/MIP solvers such as CPLEX, COIN-
OR/OSI, and others. The Dantzig-Wolfe decomposition column generation, de-
fault branch-and-bound, and branch-and-price solvers heavily rely on the LP
solver interfaces. These interfaces provide standard predicates for variable cre-
ation, constraint posting, setting an objective function, and LP and MIP opti-
misation.

The advantage of this architecture is that we can easily plug different LP
solvers into modules such as column generation and branch-and-bound.

3.1 Dantzig-Wolfe Decomposition and Column Generation in Zinc

In order to use Dantzig-Wolfe decomposition and column generation on a high-
level model in G12, we need to annotate the model to explain: what parts define
the sub-problems, which solver is to be used for each subproblem, and which
solver is to be used for the master problem.

For instance, the trucking problem example can be annotated as follows:

array[Periods] of var set of Trucks: x :: colgen_var;

constraint forall(p in Periods)(
sum_set(x[p], Load) >= Demand[p] :: colgen_subproblem_constraint(p, "mip"));

solve :: colgen_solver("lp") :: lp_bb(x, most_frac, std_split)
minimize sum(p in Periods)(sum_set(x[p], Cost));

which exposes which variables x will be used in column generation. For each
Period a subproblem is defined in terms of its constraints and solver. Note that
we could have used a more specialised solver here since the subproblem is a
knapsack problem. Finally, the solver for the master problem and the search
specification, branch-and-bound selecting the most fractional variable first and
performing a standard split, are attached to the solve item.

Since column generation is to be used, the transformation must linearise the
master constraints and objective function. The subproblem solver could use the
original set representation of the variables, but for this example it too requires
linearisation of the sub-problem constraints.

We can linearise the master and subproblem constraints giving linear defini-
tions for the sum set and sequence globals. This can be done in Zinc as:

function var int:sum_set(var set of $T:s, array[$T] of int: cost) =
sum(e in index_set(cost))(cost[e] * bool2int(e in s));

predicate sequence(array[int] of var int:y, int:l, int:u, int:k) =
forall(i in min(index_set(y)) .. max(index_set(y)) - k + 1)(

let { var int: s = sum(j in i .. i + k - 1)( y[j] ) } in
s >= l /\ s <= u);

where index set returns the set of indices of its array argument, and bool2int
coerces a Boolean to 0..1. Finally, we transform the array of set variables x to
a two-dimensional array of 0..1 variables such that x[p,t] = 1 if t in x[p].
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3.2 Implementation

Column generation works by first transforming the original model to the form
demanded by the solvers. Then it builds the subproblems and attaches them
to the requested solvers. These solvers must support optimisation with a linear
objective function, and preferably support it in an incremental way.

Then the restricted master problem is defined and attached to a solver that
supports delayed column generation: currently LP solvers, although we are work-
ing on adding a hybrid volume algorithm/LP solver [3, 2].

The G12 Dantzig-Wolfe decomposition and column generation solver inter-
face implements most of the standard functionality of the G12 LP solver inter-
face. From the outside it looks mostly like a standard LP solver set up with the
original problem using the original (linearised) variables. The mapping between
the original variables and the master problem variables is straight-forward; we
simply set

xk =
∑

p∈P k
λk

px
k
p.

The main difference lies in the initialisation of the column generation module.
First the subproblem solver instances have to be added, then the variables to be
decomposed are created, and finally the master problem constraints are posted.

Similarly to the simplex algorithm, column generation requires an initial
feasible solution. If it is not provided by the user, we introduce artificial variables
in order to determine it automatically. At the end of this first phase the artificial
variables are removed from the problem [27].

Since the column generation algorithm alone only solves the LP-relaxed ver-
sion of the problem, we have to branch in order to guarantee integrality of the
variables. The default branch-and-bound module is a simple, standard linear pro-
gramming based branch-and-bound algorithm branching on the original model
variables, which does not affect the subproblem structure [28].

The additional branching constraints could of course render the RMP infea-
sible. But, since we are usually not dealing with the complete master problem,
additional columns could restore feasibility of the RMP. Such columns are ob-
tained by solving a problem very similar to the pricing problem [13].

The availability of the original variables in the column generation solver is
the key to being able to use this solver in further hybrids. We can use it with an
arbitrary search strategy on the original variables, or for example in combination
with an FD solver, by communicating bounds on the original variables.

3.3 The Trucking Problem

We solved several different instances of our trucking example showing the ad-
vantages of using DW-decomposition. Table 1 shows results on five different in-
stances displaying the number of search nodes and the time required for solving
the model using an FD solver, using a linearised model with branch-and-bound
(LP-BB), and using DW-decomposition and column generation (DW). For the
trucking example the DW-decomposition is so strong that it yielded the optimal
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Table 1. The trucking example: finite domain model versus linearised branch-and-
bound versus DW-decomposition

Instance FD LP-BB DW
Trucks Periods Nodes Time Nodes LP opt. Time Columns LP/IP opt. Time

4 6 4655 0.80s 3282 177.0 0.55s 19 220.0 0.18s
4 6 5860 0.85s 1992 177.0 0.47s 12 210.0 0.16s
4 6 4607 0.77s 3102 177.0 0.55s 20 224.0 0.18s
4 8 39848 5.04s 25646 267.0 2.64s 24 324.0 0.18s
6 7 2361926 215.90s 194000 244.8 18.75s 18 287.0 0.18s

integral solution in the root node without a need to branch; so instead of nodes
we show the number of columns generated for the DW-decomposed problem. We
also display the value of the LP-relaxation at the root node for the linear models.
For this problem we used our own branch-and-bound module using CPLEX as
LP solver as well as IP subproblem solver. In general, any kind of LP solver (with
G12 interfaces) can be used as master solver, and also any kind of subproblem
solver is supported.

4 Identical Subproblems

Dantzig-Wolfe decomposition often results in highly symmetrical models because
of structurally identical subproblems, i.e. the objective coefficients, the master
problem constraints and the subproblem constraints are identical. A typical ex-
ample for such a model is the cutting stock problem [16, 12].

4.1 Aggregating Identical Subproblems

Solving problems with identical subproblems by the pure Dantzig-Wolfe ap-
proach can be quite inefficient. This issue is usually overcome by aggregating
the identical subproblems. The set K of subproblem indices can be divided into
S sets Ks, s = 1 . . . S, by grouping the indices of identical subproblems. We can
then represent ∑Ks

k=1

∑
p∈P k

xk
pλ

k
p as

∑
p∈P s

xs
pλ

s
p

with integers λs
p satisfying 0 ≤ λs

p ≤ |Ks| and
∑

p∈P s λs
p = |Ks|, for s = 1 . . . S.

The Problem MP becomes the Aggregated Master Problem:

AMP : minimise
∑S

s=1

∑
p∈P s

csxs
pλ

s
p

subject to
∑S

s=1

∑
p∈P s

As
jx

s
pλ

s
p ≥ bj ∀j = 1 . . .M∑

p∈P s
λs

p = |Ks| s = 1 . . . S

λs
p ≤ |Ks|, λs

p ∈ Z+ ∀p ∈ P s, s = 1 . . . S.
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4.2 Automatic Disaggregation when Branching on Original
Variables

The direct mapping between the original variables and the newly introduced
variables is not obvious anymore. In the aggregated case we have

xk =
∑

p∈P s
λs

px
s
p/|Ks|.

Unfortunately this usually leads to highly fractional values of the original vari-
ables, even if the λs

p variables take integer values. We therefore first decompose
the λs

p values into (non-aggregated) λk
p values preserving integrality as much as

possible, and then we use the mapping for the non-aggregated case.

In order to allow branching on the original variables we have to disaggre-
gate the problem as required by the branching. The column generation module
allows one to post any kind of linear constraint on the original problem vari-
ables without affecting the subproblem structure. Each aggregated subproblem
appearing in these constraints is automatically disaggregated and considered by
the column generation iterations in the subsequent nodes. Given K identical
subproblems, if a constraint is posted involving an original variable belonging
to the kth subproblem, this subproblem becomes different to the others and is
disaggregated (while the remaining K − 1 subproblems are kept aggregated). In
order to implement this complex behaviour, the column generation module main-
tains a mapping between the original variables and their associated subproblems.
It also tracks the aggregation status of all the subproblems by keeping a list of
active subproblems. The disaggregations are rolled back upon backtracking.

4.3 The Cutting Stock Problem

In the cutting stock problem, we are given N items with associated lengths and
demands. We are further given stock pieces with length L and an upper bound K
on the number of required stock pieces for satisfying the demand (a trivial upper
bound is the sum over all the demands). The following Zinc model corresponds
to the formulation by Kantorovich [16]:
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CuttingStock.zinc

int: K; type Pieces = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;
int: L;
array[Items] of int: i_length; array[Items] of int: i_demand;

array[Pieces] of var 0..1: pieces :: colgen_var;
array[Pieces, Items] of var int: items :: colgen_var;

solve :: lp_bb([pieces, items], most_frac, std_split)
:: colgen_ph(100, 10) :: colgen_solver("lp")

minimize sum([ pieces[k] | k in 1..K]);

constraint forall(i in 1..N)(sum([items[k, i] | k in 1..K]) >= i_demand[i]);

constraint forall( k in 1..K)(
sum(i in 1..N)(items[k,i] * i_length[i]) <= pieces[k] * L

:: colgen_subproblem_constraint(k, "knapsack"));

The original model is a linear program. The annotations for the column
generation variables and subproblems are as before. But this time we introduce
a new annotation colgen symmetric which annotates a type. This indicates that
the model is symmetric in this dimension and the resulting column generation
should aggregate in this dimension. A Cadmium transformation can then be
used to create an aggregated version of the variables and constraints as follows:

CuttingStockAgg.zinc (changes)

type Pieces = 1..K :: colgen_symmetric;

array[Pieces] of var 0..1: pieces :: colgen_var :: colgen_agg(m_pieces, s_pieces);
array[Pieces, Items] of var int: items :: colgen_var :: colgen_agg(m_items, s_items);
var 0..1: s_pieces;
array[Items] of var int: s_items;
var int: m_pieces;
array[Items] of var int: m_items;

solve :: lp_bb([pieces, items], most_frac, std_split)
:: colgen_ph("mip", 100, 10) :: colgen_solver("lp")

minimize m_pieces;

constraint forall(i in 1..N)(m_items[i] >= i_demand[i]);

constraint sum(i in 1..N)(s_items[i] * i_length[i]) <= s_pieces * L
:: colgen_agg_subproblem_constraint(Pieces, "knapsack");

The colgen agg annotations associate the aggregated master and subprob-
lem variables with the original problem variables. The m pieces and m items
variables are place-holders representing the implicit sums of aggregated λ vari-
ables

∑
p∈P s xs

pλ
s
p as introduced in the AMP. The s pieces and s items vari-

ables are the actual subproblem variables.
This model is similar to the well-known column generation formulation first

described by Gilmore and Gomory [12], although that does not retain the original
variables.

Note that it is conceivable to use Cadmium to detect symmetries and auto-
matically add colgen symmetric annotations.
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Table 2. Results for cutting-stock with a maximum run-time of 5 min.

Class Items No Aggregation Aggregation
Opt % Feas % No % Obj Nodes Time [s] Opt % Feas % No% Obj Nodes Time[s]

Class1 10 30 70 0 12.70 3325.80 210.40 30 70 0 12.60 3596.60 209.95
Class2 10 70 10 20 118.75 125 100.89 90 10 0 112.90 283.80 59.36
Class3 20 30 0 70 23.33 766.67 242.52 20 80 0 24.50 823.10 250.05
Class4 20 0 0 100 n.a. n.a. 298.63 10 30 60 222.50 400 268.17
Class5 10 100 0 0 49.50 75.20 6.07 100 0 0 49.50 0 0.32
Class6 10 80 10 10 518.56 38.89 68.39 100 0 0 494.90 143.40 21.84
Class7 20 70 20 10 90.22 212.22 105.18 90 10 0 90 225.90 50.00
Class8 20 60 0 40 947.83 16.67 184.24 90 10 0 893.50 40.60 30.51
Class9 10 100 0 0 64 20 2.04 100 0 0 64 50 1.79
Class10 10 80 10 10 657.67 43.78 70.08 90 10 0 639.70 169 39.27
Class11 20 70 10 20 117.75 104.75 95.10 80 20 0 115.50 253.60 60.15
Class12 20 70 10 20 1182.25 10.25 154.79 80 20 0 1146.90 120.60 50.06

Average 63.33 11.67 25 330.74 457.60 128.19 73.33 21.67 5 327.46 514.61 86.79

In the following experiment we evaluate possible differences when using the
aggregated and the non-aggregated DW-decomposition. The results are shown in
Table 2. We display in percent how often an optimal solution, a feasible solution,
or no solution was found. We further give average objective values and number
of explored nodes where at least a feasible solution was found. Average run-times
over all the instances are also shown. The maximum run-time per instance was
5 minutes. We used CPLEX as LP solver and a specialised dynamic programming
algorithm implemented in Mercury for solving the knapsack subproblems. The
CPLEX MIP solver was used as primal heuristic to solve the restricted master
problem to integrality at every 100th node with a time limit of 10 seconds,
as specified using the colgen_ph annotation. The instances used are randomly
generated using CUTGEN1 [11]. Instances of Classes 1–12 have stock length
L = 1000; each class consists of 10 instances.

For almost all classes, aggregating identical subproblems presents an advan-
tage in the number of solved instances, solution quality and solving time.

5 Specialised Branching Rules

In order to overcome symmetry issues, specialised branching rules for specific
problem types were developed; see e.g. [4]. They usually require changes to the
subproblems during the branch-and-bound process. G12 enables users to imple-
ment such specialised branching rules, changing the structure of the subprob-
lems, but preserving aggregations.

The column generation module allows one to ask for fractional columns of
the DW-decomposed model. It returns their values as well as their entries in
the constraint matrix of the master problem. Using this information the user
can define specialised branching rules by introducing constraint branches on
subproblem variables. In the master problem these constraint branches can be
enforced by setting forbidden columns to zero in their respective branch. The
column generation module provides a predicate by which the user can specify
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a list of column patterns that have to be set to zero. In our current system
the specialised branching rules are implemented in Mercury. We are working
on extensions to Zinc so that users will be able to specify such rules at the
modelling level.

The Two-Dimensional Bin Packing Problem

In order to demonstrate the effectiveness of specialised branching rules we imple-
mented a simple, well-known rule for the two-dimensional bin packing problem.
It is similar to the one described in [20], which is based on a well known branch-
ing rule for set partitioning [23]. The solution space is divided by branching on
whether two different items are in the same bin. We always choose the two high-
est items appearing in a pattern whose corresponding column generation master
variable λ has an LP solution value closest to 0.5.

In the two-dimensional bin packing problem (2DBPP), we are given N rect-
angular items of given height and width. These items have to be placed on (or
cut out) of bins of height H and width W, of which there are at most K. The
variant we consider here does not allow items to be rotated; only level packings
are allowed. Each bin can be divided into several levels, and each level contains
the items beside each other [17]. For ease of modelling, we assume that the items
are sorted by non-increasing heights. The formulation in Zinc is as follows:

2DBinPacking.zinc

int: K; type Bins = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;

int: W; array[Items] of int: ItemWidth;
int: H; array[Items] of int: ItemHeight;

array[Bins] of var 0..1: bin :: colgen_var;
array[Bins, Items] of var 0..1: item :: colgen_var;

solve :: bp([bin, item], most_frac_master, special_split)
:: colgen_ph("mip", 100, 10) :: colgen_solver("lp")

minimize sum(k in Bins)(bin[k]);

constraint forall(j in Items)(sum(k in Bins)(item[k, j]) >= 1);

constraint forall(k in Bins)(
is_feasible_packing(bin[k], [item[k, j] | j in Items])

:: colgen_subproblem_constraint(k, "mip"));

set of tuple(Items, Items): Idx = {(i, j) | i, j in Items where j >= i};

predicate
is_feasible_packing(var 0..1: l_bin, array[Items] of var 0..1: l_item) =

let { array[Idx] of var 0..1: x } in
forall (i in Items)(

sum(j in i..N)(ItemWidth[j] * x[i, j]) <= W * x[i, i])
/\
sum(i in Items)(ItemHeight[i] * x[i, i]) <= l_bin * H
/\
forall(j in Items)(l_item[j] = sum(i in 1..j)(x[i, j]));
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Table 3. Results for two-dimensional bin packing with a maximum run-time of 5 min.

Class Std. Branching Sp. Branching
Opt % Feas % No % Obj Nodes Time [s] Opt % Feas % No% Obj Nodes Time[s]

Class1 68 22 10 19.49 45.87 109.90 90 8 2 39.90 41.14 53.54
Class2 26 0 74 1.31 0 223.24 30 2 68 64.19 6.19 203.08
Class3 70 10 20 13.05 10 116.37 84 8 8 13.85 11.87 82.90
Class4 26 0 74 1.31 0 228.76 26 0 74 1.31 0 228.74
Class5 84 6 10 17.40 8.89 69.65 90 2 8 17.61 3.93 53.13
Class6 24 0 76 1.08 0 228.03 24 0 76 1.08 0 227.97
Class7 76 16 8 16.30 33.70 80.52 88 10 2 16.78 57.18 57.52
Class8 78 10 12 15.73 14.77 89.48 84 6 10 15.98 13.60 77.04
Class9 96 4 0 42.62 6.72 13.94 100 0 0 42.60 0.32 2.17
Class10 48 4 48 7.46 18.15 155.95 52 0 48 7.46 7.54 149.39

Average 59.6 7.2 33.2 17.95 17.58 131.58 66.8 3.6 29.6 23.65 18.38 113.55

The bp annotation to the solve item tells the system to use the branch-and-price
algorithm choosing the most fractional master variable and using the specialised
branching rule.

Table 3 displays the results of applying standard branching on the original
variables or using the specialised branching rule. We tested these approaches on
the set of 500 instances described in [17]. They are divided in 10 classes of 50
instances each, with item numbers ranging from 20 to 100 in each class. While
many instances could be solved to optimality in the root node, our specialised
branching rules did reach optimal solutions more often in the given limited run-
time.

6 Related Work and Conclusion

The practical usefulness of column generation and branch-and-price has been
well-established over the last 20 years [7, 4]. More recently it has emerged that
column generation provides an ideal method for combining approaches, such as
constraint programming, local search, and integer/linear programming. Columns
can be generated by constraint programming or application-specific algorithms,
while the master problem is handled using branch-and-price [15, 30, 22, 20].

For systems such as G12 which support hybrid algorithms, Dantzig-Wolfe
decomposition, column generation and branch-and-price provide an elegant way
for the different solving techniques to be combined. However the specification of
this form of hybrid is quite complex, as it requires adaptation of simplex-based
approaches to support the lazy generation of columns. Thus systems such as
ABACUS [14], MINTO [18], OPL script [26], MAESTRO [?], COIN/BCP [21],
and SCIP [1] offered facilities to support the implementation of branch-and-
price on top of generic integer/linear programming packages. However these
systems still required the user to understand the technical details of branch-
and-price: the purpose was to support algorithm implementation rather than
problem modelling.

Certainly column generation is technical, but for people trying to solve com-
binatorial problems the most important requirement is to be able to try out
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an algorithm, or more generally a hybrid algorithm, quickly and easily with-
out rewriting the problem specification. The first attempt to provide a column
generation library was in ECLiPSe [9]. This system introduced the idea of an
aggregate variable appearing in the master problem to represent a set of values
returned as columns from multiple solutions to identical subproblems. However
this library assumes a fixed set of variables in each subproblem, and precludes
search choices which break some of the subproblem symmetries. In order to
achieve tight control over branch-and-price, sophisticated ECLiPSe users have
required special adaptations of the column generation library in order to be able
to work directly with low level primitives [19].

The facility to annotate the same Zinc model in two different ways, as in
the examples above, and thus have the problem solved by the FD solver, or by
column generation according to the annotation, is completely novel. Moreover
the facility to perform search on user variables and have any symmetries which
are dynamically broken during search still correctly and efficiently handled au-
tomatically by the column generation solver is also new. Thirdly the facility to
define specialised search still using the mapping provided by the library provides
the full flexibility needed by the expert user.

The G12 scheme is to add annotations to a conceptual problem model, and
thus turn it into a design model that maps to a specific algorithm. Annotating
a constraint, occurring in the conceptual model, with the (name of the) solver
that will handle it, is a simple example of this scheme.

Column generation is an interesting challenge because it does not naturally
fit into the above scheme. Certainly we view the column generation module as
a solver in the normal way (as discussed in Section 3). However annotating a
constraint with the column generation solver is not enough: the solver needs to
know which subproblem the constraint belongs to, the master problem or the
subproblem. Moreover there is not one column generation solver: the master
problem might be sent to one underlying solver and the subproblem to another.
Finally branch-and-price search is closely connected with the column generation
solver, and annotations to control the search can be crucial to the performance
of the algorithm.

Each requirement has been satisfied in Zinc by having a sufficiently expres-
sive annotation language. For example an annotation with a compound term
(colgen_subproblem_constraint(p, "mip")) was used to specify the subprob-
lem solver in Section 3.1, and the search was specified by multiple annotations.

The next particular challenge of column generation is that the variables (and
constraints) used in the conceptual model of the problem are quite different from
those needed in the design model. Our column generation module automates this
mapping using G12’s Cadmium mapping language. To ensure the annotations
are still meaningful with respect to the new variables, the annotations have to
be transformed by Cadmium in the same way. Moreover the search control as
illustrated in Section 4 must be mapped to search steps expressed in terms of
the design model variables.
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The greatest design and implementation challenge was to have these still
work, fully automatically, when handling symmetry by generating aggregated
variables (used when solving the subproblem) and dynamically disaggregating
some of them during search. Indeed, each symmetry-breaking search step causes
the design model to be updated so as to operate on a new set of variables.

The design model is expressed in terms of a simplified version of Zinc, ex-
ampled in Section 4.3. The specification of our language for expressing design
models is still fluid, and so currently the translation to the Mercury code –
which is very similar, but uses different syntax – is by hand.

One interesting challenge arising out of this work is how to automatically
detect identical subproblems. This is a completely novel form of automated sym-
metry detection, which is of significant practical value, as the results in Table 2
reveal.

We will implement the search annotation transformations necessary to enable
specialised branching schemes to be expressed in Zinc. We will also build-in an
implementation of the generic branching scheme described in [27]. We will further
address issues related to adding multiple columns and column pool management.

Finally we will explore the use of the column generation module for solv-
ing a subproblem within a larger problem – thus supporting, for example, a
combination of row and column generation.
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