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Abstract. String processing is ubiquitous across computer science, and
arguably more so in web programming. In order to reason about pro-
grams manipulating strings we need to solve constraints over strings. In
Constraint Programming, the only approaches we are aware for repre-
senting string variables—having bounded yet possibly unknown size—
degrade when the maximum possible string length becomes too large. In
this paper, we introduce a novel approach that decouples the size of the
string representation from its maximum length. The domain of a string
variable is dynamically represented by a simplified regular expression
that we called a dashed string, and the constraint solving relies on prop-
agation of information based on equations between dashed strings. We
implemented this approach in G-Strings, a new string solver—built on
top of Gecode solver—that already shows some promising results.

1 Introduction

Strings are fundamental datatypes in all the modern programming languages.
String analysis [10,23,25] is needed in several real-life applications such as test-
case generation [12], program analysis [8], model checking [17], web security [5],
and bioinformatics [4]. Reasoning over strings requires the processing of con-
straints such as (in-)equality, concatenation, length, and so on.

A natural candidate to tackle string constraints is the Constraint Program-
ming (CP) paradigm [19]. Unfortunately, practically no CP solver natively sup-
ports string constraints. To the best of our knowledge, the only exception is
Gecode+S [29, 31], an extension of Gecode solver [18]. Gecode+S relies
on Bounded-Length Sequence (BLS) string variables [31], implemented with dy-
namic lists of bitsets. Empirical results shows that Gecode+S is usually better
than dedicated string solvers such as Hampi [22], Kaluza [28], and Sushi [14].

TheMiniZinc [26] modelling language was recently extended to include string
variables and constraints [1]. A MiniZinc library for converting MiniZinc models
with strings into equivalent FlatZinc instances containing only integer variables
has also been provided. In this way every solver supporting FlatZinc can now
solve a MiniZinc model with strings, by converting each string of maximum
length n into an array of n integer variables. This allowed the comparison of
native string solvers like Gecode+S against state-of-the-art CP solvers using a
decomposition. Results indicate that native support for string variables usually
pays off, but not always, in which case the technology of the best solver varies.



Having bounded-length strings is reasonable (note that satisfiability with
unbounded-length strings is not decidable in general [16]) and enables finite-
domain variables. The crucial issue here is to decide a maximum length ` for
string variables. On the one hand, too small a value for ` may exclude solutions
for important classes of string applications, e.g., where a variable represents a
long XML string or part of a DNA string. On the other hand, too large a value
for ` can significantly worsen performance even for relatively simple problems.

A common drawback, shared by both the Gecode+S solver and the ap-
proaches statically mapping string variables to arrays of integer variables, is
that the solving process is coupled to the maximum string length `. Indeed, the
performance of these approaches degrade when ` becomes bigger and bigger even
for relatively simple problems.

In this paper we address this problem by proposing a novel approach to
string representation in CP solvers. The new representation is based on a re-
stricted class of regular expressions, which we refer to as dashed strings. Given
an alphabet Σ and a maximum string length `, a dashed string consists of an
ordered sequence Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k of 0 < k ≤ ` blocks, where Si ⊆ Σ and
0 ≤ li ≤ ui ≤ ` for i = 1, . . . , k, and Σki=1li ≤ `. Each block Sli,ui

i represents
the set of all the strings of Σ having length in [li, ui] and characters in Si. The
idea of dashed strings takes inspiration from the Bricks abstract domain of [10].
In that paper, however, each block refers to a set of strings of Σ∗ (while in our
representation refers to a set of characters of Σ) and some workarounds are used
in order to make the abstract domain a lattice.

We use dashed strings to model the domain of string variables. The propaga-
tors for string constraints rely on the notion of equation between dashed strings
in order to possibly narrow each string domain to a concrete string (i.e., to a
dashed string representing a single string of Σ∗). We also define a branching
strategy that aims to select the strings with minimal length that satisfy all the
constraints, using the lexicographic order for breaking ties.

Following the Gecode+S approach, we use Gecode [18] as a starting point
for implementing our solver. The resulting solver, that we called G-Strings,
already shows promising results. We compared its performance against: the
aforementioned Gecode+S; the state-of-the-art CP solvers Chuffed, Gecode,
iZplus; the SMT solver Z3str3 [34], a string theory plug-in built on top of
Z3 solver. Results indicate that, despite still being in a preliminary stage, G-
Strings often outperforms all such solvers. However, there are class of problems
where it has worse performance. This leaves room for future enhancements.

The original contributions of this paper are: (i) new abstractions and algo-
rithms for modelling and manipulating the domain of string variables; (ii) new
propagators and branchers for string constraint solving; (iii) the implementation
and the evaluation of a new string solver.

Paper Structure. Section 2 gives preliminary notions. Section 3 defines the
dashed strings and the algorithms we used in Section 4 for implementing string
variables and constraints. Section 5 provides an evaluation of our approach,
before we conclude in Section 6.



2 Preliminaries

Given a finite alphabet Σ = {a1, . . . , an}, a string x ∈ Σ∗ is a finite sequence
of |x| ≥ 0 characters of Σ, where |x| is the length of x. We omit the distinction
between characters and strings of unary length. The interval [a, b] will be denoted
also with {a..b}.

The concatenation of x, y ∈ Σ is denoted by x · y (or simply xy when not
ambiguous) while xn denotes the iterated concatenation of x for n times (where
x0 is the empty string ε). We generalise this definition to set of strings: given
X,Y ⊆ Σ, we denote with X · Y = {xy | x ∈ X, y ∈ Y } (or simply with XY )
their concatenation and with Xn the iterated concatenation of X for n times
(where X0 = {ε}).

In this work we focus on bounded-length strings: fixed a maximum length `,
we consider only strings in the universe S =

⋃`
i=0 Σi. Clearly S is not closed un-

der concatenation. We extend the canonical definition of Constraint Satisfaction
Problem (CSP) by including string variables and constraints. Formally, a CSP is
a triple 〈V,D, C〉 consisting of a set of variables V, each of which associated with
a domain D(x) ∈ D of values that x ∈ V could take, and a set of constraints C
defining all the feasible assignments of values to variables. The goal is to find a
solution, i.e., a variable assignment satisfying all the constraints of C.

In addition to “standard” integer variables and constraints, in this paper we
consider string variables x having domain D(x) ⊆ S, and string constraints over
string variables. We also consider constraints involving both string and integer
variables, e.g., the length constraint |x| = n or the power constraint xn = y
where x, y are string variables and n is an integer variable.

3 Dashed Strings

A dashed string is a restricted regular expression denoting a finite set of concrete
strings. The rationale behind this representation is to facilitate a compact and
dynamic representation of set of strings of unknown length, without statically
pre-allocating an arbitrarily large number of elements. Moreover, as we shall see
later, dashed strings enable us to deal with concatenation—arguably the most
common string operation—in a natural way.

Below we give the formal definition of dashed string, and then show how we
propagate information over equations between dashed strings. Before that, we
give an informal intuition of what a dashed string is. The name “dashed” comes
from a graphical interpretation of S = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k where we imagine a
block Sli,ui

i as a continuous segment of length li followed by a dashed segment
of length ui − li. The continuous segment indicates that exactly li characters
of Si must occur in each concrete string denoted by S; the dashed segment
indicates that k characters of Si, with 0 ≤ k ≤ ui − li, may occur. Consider
Fig. 1, illustrating dashed string S = {B,b}1,1{o}2,4{m}1,1{!}0,3. Each string
represented by S starts with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.



B, b o o o o m ! ! !

Fig. 1. Graphical representation of {B,b}1,1{o}2,4{m}1,1{!}0,3.

3.1 Definition

Let us fix the alphabet Σ, the maximum length `, and the universe S =
⋃n
i=0 Σ`.

A dashed string of length k is defined by a concatenation of 0 < k ≤ ` blocks
Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k , where Si ⊆ Σ and 0 ≤ li ≤ ui ≤ ` for i = 1, . . . , k, and
Σki=1li ≤ `. For block Sl1,u1

i , we call Si the base and (li, ui) the cardinality. S[i]
indicates the i-th block of dashed string S, and |S| the number of blocks (i.e.,
the length of S). DS denotes the set of all dashed strings. We do not distinguish
blocks from dashed strings of unary length.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the language denoted by block Sl,u.
In particular the null element ∅0,0 is such that γ(∅0,0) = {ε}. We extend γ to
dashed strings: γ(Sl1,u1

1 · · ·Slk,uk

k ) = (γ(Sl1,u1

1 ) · · · γ(Slk,uk

k ))∩S. A dashed string
S is known if |γ(S)| = 1, i.e., it represents a single string.

We say Sl,u is coverable by T l
′,u′ if some string in γ(Sl,u) is a prefix of a string

in γ(T l
′,u′) (formally, if l = 0 ∨ (l ≤ u′ ∧ S ∩ T 6= ∅)). S and T are incompatible

if neither S nor T is coverable by the other.
Given S, T ∈ DS we define the relation S v T ⇐⇒ γ(S) ⊆ γ(T ). Intuitively,

operator v models the relation “is more precise than” between dashed strings.
Unfortunately, although v is a partial order over DS, the structure (DS,v)

does not form in general a lattice. This means that it might not exist a greatest
lower bound (or a least upper bound) for two given dashed strings S, T ∈ DS.
Proposition 1 proves this statement. Unlike other frameworks (e.g., Abstract
Interpretation [11]), Constraint Programming does not require lattice structures
to preserve the soundness of constraint solving. However, as we shall see, care
must be taken in order to avoid leaks of feasible solutions or infinite propagations.

Proposition 1 The structure (DS,v) is not a lattice.

Proof. Let Σ = {a, b}, S = {a}1,1{b}1,1, and T = {b}1,1{a}1,1. We prove that
there is no least upper bound in (DS,v) for S and T , nor a greatest lower bound
for S′ = {a}0,1{b}1,1{a}0,1 and T ′ = {b}0,1{a}1,1{b}0,1.

We first observe that S′, T ′ and {a, b}2,2 are the minimal elements greater
than S, T according to v. However, they are incomparable with v since γ(S′) =
{b, ab, aba}, γ(T ′) = {a, ba, bab} and γ({a, b}2,2) = {aa, ab, ba, bb}. Thus, there
not exist a least upper bound for S, T . The greatest lower bound of S′, T ′ does
not exists because the maximal elements smaller than S′, T ′ are {a, b}1,1{a, b}0,2
and {a, b}0,2{a, b}1,1, which are incomparable according to v. ut

The γ function is not injective. For example, for S = {a}0,1{a}0,1 and
T = {a}0,2 we have γ(S) = γ(T ) = {ε, a, aa}. To remove redundant configu-
rations, and minimise the length of a dashed string, we introduce the notion of
normalisation. A dashed string S = Sl1,u1

1 · · ·Slk,uk

k is normalised if and only if:



(i) Si 6= Si+1, for i = 1, . . . , k − 1.
(ii) Si = ∅ ⇐⇒ li = ui = 0, for i = 1, . . . , k;
(iii) S = ∅0,0 ∨ Si 6= ∅, for i = 1, . . . , k;

Condition (i) says that each adjacent base has to be distinct, since blocks Sl,u and
Sl
′,u′ are equivalent to Sl+l

′,u+u′ . Condition (ii) avoid multiple configurations
for the null element ∅0,0. Condition (iii) forbids the redundant use of ∅0,0, being
in general γ(B · ∅0,0) = γ(∅0,0 ·B) = γ(B).

We omit the definition of the normalisation, that unsurprisingly has linear
cost O(|S|) for normalising a dashed string S. Note that if S, S′ ∈ DS are nor-
malised then S = S′ ⇐⇒ γ(S) = γ(S′).

Finally, we define the size ‖Sl,u‖ of a block Sl,u as:

‖Sl,u‖ =

u− l + 1 if |S| ≤ 1

|S|u+1 − |S|l

|S| − 1
otherwise.

and we generalise this definition to dashed strings, i.e., ‖S‖ = Πk
i=1‖S

li,ui

i ‖ for
each dashed string S = Sl1,u1

1 · · ·Slk,uk

k .
The size of a dashed string gives a measure of the number of concrete strings

it represents. Note that, while for a block Sl,u we have that ‖Sl,u‖ = |γ(Sl,u)|, for
a generic dashed string S ∈ DS we have that ‖S‖ ≥ |γ(S)| but not ‖S‖ = |γ(S)|.
For example, if S = {a}0,1{a, b}0,1, we have |γ(S)| = |{ε, a, b, aa, ab}| = 5 while
‖S‖ = ‖{a}0,1‖ · ‖{a, b}0,1‖ = 2 · 3 = 6.

3.2 Equating Dashed Strings

We use dashed strings as a domain abstraction for string variables. Following
the standard CP framework, each variable domain is iteratively narrowed until
it becomes a single value, that will be assigned to the variable, or it becomes
empty, meaning that the problem is unsatisfiable.

In this context, we have to iteratively “narrow” a dashed string S until it
becomes known or the unsatisfiability is detected. Things are tricky here since
(DS,v) does not form a lattice. Consider for example two string variables x and
y, having domain S′ and T ′ as in the proof of Proposition 1. There is not an
unique way to prune the domain of x and y when it comes to propagate the
equality constraint x = y, since there is no greatest lower bound for S′ and T ′.

Regardless of the choice of how pruning, a propagator for a string constraint
must be at least sound (it never prunes values that can appear in a solution)
and contracting (is only allowed to remove values).

The core algorithm that we adopted for string constraint propagation is based
on the equation of two dashed strings. Informally, equating two dashed strings
S and T means, firstly, to verify that there exists at least a concrete string
shared by both γ(S) and γ(T ) and, if so, to find a representation for S and
T that includes all the strings of γ(S) ∩ γ(T ) and removes the most values
not belonging to γ(S) ∩ γ(T ). More formally, this problem consists in finding,



Algorithm 1 Equate algorithm.
1: function Equate(S, T )
2: Input: Dashed strings S = Sa1,b1

1 · · ·San,bn
n and T = T c1,d1

1 · · ·T cm,dm
m .

3: Output: true if S and T are equatable; false otherwise.
4: Matches ← NoGoods ← ∅
5: Check(S, 1, Sa1,b1

1 , T, 1, T c1,d1
1 ,Matches,NoGoods)

6: if Matches = ∅ then
7: return false

8: SplitS ,SplitT ← Split(S, T,Matches)

9: S̃, T̃ ←Merge(SplitS, SplitT )
10: Update(S, T, S̃, T̃ )
11: return true

if feasible, two dashed strings S′ and T ′ such that: (i) S′ v S, T ′ v T ; (ii)
γ(S′) ∩ γ(T ′) = γ(S) ∩ γ(T ). We could add a third condition stating that there
not exist two dashed strings S′′, T ′′ such that S′′ @ S′ and T ′′ @ T . However,
this requirement makes the propagation too difficult.

We address this equation problem—that can be seen as a semantic unification
problem—with a multiphase strategy, where dashed strings S are T in input are
processed and possibly updated with two “refined” dashed strings S′ and T ′.
These phases, namely checking, splitting, merging, and updating, are explained
below. We use pseudo-code and we abstract as much as possible the technicalities,
referring to a running example rather than going into the implementation details.
The actual code we developed integrates and optimise these four stages that, for
the sake of readability, here we present simplified and separately.

The main algorithm is summarised in Algorithm 1. Taking as input two
dashed strings S = Sa1,b11 · · ·San,bnn and T = T c1,d11 · · ·T cm,dmm , that we assume
already normalised, Equate initialises variables Matches and NoGoods to the
empty set (we shall explain their meaning below) and then Check is called.

Checking Check (Algorithm 2) both tests if S and T are equatable, and
constructs a directed acyclic graph Matches encoding the set of solutions. Split
will then reconstruct Matches into dashed strings for S and T .

Check uses a top-down dynamic programming approach, recursively match-
ing suffixes of S and T . In any matching, the first block of either S or T must
finish first. If S, we compute what remains available of the T -block, and match
the tail of S with the remnant of T (similarly for T ) – this is done in lines 11–
18. Lines 2–10 cover early termination, where S or T reached the end or have
incompatible initial blocks. Fail saves failed computations in NoGoods before
returning false.

For a successful computation, the sequence of partial blocks consumed by
calls to Check encode possible solutions to S = T . Check builds a directed
acyclic graph representing the set of such sequences. Each sequence will be called
a match. For simplicity, we elide details of how Matches is maintained – essen-
tially, it amounts to recording the graph of successful Check calls.



Algorithm 2 Check algorithm.
1: function Check(S, i, Sli,ui

i , T, j, Tj
lj ,uj ,Matches,NoGoods)

2: if (i, li, ui, j, lj , uj) ∈ NoGoods then return false

3: if i = |S|+ 1 then . Reached end of S
4: if lj = cj+1 = · · · = cm = 0 then return NewMatch(Matches)
5: else return Fail(NoGoods, Si

li,ui , Tj
lj ,uj )

6: else if j = |T |+ 1 then . Reached end of T
7: if li = ai+1 = · · · = an = 0 then return NewMatch(Matches)
8: else return Fail(NoGoods, Si

li,ui , Tj
lj ,uj )

9: else if li > 0 ∧ lj > 0 ∧ Si ∩ Tj = ∅ then . Incompatible blocks
10: return Fail(NoGoods, Si

li,ui , Tj
lj ,uj )

11: if li = 0 ∨ (Si ∩ Tj 6= ∅ ∧ li ≤ uj) then . Si
li,ui coverable

12: RemT ← Si ∩ Tj 6= ∅ ? T
max(0,lj−ui),uj−li
j : T

lj ,uj

j

13: CheckS ← Check(S, i+ 1, S[i+ 1], T, j,RemT ,Matches,NoGoods)
14: else CheckS ← false

15: if lj = 0 ∨ (Si ∩ Tj 6= ∅ ∧ lj ≤ ui) then . Tj
lj ,uj coverable

16: RemS ← Si ∩ Tj 6= ∅ ? S
max(0,li−uj),ui−lj
i : Sli,ui

i

17: CheckT ← Check(S, i,RemS , T, j + 1, T [j + 1],Matches,NoGoods)
18: else CheckT ← false

19: if ¬(CheckS ∨ CheckT ) then
20: return Fail(NoGoods, Si

li,ui , Tj
lj ,uj )

21: return CheckS ∨ CheckT

Check defines a match-tree, i.e., a binary tree where: (i) each node is a pair
of blocks (the root is 〈Sl1,u1

1 , T l1,u1

1 〉); (ii) there is a branch from 〈Sli,ui

i , T
lj ,uj

j 〉

to left child 〈Sli+1,ui+1

i+1 , T
l′j ,u
′
j

j 〉 if Sli,ui

i is coverable by T lj ,uj

j and T
l′j ,u
′
j

j is the
corresponding remnant (the dual definition applies to the right child); (iii) a leaf
is either a success (a match is found) or a failure (due to incompatible blocks).

A match tree for S = {a..c}0,30{d}5,5{c..f}0,2 and T = {b..d}26,26{f}1,1 is
shown in Fig. 2 (ignoring for now dashed arrows). Failures are denoted with
×, while successes with ♦. A match identifies a path from root to ♦ repre-
sentable with the coordinates 〈i, j〉 of each node 〈Sli,ui

i , T
lj ,uj

j 〉. For each transi-
tion 〈i, j〉 → 〈i′, j′〉 the invariant (i′ = i∧ j′ = j+ 1)∨ (j′ = j ∧ i′ = i+ 1) holds.
We can thus see each transition as a move of length 1 in a n×m grid.

All the three matches of Fig. 2 are coloured in green. In particular the
(partial) match [〈1, 1〉, 〈2, 1〉, 〈2, 2〉, 〈3, 2〉] is truncated. This is because the pair
〈{c..f}0,23 , {f}1,12 〉 has already been examined before and thus there is no need to
rebuild the subtree again. Even if not explicitly detailed, our actual implementa-
tion defines a mechanism—similar to the recording of failures—that enables the
caching of already visited nodes, and hence to prune redundant computations.

From Fig. 2 we can see for example that the rightmost subtree rooted in
〈1, 1〉 always fails. This is because if the block {b..d}26,26 is entirely covered by
{a..c}0,30, then there is no other block in S that can cover {f}1,1.



{a..c}0,301 ; {b..d}26,261

{d}5,52 ; {b..d}0,261

{c..f}0,23 ; {b..d}0,211

∅0,04 ; {b..d}0,191

×

{c..f}0,23 ; {f}1,12

∅0,04 ; {f}0,12

♦

{c..f}0,13 ; ∅0,03

♦

{d}0,52 ; {f}1,12

{c..f}0,23 ; {f}1,12
×

{a..c}0,41 ; {f}1,12

{d}5,52 ; {f}1,12

×

×

{f}1,1

{c, d}0,1

{d}5,5

{b, c}20,21

{f}1,1

∅0,0

{d, d}5,5

{b, c}21,21

Fig. 2. Match tree for S = {a..c}0,30{d}5,5{c..f}0,2 and T = {b..d}26,26{f}1,1.

Lemma 1. The worst case complexity of Equate is O(nmmax(n,m)).

Proof. Each recursive call in Check(S, i, Sli,ui

i , T, j, Tj
lj ,uj ,Matches,NoGoods)

removes one block completely from S or from T so one between Sli,ui

i and Tj lj ,uj

is an original block and the other one is a remnant block. If it is a remnant block
it can only be changed max(n,m) times, since it runs out of blocks to cover.
Hence the total number of different calls is O(nmmax(n,m)). ut

Splitting Suppose Check returned true (otherwise Equate terminates). Thus
γ(S)∩γ(T ) 6= ∅. However, we would like to refine S and T in order to prune the
most values not belonging to γ(S)∩γ(T ). In this second phase we take advantage
of the matches collected in Matches for possibly splitting the blocks of S and T .
We aim to find (partial) maps σS : [1, |S|]→ DS such that σS(i) v S[i]. In this
way, by definition, σS(1) · · ·σS(n) v S (same applies for T ).

As mentioned, a match for S = Sa1,b11 · · ·San,bnn and T = T c1,d11 · · ·T cm,dmm

can be described by a path in the match tree. In particular, a sub-path of the
form [〈i, j〉, 〈i, j + 1〉, . . . , 〈i, j + k〉] enables us to split block Sli,ui

i of S into a
concatenation of k blocks (Si ∩ Tj)αk,βk(Si ∩ Tj+1)αk−1,βk−1 · · · (Si ∩ Tj+k)α1,β1

where cardinalities αh, βh are computed iteratively by a bottom-up approach
that we explain below.



Algorithm 3 Split algorithm.
1: function Split(S, T,Matches)
2: k ← 1; splitS ← splitT ← [ ]; Matches ′ ← Trim(Matches)
3: for Mk ∈ Matches ′ do
4: sli ← sui ← slj ← suj ← 0; splitkS ← splitkT ← { }; lasti ← −1
5: for 〈Sli,ui

i , T
lj ,uj

j 〉 ∈Mk do
6: R← Si ∩ Tj

7: if i = lasti then . direction ↖
8: l← max(li − suj , lj); u← min(ui − slj , uj)
9: if l > u then l← u← 0

10: splitkS [i]← Norm([Rl,u] + splitkS [i]); splitkT [j]← [Rl,u]
11: sli ← l; sui ← u; slj ← slj + l; suj ← suj + u
12: else . direction ↗
13: l← max(lj − sui, li); u← min(uj − sli, ui)
14: if l > u then l← u← 0

15: splitkT [j]← Norm([Rl,u] + splitkT [j]); splitkS [i]← [Rl,u]
16: slj ← l; suj ← u; sli ← sli + l; sui ← sui + u

17: lasti ← i

18: splitS ← splitS + [splitkS ]; splitT ← splitT + [splitkT ]; k ← k + 1

19: return splitS, splitT

Informally speaking, we “climb back up” the match-tree from the leaves to
the root. Each move from a child node to its father has a direction that can be
top-right (if it is a left child) or top-left (for a right child). If we “walk straight”
in the same direction, for each node of the path there is always one block B that
stays fixed, while the other blocks B′, B′′, B′′′, . . . vary along the way. So we
can split B into sub-blocks thanks to the information given by B′, B′′, B′′′, . . . ,
i.e., by all the blocks covered by B along the way. Care must be taken when
computing the cardinality of the sub-blocks: we have to consider the cumulative
cardinality of B′, B′′, B′′′, . . . and not only the block currently being examined.
When the direction changes, we “turn” in the new direction. This process is
repeated until the root is reached.

The Split algorithm listed in Algorithm 3 performs the backward propaga-
tion from the leaves to the root. We consider each match Mk ∈ Matches ′ where
Matches ′ = Trim(Matches) and the Trim function removes from Matches all
the pairs of the form 〈∅0,0, B〉 and 〈B, ∅0,0〉 (useless in this context). For each
Mk we have a map splitkS (resp., splitkT ) mapping each index i ∈ [1, n] to a
list of blocks splitkS [i] defining a splitting of S[i] (resp., mapping each index
j ∈ [1,m] to splitkT [j]). Split returns two lists splitS = [split1S , . . . , split

p
S ] and

splitT = [split1T , . . . , split
p
T ] where p = |Matches ′|.

Each matchMk is already in reversed order, i.e., from leaf to root, since each
match is registered following the stack of recursive calls to Check.

If we are going top-right (lines 7–11) then we are splitting on Si. We then
add at the head of the current split splitkS [i] the element Rl,u with R = Si ∩ Tj ,
l = max(li−suj , lj) and u = min(ui−slj , uj). We store in variable slj (resp., suj)



the cumulative sum of the lower bounds (resp., upper bounds) encountered when
walking in the same direction. The + operator is the concatenation between lists.

Note that splitting a block Sl,u into S′ = (S∩T1)l1,u1 . . . (S∩Tk)lk,uk always
refines the base S, since (S ∩ T1) ∪ · · · ∪ (S ∩ Tk) ⊆ S, but in general does
not ensure that S′ is normalised and, most important, that γ(S′) ⊆ γ(Sl,u).
Consider matching S = {a, b}2,3 with T = {a, c}0,2{b, c}0,2. After matching, we
would obtain a split S′ = {a}0,2{b}0,2 for S[1]. While S′ refines the base of S[1],
the loss of cardinality information introduces new (spurious) strings (e.g., the
string aaaa ∈ γ(S′) \ γ(S)). We must therefore consider the cardinality of the
original block when splitting. This is performed by a function Normthat, when
splitting Sl,u into S′ = (S ∩ T1)l1,u1 . . . (S ∩ T1)lk,uk , first checks if Σki=1li ≥ l
and Σki=1ui ≤ u. If so, it returns the normalisation of S′. Otherwise, it returns
the block ((S ∩ T1) ∪ · · · ∪ (S ∩ Tk))l,u.

The opposite direction (lines 12–16) is totally symmetric. To identify the
direction it is enough to check the value of lasti , which is updated at each loop
iteration at line 17. Line 18 updates the lists of the split for each new match;
these lists are then returned in line 19.

To better understand how Split works, consider again the match tree in
Fig. 2. After Check algorithm, we have Matches ′ = {M1,M2} where M1 and
M2 correspond to paths [〈3, 2〉, 〈3, 1〉, 〈2, 1〉, 〈1, 1〉] and [〈3, 2〉, 〈2, 2〉, 〈2, 1〉, 〈1, 1〉]
respectively. Let us consider M1 (see the red dashed arrows). Its first node
〈{c..f}0,2, {f}1,1〉 propagates upward the block ({c..f} ∩ {f})max(0,1),min(2,1) =
{f}1,1. Then we change direction. Node 〈{c..f}0,2, {b..d}0,21〉 propagates up-
ward ({c..f} ∩ {b..d})max(0−1,0),min(2−1,21) = {c, d}0,1. Node 〈{d}5,5, {b..d}0,26〉
propagates ({d}∩{b..d})max(5,0−0),min(5,26−1) = {d}5,5 and finally the root prop-
agates ({a..c}∩{b..d})max(0,26−5−1),min(30,26−5−0) = {b, c}20,21. The correspond-
ing splits are then split1S = {1 : {b, c}20,21, 2 : {d}5,5, 3 : {c, d}0,1{f}1,1} and
split1T = {1 : {b..d}26,26, 2 : {f}1,1}. We observe that split1T [1] = T [1] instead of
T ′ = {b, c}20,21{d}5,5{c, d}0,1 since, as explained above, T ′ 6v T [1] (in particular,
T ′ would compromise the soundness by allowing strings of length 25 and 27).

Similarly, we can construct split2S = {1 : {b, c}21,21, 2 : {d}5,5} and split2T =
{1 : {b, c}21,21{d}5,5, 2 : {f}1,1}. Note that in the actual implementation the
element {f}1,1 coloured in violet in Fig. 2 does not need to be recomputed by
Split because it is already cached.

Merging At this stage, we have two lists of splits splitS = [split1S , . . . , split
p
S ]

and splitT = [split1T , . . . , split
p
T ] that can be used to refine S and T respectively.

The question now is: how to actually refine each S[i] and T [j], having different
splitting splitkS [i] and splitkT [j] for k = 1, . . . , p? We have somehow to merge each
split split1S [i], . . . , splitpS [i] into a minimal dashed string S̃i that “contains” each
split, i.e., such that S̃i w split1S [i], . . . , splitpS [i] (analogously for each T̃j).

Unfortunately, we remark that (DS,v) is not a lattice so there might not
exist a least upper bound for split1S [i], . . . , splitpS [i] (see Proposition 1). Even
here we have thus to settle for a relaxed “join” operation t returning a dashed
string S̃i = split1S [i]t · · · t splitpS [i] that over-approximates each split and it is a



good compromise between precision and efficiency (same thing for T̃j). If some
splitkS [i] is not defined, we simply ignore it.

In the general case, given S = Sa1,b11 · · ·San,bnn and T = T c1,d11 · · ·T cm,dmm we
define S t T = Rl,u where R =

⋃n
i=1

⋃m
j=1(Si ∪ Tj), l = min(Σni=1ai,Σ

m
j=1cj),

and u = max(Σni=1bi,Σ
m
j=1dj). However, we also deal with particular cases to

improve the precision (e.g., when S = T ).
In the example of Fig. 2, having split1S = {1 : {b, c}20,21, 2 : {d}5,5, 3 :

{c, d}0,1{f}1,1} and split2S = {1 : {b, c}21,21, 2 : {d}5,5}, we get S̃1 = {b, c}20,21,
S̃2 = {d}5,5, and S̃3 = {c, d}0,1{f}1,1. For T instead we simply get T̃1 = T1 and
T̃2 = T2. Finally, we return S̃ = S̃1 . . . S̃n and T̃ = T̃1 . . . T̃m.

Updating In the last stage, we update the original dashed strings S and T
trying to refine their blocks thanks to the information given by S̃ and T̃ . To do
so, we use a simple block-wise approach that compares each Si with S̃i and, in
case ‖S̃i‖ < ‖Si‖, updates Si with S̃i. For avoiding overflows, instead of ‖S‖ we
consider its logarithm log ‖S‖ =

∑n
i=1 log ‖Sai,bii ‖. In particular, if x = |S| > 1,

we compute log ‖Sl,u‖ as log
xu+1 − xl

x− 1
= log

xl(xu−l+1 − 1)

x− 1
= log(xl(xu−l+1 −

1)) − log(x − 1) = l · log x + log(xu−l+1 − 1) − log(x − 1). In the same way we
possibly update each Tj with ‖T̃j‖.

Considering again the example in Fig. 2, from the original dashed strings S =
{a..c}0,30{d}5,5{c..f}0,2 we get S′ = {b, c}20,21{d}5,5{c, d}0,1, while T remains
unchanged. However, we observe that while ‖S‖ is in the order of 1015, the
size of S′ is 9437184. Note the size difference which results if we equate S′′ =
{a..c}0,30M{d}5M,5M{c..f}0,2M and T ′′ = {b..d}26M,26M{f}M,M , where M is an
arbitrarily big parameter. A nice property of Equate algorithm is that in this
case the complexity is totally independent from M : both Equate(S, T ) and
Equate(S′′, T ′′) are solved instantaneously.

Finally, note that we could run Equate on S and T with the blocks reversed
to determine different information. We do not consider this in our implementa-
tion since we will focus on extracting information about the earliest blocks which
will be the most helpful when aligned with the search we perform.

4 Constraint Solving

In this Section we give an overview of how we applied the notions introduced in
Section 3 in order to solve a CSP with string variables and constraints.

Given a CSP 〈V,D, C〉, the domain of each string variable x ∈ V is a dashed
string D(x) ∈ DS. Each constraint C ∈ C on string variables x1, . . . , xk has an
associated propagator that aims to remove the inconsistent values from domains
D(x1), . . . ,D(xk). Since propagation is incomplete, we have to define search
strategies that split the domain of strings to cause more propagation.



4.1 Constraints

The key property of dashed strings that makes them useful is that we can
concatenate dashed strings in a natural way: given S = Sa1,b11 · · ·San,bnn and
T = T c1,d11 · · ·T cm,dmm we get S·T = Sa1,b11 · · ·San,bnn T c1,d11 · · ·T cm,dmm without any
effort. Analogously, we can easily define the iterated concatenation Sk = S ·Sk−1,
where S0 = ∅0,0, and the reverse S−1 = San,bnn · · ·S1,1. Hence we can define
many propagators by simply relying on the dashed string concatenation and the
Equate algorithm described in Section 3. To lighten the load of propagation,
we defined CheckEquate, a simplified version of Equate(S, T ) that returns
true if S and T have a match (and immediately returns), and false otherwise.
CheckEquate neither stores nor computes the matches.

We consider the following constraints, and the corresponding propagators:1

– equality x = y. Implemented by Equate(D(x),D(y));
– disequality x 6= y. If CheckEquate(D(x),D(y)) = false the constraint is

subsumed; otherwise we wait until both D(x) and D(y) are known;
– half-reified [13] equality b ⇒ (x = y). If b = true, the constraint is rewrit-

ten into x = y. If b = false, the constraint is subsumed. Otherwise, if
CheckEquate(D(x),D(y)) = false then b is set to false. We treat b ⇒
(x 6= y) similarly. Full reification b⇔ (x = y) is encoded as the conjunction
(b⇒ x = y) ∧ (¬b⇒ x 6= y).

– length |x| = n. If D(x) = Sl1,u1

1 · · ·Slk,uk

k , it is implemented analogously to
x1 + · · ·+ xk = n where xi is an integer variable with domain [li, ui].

– domain x :: S, where S ∈ DS. Implemented by a version of Equate(D(x), S)
that only updates D(x).

– concatenation z = x · y. Implemented by Equate(D(z),D(x) · D(y)), taking
care of properly projecting the narrowing of D(x) · D(y) on D(x) and D(y).

– iterated concatenation y = xn. If D(x) = Sl1,u1

1 · · ·Slk,uk

k , it is propagated
by Equate(D(y),D(x)n · (

⋃k
i=1 Si)

0,n−n).
– reverse y = x−1. Implemented by Equate(D(y),D(x)−1).
– sub-string y = x[i..j]. Rewritten in l = |x| ∧ n = max(1, i) ∧m = min(l, j) ∧
|y| = max(0,m−n+1)∧x = y′ ·y ·y′′∧y′ :: Σn−1,n−1∧y′′ :: Σmax(0,l−m),l−m.

This set of constraints is not fully exhaustive. In particular, the lack of regular
constraint limits its expressiveness since we can not fully encode the Kleene star
S∗ when S is a set of strings with length greater than one. However, thanks to
reification and (iterated) concatenation we can often compensate this lack (and
also define constraints that are not expressible with regular, i.e., see the SQL
Injection problem firstly introduced in [1] and evaluated in Section 5).

Each propagator is scheduled by propagator events that occur if and when
the domain of a variable in the constraint changes. We consider the following
events: fail (a domain became empty), none (domains unchanged), value (a do-
main became a singleton), cardinality (the cardinality of some blocks changed),

1 For conciseness, for integer variable x, we define x = min(D(x)) and x = max(D(x)).



{0}2,2{a, b, c}0,1{1}1,1

001 {0}2,2{a, b, c}1,1{1}1,1

00a1 {0}2,2{b, c}1,1{1}1,1

00b1 00c1

Fig. 3. Example of search tree.

character (the characters of some bases changed), domain (cardinality or char-
acters changed). For example, the propagator for |x| = n can only narrow the
length of D(x) and not its characters, hence it does not need to wake on character
changes.

4.2 Search

Searching in string problems is very important since there are typically a very
large number of solutions for each string variable x. The search strategy we
implemented first chooses the string variable x with smallest domain (minimizing
log ‖D(x)‖).

If the length of x is unknown it branches on the first unknown length block
Sli,ui

i being equal to its minimal length or not (i.e., Sli,lii or Sli+1,ui

i ). This
branching wakes up propagators dependent on the length of x.

Otherwise if the first non-zero length block Sli,lii is of length li > 1 it splits
it into two fixed length blocks S1,1

i Sli−1,li−1i (note this is not a branch point).
If the first non-zero length block Sli,lii is of length 1 it branches on setting the
block to its least value a = min(Si) or not (i.e., {a} or Si−{a}). This branching
wakes up propagators dependent of the contents of x.

Overall this search has the effect of enumerating the solutions of x in lex-
icographic order, as shown in Figure 3 where we show the search tree when
D(x) = {0}2,2{a, b, c}0,1{1}1,1. However, the branching can be generalised by
defining proper heuristic to choose how to split an unknown-length block, and
how to pick a value from the base of a known-length block.

5 Evaluation

We implemented our approach as an extension of Gecode [18], a mature CP
solver written in C++. The resulting solver, that we called G-Strings, is pub-
licly available at https://bitbucket.org/robama/g-strings.

G-Strings is a copying solver, i.e., during the search the domains are copied
(and possibly restored) before a choice is committed. In this context the memory

https://bitbucket.org/robama/g-strings


Table 1. Results in seconds. ’n/a’ indicates an abnormal termination while ’t/o’ means
timeout. Unsatisfiable problems are marked with *, best performance are in bold font.

Chuffed Gecode iZplus Z3str3 Gecode+S G-Strings
` 250 1000 10000 250 1000 10000 250 1000 10000 250 1000 10000 250 1000 10000 250 1000 10000

anbn * 0.1 1.3 483.83 1.81 129.32 t/o 0.74 16.45 t/o t/o t/o t/o 0.31 29.46 t/o 0.0 0.0 0.0
ChunkSplit 1.62 t/o 26.33 0.39 12.93 61.91 1.81 11.56 116.61 0.6 0.6 0.6 1.28 182.24 t/o 0.0 0.0 0.0
Hamming * 0.32 1.69 61.27 0.16 0.77 19.58 0.24 1.89 49.95 1.22 1.2 1.2 0.0 0.12 129.8 0.0 0.0 0.0
Levenshtein 0.18 0.89 63.67 0.08 0.36 18.05 2.32 2.64 306.39 0.01 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0
StringRep. 1.46 43.75 n/a 0.56 19.28 n/a 0.7 8.54 673.18 2.58 2.59 2.62 0.06 2.25 t/o 0.0 0.0 0.0
SQLInj. 10.78 t/o n/a 0.81 375.17 t/o 130.68 613.16 n/a t/o t/o t/o 0.01 0.2 299.99 0.09 72.58 t/o

management becomes critical. We underline that G-Strings is still a prototype,
and mainly relies on the Gecode built-in data structures. In a nutshell, a dashed
string is currently implemented as a DynamicArray of blocks, where the base of
each block is encoded by a BndSet, which represents finite set of integers as
unions of disjoint ranges (see [18] for more details about this data structures).
As a future work we plan to improve this implementation.

We compared G-Strings against the string CP solver Gecode+S [29, 31],
the string SMT solver Z3str3 [34]2 and three state-of-the-art constraint solvers,
namely: the aforementioned Gecode [18]; Chuffed [9], a CP solver with lazy
clause generation [27]; and iZplus [15], a CP solver that also exploits local
search. For these three solvers we used the MiniZinc translation to integers [1]
that statically maps string variables into arrays of integer variables. We did
not compare against automata-based approaches like [21, 24, 32, 33] since their
limited effectiveness in our context (as an example, every single block Sl,u has
to be encoded by an automaton of exactly u+ 1 states).

As already noted in [1,20,29–31] there is unfortunately a lack of standardised
and challenging string benchmarks. We decided to use the same string problems
used in the evaluation of [1], namely: anbn, ChunkSplit, HammingDistance, Lev-
enshtein, StringReplace, SQLInjection. The only differences are: (i) the “Ham-
mingDistance” problem has been simplified since G-Strings does not yet sup-
port the regular constraint (for the other problems we have overcome this lack
with (iterated) concatenation and reified equality); (ii) the “Palindrome” prob-
lem is omitted since neither G-Strings nor Gecode+S supports the new global
cardinality constraint introduced in [1].

All these problems have no parameters, except for the maximum string length
` that we varied in {250, 1000, 10000}. We ran the experiments on Ubuntu 15.10
machines with 16 GB of RAM and 2.60 GHz Intel® i7 CPU by setting a solving
timeout of T = 1200 seconds.

Comparative solving times are shown in Table 1. We ignore model construc-
tion time, which for the first three solvers using MiniZinc can be quite expensive
(for SQL and ` = 10000 this is almost 20 minutes). The results show that the
G-Strings solver is (almost) independent of the maximum string length, and
in particular it provides an instantaneous answer in all the Norn benchmarks.

2 We used the last stable release: https://sites.google.com/site/z3strsolver/.

https://sites.google.com/site/z3strsolver/


The performance of Gecode+S and the other CP solvers clearly degrade when
increasing `. Although being independent from `, also Z3str3 performs worse
than G-Strings.

Conversely, the SQL benchmark illustrates a weakness of the current imple-
mentation. This problem involves a long fixed string of length `, and our solver
has worse performance than Gecode+S. In particular, G-Strings runs out of
time when ` = 10000. This points out that we need to specialise the Equate
algorithm for parts of strings representable as fixed strings, and also switch to
asymptotically faster propagation algorithms when the number of blocks be-
comes large.

6 Conclusions

In this work we introduced the dashed string representation to enable possibly
very long strings to be represented succinctly, trying to decouple the complexity
of constraint solving from the maximum length a stringmay have. Propagation of
dashed strings is very efficient when the number of its blocks is small. Moreover,
while dealing with large alphabets might be a problem for some approaches [31],
this representation is weakly coupled to the size of the alphabet we are using.

Clearly dashed strings are not a universal panacea, since equating long dashed
string representations can be too expensive. In other terms, this approach might
fail when a string must be very long. Hence we need to develop weaker propa-
gation algorithms to gracefully handle this case.

Using multiple representations for a string variable may be highly advanta-
geous, where we choose the propagator for each string constraint which is most
efficient to propagate. String abstract domains often combine different represen-
tations in this way (see, e.g., [3,10]). Although this may clearly reduce the prop-
agation of information, it can avoid worst case behaviour. This hybrid approach
can be implemented “internally”, i.e., by building a channeling propagator be-
tween the representations, or “externally” via a portfolio approach [2] combining
different solving strategies.

The introduction of dashed strings immediately opens several research branch-
es. One of these concerns the definition of new propagators. We have already de-
vised algorithms for propagating lexicographic comparisons, global cardinality,
and regular constraints, although they are not implemented yet in G-Strings.
Furthermore, the potentially huge search space suggests the exploration of dif-
ferent search approaches such as, e.g., Local Search [6, 7]. Another interesting
directions concerns the definition of trailing string solvers, i.e., solvers that store
the domain changes in a stack instead of copying the entire domain during the
search.
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