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Abstract. We consider the problem of decomposing an integer ma-
trix into a positively weighted sum of binary matrices that have the
consecutive-ones property. This problem is well-known and of practical
relevance. It has an important application in cancer radiation therapy
treatment planning: the sequencing of multileaf collimators to deliver
a given radiation intensity matrix, representing (a component of) the
treatment plan.
Two criteria characterise the efficacy of a decomposition: the beam-on
time (length of time the radiation source is switched on during the treat-
ment), and the cardinality (the number of machine set-ups required to
deliver the planned treatment).
Minimising the former is known to be easy. However finding a decompo-
sition of minimal cardinality is NP-hard. Progress so far has largely been
restricted to heuristic algorithms, mostly using linear programming, inte-
ger programming and combinatorial enumerative methods as the solving
technologies. We present a novel model, with corresponding constraint
programming and integer programming formulations. We compare these
computationally with previous formulations, and we show that constraint
programming performs very well by comparison.

1 Introduction

The problem of decomposing an integer matrix into a weighted sum of binary
matrices has received much attention in recent years, largely due to its applica-
tion in radiation treatment for cancer.

Intensity-modulated radiation therapy (IMRT) has been increasingly used for
the treatment of a variety of cancers [17]. This treatment approach employs two
devices that allow higher doses of radiation to be administered to the tumour,
while decreasing the exposure of sensitive organs (Fig. 1). The first is that the
source of radiation can be rotated about the body of the patient: by positioning
the tumour at a “focal point”, and aiming the radiation beam at this point
from various angles, the tumour receives a high dose from all angles, while the
surrounding tissue only gets high exposure from some angles.
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Fig. 1. Intensity-modulated radiotherapy

The second is more subtle, and involves repeated exposures from the same
angle, where the uniform-intensity rectangular field of radiation delivered by the
radiation source is “shaped” in a different way for each exposure, and each expo-
sure can be for a different length of time. This process builds up a complex profile
of received radiation in the patient’s body, effectively converting the uniform ra-
diation field delivered by the machine to an intensity-modulated field. The latter
is usually described by discretising the 2-dimensional rectangular field, and spec-
ifying a radiation intensity level in each discrete element, representing the total
length of time for which that element should be exposed to radiation.

A treatment plan for a single IMRT treatment session with a patient thus
typically consists of a set of angles, together with a matrix for each angle, known
as the intensity matrix, which represents the modulated field to be delivered at
that angle. Typically the intensity is scaled so that the entries in the intensity
matrix are integer. Indeed, they are usually quite small integers. Finding a good
treatment plan is a challenging problem in its own right, and has been the subject
of a great deal of research. We recommend the reader refer to the papers [13, 9,
15] and references therein.

In this paper, we assume a treatment plan is given, and focus on the de-
livery of the modulated field (intensity matrix) at a given angle. IMRT can be
delivered by a variety of technologies: here we focus on its delivery via a ma-
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chine known as a multileaf collimator, operating in “step-and-shoot” mode [7].
This machine delivers a rectangular field of radiation, of uniform intensity, that
can be shaped through partial occlusion of the field by lead rods, or “leaves”.
These are positioned horizontally on the left and right side of the field, and can
slide laterally across the field to block the radiation, and so shape the field. The
discretisation giving rise to the intensity matrix is taken to be compatible with
the leaf widths. In step-and-shoot mode, the leaves are moved into a specified
position, the radiation source switched on for a specified length of time and then
switched off, the leaves moved to a new position, and so on (Fig. 1).

The shaped radiation field delivered by the leaves in each position can be
represented as a binary matrix, with 1’s in elements exposed in that position,
and 0’s in elements covered by the leaves (Fig. 1). The structure of the machinery
ensures that all 1’s in any row occur in a consecutive sequence: the matrix has the
consecutive-ones property. The length of time radiation is applied to the shaped
field is called its beam-on time. To correctly deliver the required intensity matrix,
the matrices corresponding to the shaped fields, weighted with their beam-on
times, must sum to the intensity matrix.

This motivates the following problem specification.

2 Problem Specification and Related Work

Let I be an m × n matrix of non-negative integers (the intensity matrix). The
problem is to find a decomposition of I into a positive linear combination of
binary matrices that have the consecutive-ones property. Often the radiation
delivery technology imposes other constraints on the matrices, but here we focus
on the simplest form, in which only the consecutive-ones property is required. For
convenience, we use the abbreviation C1 for a binary consecutive-ones matrix.
We also refer to a shaped field, represented by a C1 matrix, as a pattern.

Formally, we seek positive integer coefficients bk (the beam-on times) and C1
matrices Xk (the patterns), such that

I =
∑

k∈Ω

bkXk (1)

where Ω is the index set of the binary matrices Xk, and for k ∈ Ω:

Xk,i,jL
= 1 ∧ Xk,i,jR

= 1 → Xk,i,jM
= 1 (2)

for all 1 6 jL < jM < jR 6 n and all i = 1, . . . ,m.

Example 1. Consider the matrix

I =

(

2 5 3
3 5 2

)

.
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Two decompositions are

D1 = 1

(

0 1 1
1 1 0

)

+ 2

(

1 1 1
1 1 1

)

+ 2

(

0 1 0
0 1 0

)

and

D2 = 2

(

1 1 0
0 1 1

)

+ 3

(

0 1 1
1 1 0

)

,

that is, we have I = D1 = D2. ♦

We denote by B and K the sum of coefficients bk and the number of matrices
Xk used in the decomposition (1), respectively, i.e.

B =
∑

k∈Ω

bk and K = |{ bk | k ∈ Ω }| .

We call B the total beam-on time and K the cardinality of the decomposition.
The efficacy of a decomposition is characterised by its values for B and K: the
smaller these values the better. In Example 1, the decompositions have the values
B1 = B2 = 5, K1 = 3 and K2 = 2; so D2 is preferred.

The problem of finding a decomposition that minimises B can be solved in
polynomial time using linear programming or combinatorial algorithms [1, 8, 10,
3]. However, it is possible for a decomposition to have minimal B but large K;
indeed algorithms for minimising B tend to produce solutions with much larger
K values than is necessary.

In radiation therapy, clinical practitioners would prefer solutions that min-
imise B, while ensuring K is as small as possible, i.e. they would prefer a lex-
icographically minimum solution, minimising B first and then K, written as
lex min(B,K). Since minimising B is easy, its minimal value, which we denote
by B∗, is readily computable. The problem then becomes one of minimising K
subject to the constraint that B = B∗. Although this problem, too, is NP-hard
(it follows directly from the proof of NP-hardness of the problem of minimising
K alone, given in [3]), it is hoped that solution methods effective in practice can
be developed.

In the last decade, dozens of heuristic algorithms have indeed been developed,
for example [1, 8, 10, 6, 3]; approximation algorithms are studied in [4]. Some of
these attempt to find solutions in which both B and K are “small”, while some
seek low cardinality solutions while ensuring B = B∗ is fixed. An exact algo-
rithm for the lex min(B,K) problem has also been developed [10]: it is a highly
complex, specialised enumerative algorithm that appears to carry out similar
steps to those that might be expected in a constraint programming approach.

However the development of tractable exact formulations has lagged behind.
Several exact integer programming models were introduced in [2] and [11] in
order to solve the lex min(B,K) problem, but these were either not tested com-
putationally or were able to solve only small problems in reasonable CPU time.
In this paper we develop a new model, that we refer to as the Counter Model. We
derive both an integer programming formulation and a constraint programming
method, and test both of these computationally against previous integer pro-
gramming models. Our integer programming formulation performs substantially
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better than existing formulations, and the constraint programming approach
provides the best computational results overall.

In the remainder of this paper, we first briefly review the existing integer
programming formulations, and then present the Counter Model, our new integer
programming formulation, and our constraint programming method. We then
provide a computational comparison of these, and make our conclusions.

3 Existing Integer Programming Formulations

The central issue in modelling the lex min(B,K) problem is that K, the car-
dinality of the decomposition, is unknown, and yet the natural variable indices
depend on it. The two integer linear programming models in the current litera-
ture that can be used for the lex min(B,K) problem take different approaches
in tackling this issue. [11] overcome it by indexing according to radiation units;
[2] instead calculates an upper bound on K. Here we give descriptions of these
models and some additional symmetry breaking constraints.

Notation. The range expression [a..b] with integers a, b denotes the integer set
{ e | a 6 e 6 b }.

3.1 The Unit Radiation Model

The model of [11] focuses on individual units of radiation. It is based on the
assumption that the total beam-on time is fixed, in our case to B∗. What is not
known is: for each of the B∗ units of radiation, what pattern should be used for
the delivery of that unit? In the model, binary variables dt,i,j are used to indicate
whether the element (i, j) is exposed in the tth pattern corresponding to the tth
unit of radiation, for t ∈ [1..B∗]. They are linked to the intensity matrix by

Iij =

B∗

∑

t=1

dt,i,j , for all i ∈ [1..m], j ∈ [1..n]. (3)

The leaf structure in the pattern is captured by binary variables:

pt,i,j =

{

1 if the right leaf in row i of pattern t covers column j,

0 otherwise,

`t,i,j =

{

1 if the left leaf in row i of pattern t covers column j,

0 otherwise,

for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n]. The relationship between these three
sets of binary variables is given by

pt,i,j + `t,i,j = 1 − dt,i,j for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n], (4)
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and

pt,i,j 6 pt,i,j+1,

`t,i,j+1 6 `t,i,j

for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n − 1]. (5)

These constraints ensure that the dt induce a C1 matrix.

Under these constraints, the indices t can be permuted to create equivalent
solutions. Thus, the model is “free” to order the patterns so that identical pat-
terns appear consecutively. To minimise the number of different patterns in a
solution, the number of times adjacent patterns are different can be minimised.
That patterns t and t + 1 differ is reflected in the binary variable gt, and the
sum of these variables corresponds to the number of patterns by

K = 1 +

B∗
−1

∑

t=1

gt. (6)

Minimising this sum ensures that identical patterns appear consecutively. Each
unique pattern yields a C1 matrix for the decomposition; the associated beam-
on time is given by the number of copies of this pattern among the dt. [11] tally
values for g using binary additional variables:

ct,i,j =

{

1 if dt,i,j = 1 and dt+1,i,j = 0,

0 otherwise,

ut,i,j =

{

1 if dt,i,j = 0 and dt+1,i,j = 1,

0 otherwise,

st,i,j =

{

1 if dt,i,j 6= dt+1,i,j ,

0 otherwise,

for all t ∈ [1 .. B∗ − 1], i ∈ [1..m], j ∈ [1..n]. The relationship of these variables
is established by the linear constraints

− ct,i,j 6 dt+1,i,j − dt,i,j 6 ut,i,j ,

ut,i,j + ct,i,j = st,i,j ,
m

∑

i=1

n
∑

j=1

st,i,j 6 mngt,

for all t ∈ [1 .. B∗ − 1], i ∈ [1..m], j ∈ [1..n].

(7)

The original model in [11] does not contain symmetry-breaking constraints.
We added symmetry breaking constraints as follows. We wish to enforce that
the matrices appear in order of non-increasing beam-on time. This means the
pattern groups should appear in order of non-increasing size, which is to say
that no (possibly empty) sequence of 0’s enclosed by 1’s and followed by a longer
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sequence of 0’s occurs in the g vector extended by g0 = 1. This can be enforced
by

r+t
∑

v=r

gv − 1 6

r+2t
∑

v=r+t+1

gv for all r ∈ [0 .. B∗− 3], t ∈ [1 .. b(B∗− r− 1)/2c], (8)

for which we define g0 = 1.

The constraints (3)-(8) with the objective of minimising K constitute the
Unit Radiation model.

3.2 The Leaf-Implicit Model

This model of [2] is based on calculating an upper bound on K, denoted by
K̄. A value for K̄ is not difficult to compute; the cardinality of any solution to
the (polynomially solvable) minimum beam-on time problem will do. For each
k ∈ [1..K̄], a C1 matrix Xk and associated beam-on time bk need to be found. If
Xk is the zero matrix then pattern k is not needed; minimising decomposition
cardinality is minimising the number of non-zero matrices in the decomposition.

The model of [2] uses a characterisation of matrix decomposition into C1
matrices derived in [3]. In this model, the structure of the solution is encoded
by recording beam-on time against each leaf position. It uses integer variables
xk,i,j to represent the beam-on time for pattern k if the left leaf in row i of that
pattern covers exactly the columns [0 .. j − 1]; otherwise xk,i,j is zero. The left
leaf being in position 0 means it is fully retracted. Similarly, the integer variable
yk,i,j represents the beam-on time for pattern k if the right leaf in row i of that
pattern covers exactly the columns [j .. n + 1], and is zero otherwise. The right
leaf “covering” only column n + 1 means it is fully retracted. For convenience,
we define the function inc to compute the non-negative difference between two
values,

inc(x, y) = max(y − x, 0),

and the matrices ∆+,∆− are defined by

∆+

i,j = inc(Ii,j−1, Ii,j),

∆−

i,j = inc(Ii,j , Ii,j−1),

for all j ∈ [1..n + 1], i ∈ [1..m], where we take Ii,0 = Ii,n+1 = 0. Delivering the
intensity matrix I is equivalent to asking that

K̄
∑

k=1

xk,i,j − wi,j = ∆+

i,j and

K̄
∑

k=1

yk,i,j − wi,j = ∆−

i,j ,

for all i ∈ [1..m], j ∈ [1 .. n + 1], (9)
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where the wi,j are non-negative integer variables. That the total beam-on time
is B∗ is ensured using integer variables bk constrained by

n+1
∑

j=1

xk,i,j = bk and

n+1
∑

j=1

yk,i,j = bk, for all k ∈ [1..K̄], i ∈ [1..m], (10)

and

K̄
∑

k=1

bk = B∗. (11)

Counting the number of patterns is similarly encoded against leaf positions.
The model uses binary variables `k,i,j to represent whether the left leaf in row i
of pattern k covers exactly columns [0 .. j−1], and rk,i,j to represent whether the
right leaf in row i of pattern k covers exactly columns [j ..n+1]. Further, binary
variables βk indicate whether pattern k is used at all. The pattern structure is
enforced by the constraints

n+1
∑

j=1

`k,i,j = βk and

n+1
∑

j=1

rk,i,j = βk, for all k ∈ [1..K̄], i ∈ [1..m], (12)

and, ensuring that the left leaf is indeed to the left of the right leaf,

s
∑

j=1

`k,i,j −

s
∑

j=1

rk,i,j > 0, for all s ∈ [1 .. n + 1], k ∈ [1..K̄], i ∈ [1..m]. (13)

If pattern k is not used, then it cannot supply any radiation. This logic is
encoded via the constraints

xk,i,j 6 M+

k,i,j`k,i,j and yk,i,j 6 M−

k,i,jrk,i,j ,

for all s ∈ [1..K̄], i ∈ [1..m], j ∈ [1 .. n + 1], (14)

where M+

k,i,j , M−

k,i,j are any appropriate upper bounds. We use

M◦

k,i,j = B∗ −

n+1
∑

s=1

∆+

i,s + ∆◦

i,j , for ◦ ∈ {+,−}.

The decomposition cardinality is found by

K =
K̄

∑

k=1

βk. (15)

The description of the original model in [2] does not discuss symmetry break-
ing. To make the comparison with the other models fairer, we add the following
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symmetry breaking constraints. In a closed row, the leaves can meet anywhere.
We choose the point at which the left leaf is fully retracted, by requiring

`k,i,j + rk,i,j 6 1, for all i ∈ [1..m], j ∈ [2 .. n + 1]. (16)

Furthermore, we order the beam-times associated to the patterns,

b1 6 . . . 6 bK̄ . (17)

Unfortunately, symmetry-breaking constraint (17) does not remove symmetries
arising when the coefficients of two of the Xk matrices are equal. Sometimes,
values can be swapped between matrices without breaking their consecutive-ones
properties. Consider a fragment of D2 from Example 1:

2

(

1 1 1
1 1 1

)

+ 2

(

0 1 0
0 1 0

)

= 2

(

1 1 1
1 1 0

)

+ 2

(

0 1 0
0 1 1

)

.

Note that the matrices of left-hand side and right-hand side are both lexico-
graphically ordered (row-wise as well as column-wise).

In summary, the Leaf-Implicit model consists of the constraints (9)-(17) with
the objective of minimising K.

4 New Constraint Programming and Integer

Programming Approaches

The problem specification gives rise to a number of interesting models. Our
interest is to compare models in combination with solving techniques. Although
we try to model solver-independently, we need to get specific eventually, so we
target integer linear programming (IP) solvers on the one hand, and constraint
programming (CP) solvers (allowing arbitrary constraints) on the other.

We first discuss the most direct model that could be derived from the formu-
lation, as a CP model. Clearly this has a number of drawbacks, such as a great
deal of symmetry, so we go on to develop a compact model, useful for both IP
and CP, in which much of the symmetry is eliminated.

4.1 The Direct CP Model

The problem specification can almost directly be interpreted as a CP model. The
decision variables are the binary variables Xk,i,j and the positive integer variables
bk. Requirement (1) is a linear equality constraint. Requirement (2) corresponds
to the contiguity constraint studied in [12]. The critical point is that the number
of variables depends on K. Hence, as in the Leaf-Implicit model, we need to
make use of an upper bound K̄ on K and program the search to try increasing
values of K.

The great deal of symmetries permitted by the Direct model is a drawback.
We can add (17) to remove some of the symmetries, and indeed some CP systems
provide support for the combination of the constraints in (11) and (17), yielding
stronger constraint propagation, e.g. the ordered sum constraint of ECLiPSe

[16]. Still, as we have seen, many symmetries remain.
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4.2 The Counter Model

This novel model is based on counting the patterns according to their beam-on
times. We use non-negative integer variables Qb,i,j to represent the number of
patterns that have associated beam-on time b and expose the element (i, j). An
upper bound b̄ on the beam-on times is thus needed. It is easy to see that the
maximum intensity, i.e. the largest value in I, is such a bound. The link between
the Qb,i,j variables and the intensity matrix is

b̄
∑

b=1

bQb,i,j = Ii,j , for all i ∈ [1..m], j ∈ [1..n]. (18)

To derive a C1 decomposition of I from Q satisfying the above constraint,
we must take a C1 decomposition of Qb for each b. The C1 matrices in the
decompositions of Qb each have a multiplicity given by the number of times
they occur in the decomposition of Qb.

We claim that we can restrict our attention to decompositions of Qb in which
the multiplicities are all precisely 1. Imagine to the contrary a decomposition of I
into C1 matrices X1, . . . , XK with respective weights b1, . . . , bK such that Xi =
Xj for some i, j with 1 6 i < j 6 K. Then we can construct a smaller cardinality
solution, by replacing biXi + bjXj by a single C1 matrix Xi with weight bi + bj .
This results in a decomposition of I with strictly smaller cardinality. Hence in any
minimal cardinality decomposition of I there are no repeated C1 matrices. Hence
in any minimal cardinality decomposition of I all matrices in the decompositions
of Qb have unit multiplicity.

For example, consider the following decomposition of I = ( 2 4 3
3 4 2 ), which has

non-unit multiplicity in the decomposition of Q1:

1







X1
(

0 1 0
0 1 0

)

+

X2
(

0 1 0
0 1 0

)

+

X3
(

0 0 1
1 0 0

)







+ 2

X4
(

1 1 1
1 1 1

)

= 1

Q1
(

0 2 1
1 2 0

)

+ 2

Q2
(

1 1 1
1 1 1

)

.

Here X1 = X2, so we can replace these by a single matrix in the decomposition
with weight b1 + b2 = 2. The new decomposition and the resulting Qb matrices,
Q′

1 and Q′

2, are:

1

X1
(

0 0 1
1 0 0

)

+ 2







X2
(

1 1 1
1 1 1

)

+

X3
(

0 1 0
0 1 0

)







= 1

Q′

1
(

0 0 1
1 0 0

)

+ 2

Q′

2
(

1 2 1
1 2 1

)

.

From the above reasoning, we can assume that decompositions of Qb into
C1 matrices, each with unit weight, exist. So we have created a simpler form
of the original problem. Instead of looking for a weighted decomposition of I,
we seek an unweighted decomposition of each Qb. We introduce non-negative
integer variables Nb to represent the cardinality of the decomposition of Qb, for
each b ∈ [1..b̄]. As we have argued, we may assume Nb is also the sum of weights
for the minimum sum of weights decomposition of Qb.
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A convenient formula for the minimum sum of weights of a C1 decomposition
is given in [8, 3]. The idea is as follows. The decomposition of any general non-
negative integer row vector V with m elements into positive integer-weighted C1
matrices (row vectors) must satisfy the property that for all j ∈ [1..m], the sum
of weights applied to C1 matrices that expose element j but not j − 1 must be
exactly Vj − Vj−1 in the case that this is non-negative, and zero otherwise, i.e.
must be exactly inc(Vj−1, Vj), where we define V0 = 0. Each nonzero C1 matrix
in the decomposition must have a first element equal to one; i.e. there must be
some element j ∈ [1..n] with j − 1 not exposed. So the sum of weights applied
to nonzero C1 matrices in the decomposition must be

∑n

j=1
inc(Vj−1, Vj). This

observation extends to an m × n non-negative integer matrix G. It is straight-
forward to show that any decomposition of G into non-zero C1 matrices has a
sum of weights equal to the maximum over i ∈ [1..m] of

n
∑

j=1

inc(Gi,j−1, Gi,j) (?)

where we define Gi,0 = 0 for all i ∈ [1..m]. Indeed, this quantity minimises the
sum of weights over all decompositions of G into C1 matrices.

Thus, we can calculate Nb by finding the smallest Nb satisfying

Nb >

n
∑

j=1

inc(Qb,i,j−1, Qb,i,j), for all i ∈ [1..m], (19)

where we define Qb,i,0 = 0, for all b and i.
To summarise, the variables Nb represent the number of patterns that have

associated beam-on time of b, and the matrix Qb encodes the C1 matrices in the
decomposition of I that should be given weight b. In other words, the matrix Qb

should itself decompose into (a sum of) Nb C1 matrices, each of which appears in
the decomposition of I with weight b. Since we can restrict our attention to the
decompositions of Qb with unit multiplicities, the cardinality of the decomposi-
tion of Qb is precisely the sum of the multiplicities. Furthermore, since we seek
to minimise the cardinality of the solution, we can take Nb to be the minimum
sum of multiplicities over C1 decompositions of Qb, i.e. Nb can be related to Qb

via (19). The cardinality of a decomposition corresponding to N and Q is given
by

K =
b̄

∑

b=1

Nb, (20)

and for the total beam-on time we find

B∗ =

b̄
∑

b=1

bNb. (21)

The Counter model thus consists of the constraints (18)-(21) with the objective
of minimising K.
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The Counter Model with Integer Programming. To express the Counter
Model as an IP, the nonlinear constraint (19), involving max expressions, needs
to be linearised. We do this by replacing the inc expressions in (19), that is,
max(Qb,i,j − Qb,i,j−1, 0), by new variables Sb,i,j constrained by

Sb,i,j > Qb,i,j − Qb,i,j−1,

Sb,i,j > 0,
for all b ∈ [1..b̄], i ∈ [1..m], j ∈ [1 .. n + 1]. (22)

This transformation is correct since K and hence the (non-negative) Nb and
Sb,i,j are minimised.

The Counter Model with Constraint Programming. The Counter Model
is directly implementable in CP systems that provide linear arithmetic con-
straints and the max constraint. The constraints (19) will usually be decomposed
into linear inequalities over new variables representing the max expression. Our
implementation uses bounds(R)-consistency for all linear arithmetic, and de-
composes (19) as explained. An important part of a CP solution is the strategy
used to search for a solution, which we choose as follows:

minimise K by branch-and-bound search
for b := 1 to b̄

instantiate Nb by lower half first bisection
S := [1..n]
while S 6= ∅

choose the row i ∈ S with greatest row hardness
S := S − {i}
for j := 1 to m

for b := 1 to b̄
instantiate Qb,i,j by lower half first bisection

on failure break (return to the last choice on Nb)

After the Nb variables are fixed, rows are investigated in order of hardness.
The hardness of row i is defined as the value of the expression (?) with Gi,j = Ii,j .
It captures the minimal sum of weights required to build a solution to that row.

The search strategy uses a simple form of intelligent backtracking based on
the constraint graph. Qb,i,j and Qb′,i′,j′ where i 6= i′ do not appear directly in
any constraint together, and once the Nb are fixed the remaining constraints
are effectively partitioned into independent problems on i. Hence failure for any
row i indicates we must try a different solution to Nb.

While the ordering of the rows can make an order of magnitude improvement
in performance, the independent solving of the subproblems is vital for tackling
the larger problems.

5 Benchmarks

We tested several model/solver combinations on random intensity matrices. The
parameters were their dimension, ranging from 3× 3 to 10× 10, and their maxi-
mum value, ranging from 3 to 15. For each parameter combination we considered
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30 instances. We set a time limit of 30 minutes per instance. All benchmarks
were run on the same hardware, a PC with a 2.0 GHz Intel Pentium M Processor
and 2.0 GB RAM. The IP solver was CPlex version 9.13. As the CP platform we
used the prototype currently being developed on top of the Mercury system [5].

We compare the Unit Radiation model, the Leaf-Implicit model, the Counter
model, all with IP, and the Counter model with CP. A subset of the results are
shown in Table 1. We show the average CPU times (of all times including time
outs) and maximum CPU time in seconds, and in parentheses the number of
instances that timed out for a parameter combination. A ‘—’ represents that all
instances timed out, and a blank entry indicates we did not run any instances
since the approach was unable to effectively solve smaller instances.

Clearly the Unit Radiation model is bettered by the Leaf-Implicit model
which is again substantially bettered by the Counter model. The CP solution is
substantially better than the IP solution to the Counter model because of the
ability to decompose the problem into independent sub-problems after the Nb

are fixed.
We also experimented with some other models. The Unit Radiation and

Leaf-Implicit models without symmetry breaking performed significantly worse
than the models with symmetry breaking, as expected. The direct CP model
described in Section 4.1 worked for very small dimensions (4,5) but did not scale;
therefore, no benchmark results are reported. Finally, we experimented with a
CP/IP hybrid of the Counter model, where the linear relaxation of the IP model
is used as a propagator on the objective function and to check relaxed global
satisfiability inside the CP search (see e.g. [14]). While the hybrid decreased the
search space, and sometimes substantially so, the overhead of running the LP
solver meant the resulting times were many times the pure CP solving time.

6 Concluding Remarks

We have defined the Counter model for minimal cardinality decomposition of
integer matrices with the consecutive-ones property. The model significantly im-
proves upon earlier models for the same problem, in both an integer programming
and constraint programming formulation. Its critical feature is an indexing that
avoids introducing symmetries.

A drawback of the Counter model is that, as in the Unit Radiation model,
the number of variables depends on the maximum intensity. For the practically
interesting cases in cancer radiation therapy, this may not be an issue: in in-
stances available to us, the maximum intensity does not exceed 20. It would be
interesting to see if there are other problems where the approach of indexing on
number of patterns can lead to good models.

Finally, practical problem instances may have larger dimensions: current mul-
tileaf collimators allow up to 40 rows (although the outer ones may largely be
empty), making further efficiency improvements useful. For example, the Counter
model in a CP solver might benefit from a special constraint for (19) to avoid
decomposing it into parts, where propagation strength is lost.
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Unit Radiation Leaf-Implicit Counter/IP Counter/CP

CPU time (s) CPU time (s) CPU time (s) CPU time (s)
Max. val. avg. max. avg. max. avg. max. avg. max.

5 × 5

3 33.02 844.05 2.17 55.23 0.01 0.01 0.00 0.02
4 64.98 1479.85 2.32 47.45 0.01 0.05 0.01 0.02
5 120.41 (1) 1800 2.48 7.52 0.01 0.03 0.01 0.06
6 509.14 (7) 1800 78.76 180.01 0.02 0.05 0.04 0.07
7 609.33 (9) 1800 84.89 610.70 0.02 0.07 0.05 0.07
8 845.41 (11) 1800 639.67 (8) 1800 0.05 0.26 0.06 0.08
9 728.39 (9) 1800 614.61 (10) 1800 0.06 0.28 0.07 0.09

10 1183.06 (15) 1800 797.61 (13) 1800 0.08 0.39 0.07 0.09
11 1416.51 (21) 1800 712.34 (10) 1800 0.10 0.21 0.08 0.11
12 1369.00 (19) 1800 989.09 (16) 1800 0.22 1.84 0.08 0.11
13 1596.02 (21) 1800 1341.48 (22) 1800 0.28 1.73 0.09 0.16
14 — — — — 0.41 2.75 0.11 0.20
15 — — — — 0.54 1.52 0.12 0.25

8 × 8

3 1085.75 (17) 1800 731.85 (10) 1800 0.01 0.02 0.05 0.12
4 1484.24 (23) 1800 950.58 (11) 1800 0.03 0.05 0.06 0.06
5 1553.29 (23) 1800 1586.38 (22) 1800 0.06 0.09 0.06 0.08
6 — — 3.87 45.19 0.08 0.09
7 — — 0.51 3.96 0.09 0.11
8 — — 133.74 (1) 1800 0.12 0.19
9 — — 74.56 (1) 1800 0.15 0.24

10 — — 372.53 (5) 1800 0.26 0.55
11 — — 232.80 (2) 1800 0.39 2.07
12 — — 507.40 (8) 1800 0.73 5.28
13 — — 743.32 (11) 1800 0.87 2.14
14 — — — — 1.36 4.19
15 — — — — 2.45 6.37

10 × 10

3 0.02 0.04 0.07 0.12
4 0.05 0.25 0.06 0.08
5 0.17 1.64 0.07 0.09
6 1.69 15.16 0.09 0.14
7 108.95 (1) 1800 0.12 0.21
8 215.97 (3) 1800 0.20 0.39
9 807.67 (12) 1800 0.46 4.51

10 1120.93 (18) 1800 0.87 4.75
11 1068.42 (14) 1800 0.97 2.82
12 1447.72 (23) 1800 1.79 7.86
13 — — 6.84 46.89
14 — — 15.41 133.22
15 — — 21.17 118.51

Table 1. Benchmark results
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