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Abstract. Path finding is an ubiquitous problem in optimization and
graphs in general, for which fast algorithms exist. Yet, in many cases side
constraints make these well known algorithms inapplicable. In this paper
we study constraints to find shortest paths on a weighted directed graph
with arbitrary side constraints. We use the conjunction of two directed
tree constraints to model the path, and a bounded path propagator to
take into account the weights of the arcs. We show how to implement
these constraints with explanations so that we can make use of powerful
constraint programming solving techniques using learning. We give ex-
periments to show how the resulting propagators substantially accelerate
the solving of complex path problems on directed graphs.

1 Introduction

Path-finding is an important task in (directed) networks. It arises in tasks such as
graph layout [7], metabolic networks [25] or collaborative path-finding in video-
games [22] among other examples. In many cases, though, side constraints make
these problems highly combinatorial and no efficient algorithms exist.

In this paper, we focus on path-finding with distances. In order to do so, we
go through preliminary steps to build two propagators from which we build a
path propagator that works on the topology of the graph. Then, on top of that,
we construct a propagator that takes into account the weights of the arcs to
propagate distances.

Given a fixed directed graph G = (V, E), we enforce properties of a graph
variable G = (V,E) subgraph of G using the following constraints:

– dreachability(G, r,G) requires all nodes in G are reachable from root r;
– dtree(G, r,G) requires that G forms a tree rooted at r;
– path(G, s, d,G) ensures that G is a simple path from s to d;
– bounded path(G, s, d,G, w,K) ensures that G is a simple path from s to d of

length no more than K given the weight function w over the arcs of G;

The focus of the present paper is the bounded path propagator. We present
two novel explanations for already existing propagation rules. Furthermore, we
introduce a new stronger propagation technique with explanations as well. The
explanations for this propagator and its new version are the main contributions
of this paper.



Section 2 describes previous work as well as use cases for these propagators.
Section 3 gives the necessary technical background to the reader as well as all
the graph propagators for unweighted graphs. Section 4 describes bounded path.
Section 5 shows an extensive series of experiments justifying the use of these
propagators and their explanations.

2 Related work

The three first constraints announced in the introduction were first introduced
as part of CP(Graph) [6] in 2005, using a decomposition approach.

Later, Quesada et al [17] implemented the first reachability propagator and
used it as a path constraint in their paper. They make use of simple propagation
rules based on depth-first traversals of the graph and on the use of dominator
nodes (i.e. nodes that appear in all paths). Nonetheless the asymptotic com-
plexity of their algorithms is substantially greater than ours or those of Fages et
al. [9] since they use a brute-force algorithm to compute dominator nodes.

Constraints for trees and forests were introduced in [1, 2, 9]. Although focused
on forests, their work used better algorithms improving the work of Quesada et
al. in [17] to make each individual tree connected. For explanations on the dtree
constraint, we use the same algorithm as we previously introduced in [5] for
undirected graphs.

In order to be self-contained, we describe dreachability and dtree in the pre-
liminaries section. The propagations are based on previous work presented in
[1, 9, 17]. The explanations are novel although the algorithms are similar to the
undirected version which we already introduced [5].

Finding a simple path (no node repetitions) is a classic graph problem with
wide applicability. The usefulness of the constraint arises when there are inter-
esting side constraints. Our path propagator is based on the Ph.D. thesis by
J.-G. Fages [8], which showed how to model the path constraint as a conjunction
of dtree constraints:

path(G, s, d,G)⇔ dtree(G, s,G) ∧ dtree(G, d,G−1) (1)

This states that a path from s to d is the intersection of a subtree of G rooted
at s and a tree in G−1 (the graph G with arcs reversed) rooted at d.

There exist other approaches to finding paths by using circuit style propa-
gators [10]. We compare for the first time the tree-based and the circuit-based
approaches where both use explanations.

Path finding with distances is one of the most well-studied graph problems,
for which very well known fast algorithms exist. Many specific algorithms that
handle some form of side constraint are also known. For instance, paths with
resource constraints have been very well studied for electrical cars [23] and for
bike routes [24]. Another application is the Generalized Shortest Path queries [18,
19] where a person needs to do a series of tasks during their journey and choose
among different places to do them. The bounded path constraint allows us to
specify shorter path problems with arbitrary side constraints. It was introduced
by Sellman [20, 21] with some propagation rules. Our work improves on this.



3 Preliminaries

3.1 Directed Graphs

A directed graph G = (V, E) consists of a set of nodes V and arcs E ⊆ V × V,
where e = (u, v) is an arc from u = tail(e) to v = head(e) (drawn ‘u v’, from
tail to head). Given arc e = (u, v) its reverse arc is e−1 = (v, u). The inverse G−1
of a directed graph G = (V, E) is (V, {e−1 | e ∈ E}). A weighted directed graph
is a graph G with a weight function w : E → N0 mapping arcs to non-negative
weights.

3.2 Lazy Clause Generation

Briefly, Lazy Clause Generation (LCG, [16]) is a technique by which CP solvers
can learn from their mistakes. Propagators are extended to explain their propa-
gations, and the failures they detect. These explanations are captured in clauses.
When failure is detected, explanations are used to generate concise no-goods that
explain why the failure occurred, and these are stored in the solver, preventing
the same failure from occurring again. Using SAT technology to access and pro-
cess explanations and no-goods allows very efficient handling of no-goods, and
the reduction in search space for using explanation is usually substantial.

A critical consideration when constructing propagators for an LCG solver are
the algorithms to generate concise and precise explanations of the propagation.
Naive explanations may end up creating no-goods that are not reusable, while
highly complex minimal explanations may require much more computation effort
than propagation, and end up slowing down the solver.

3.3 Graph propagators with explanations

In order to model a graph variable G = (V,E) subgraph of G = (V, E) in an LCG
solver, we use Boolean variables cn representing whether node n ∈ V is chosen to
be in V and similarly Boolean variables ce for each e ∈ E representing whether
e ∈ E. Eventually the solution is the subgraph G = ({n|n ∈ V ∧ cn}, {e|e ∈
E ∧ ce}).

As we are searching for G, the variables cn and ce will become fixed by search
or propagation. The propagators we describe here must infer new information
as a consequence of the constraint they implement, hence reducing the future
search. We say that an arc e is mandatory if at the current stage of the search
ce is true (and we draw it as ‘ ’ in the following figures), forbidden (‘ ’) if
ce is false and unknown (‘ ’) for an unassigned arc. Similarly, we use the same
terms for nodes: mandatory (‘ ’), forbidden (‘ ’) and unknown (‘ ’). Nodes or
arcs that are mandatory or unknown are called available.

Basic graph propagation We assume that the graph variable G propagates
basic graph properties: the endnodes of an arc in the graph are also in the graph.
Explanations for this are given in previous work by the authors [5].



Reachability propagation The dreachability constraint guarantees that all
nodes in the subgraph G are reachable from a given node r. Quesada et al. [17]
first proposed this propagator, although our algorithm is substantially improved
by making use of the Lengauer-Tarjan algorithm to find dominators in a digraph
[13]. Fages et al. [9] already used this algorithm.

Detecting and explaining failure: In order to detect that the current assignment
of arcs and nodes in G is invalid, we need to check if all the nodes in G (i.e.
mandatory) are reachable from the given node r. We first perform a depth-first
search (DFS) in ({n | cn 6= false}, {e | ce 6= false}) starting at r, saving all the
nodes visited in a set R. If some mandatory node f is not in R, we need to fail.

To explain why the mandatory node f is not reachable, we need to find
forbidden arcs that would have let it be in R if they were not forbidden, similarly
to the work in [5] for undirected graphs.

To find these arcs, we perform a DFS in G−1 starting at f , this time following
all (reversed) arcs, regardless of their current state. Whenever the head of a
forbidden reversed arc e−1 = (t, h) is in R, e could have been used to extend
the reachable area further and eventually reach f . Therefore, e must be in the
explanation (we do not cross e−1 in this DFS). We add such arcs to a set Ff .
Then an explanation for failure is: cr ∧ cf ∧

∧
e∈Ff

¬ce ⇒ false. This exact same
rule can be applied for propagation to eliminate unreachable nodes.

Finding dominators: During the search, we also make inferences that will ac-
celerate the search. We say that a node t is dominated by a node d from r if
all paths from r to t go through d. The immediate dominator of a node is the
dominator that is its closest ancestor. For reachability, immediate dominators
of mandatory nodes must be mandatory, otherwise some node (namely t) would
not be reachable from r.

Finding immediate dominators in a graph can be done using the Lengauer-
Tarjan algorithm [13] in O(|E|α(|E|, |N |)) where α is the inverse Ackerman func-
tion. Their algorithm builds an array representation of a so-called dominator tree
where the parent of a node is its immediate dominator. For our purposes, we
apply the algorithm to ({n | cn 6= false}, {e | ce 6= false}).

We assume that the reachability has been ensured and thus all mandatory
nodes are reachable from r. To enforce dominators to be in G, we build a queue
containing all the mandatory nodes and iterate through the queue until it is
empty while making their immediate dominators mandatory (if they are not
already) and enqueueing them. This way, all the nodes in the path between r
and some mandatory node t in the dominator tree become mandatory.

Now, we need to explain why each dominator that we fix is mandatory.
Explaining this inference comes down to explaining the failure that would happen
if the dominator d of t was forbidden. We compute a partition of nodes P from
which t can be visited without going through the dominator by performing a
DFS starting at t in ({V\{d}, {e−1 | ce 6= false}). Now we find alternative ways
to get to any mandatory node beyond the dominator (that is, not in P ) without
using d. For that, we perform another DFS in ({V\{d}, {e−1 | e ∈ E}) starting



in t, this time allowing the use of forbidden arcs. Whenever a forbidden reversed
arc e−1 = (t, h) has its tail on the set P but its head is a node outside of P we
know that e would have allowed us to short-circuit d if it was not forbidden. Let
Ft be the set of such arcs. The explanation for making a dominator mandatory
is: cr ∧ ct ∧

∧
e∈Ft
¬ce ⇒ cd.

Finding bridges: Additionally, if any mandatory node n (other than r) has
only one incoming arc that is not forbidden, that arc can be set as mandatory
(if it is not already). This is because lacking that arc would make that node
unreachable. That arc is called a bridge. The explanation for including this arc e
in G is trivial: cn∧

∧
ei∈to(n)\{e} ¬cei ⇒ ce, where to(n) is the set of arcs incident

to n. Similarly, if n no longer has any incident arcs available, we have to set it
to false, or fail if it is mandatory, explained by

∧
ei∈to(n) ¬cei ⇒ ¬cn.

Directed Tree propagator Trees are connected graphs, therefore dtree inherits
from dreachability. Additionally, trees cannot contain any cycle (whether it is
directed or not). Maintaining this condition is the task of dtree.

For this propagator, the algorithm is trivial. The use of the adequate data
structure to detect cycles is what makes the whole propagator. We use the Re-
rooted Union-Find (RUF) data structure [5] to detect cycles and retrieve expla-
nations. This yields a propagator identical to the one for undirected graphs [5]
since cycle detection in undirected and directed graphs is equivalent as far as
trees are concerned.

4 Bounded Path propagator

As we will see in the experiments, the decomposition of the path constraint as
two trees (eq. 1) is not competitive for solving shortest path problems when
compared to the alternative circuit formulation by Francis et al. [10]. For this
reason, we needed a bounded path propagator to enhance optimality proving.

In this section we present a bounded path(P, s, d,G, w,K) propagator that
ensures that the weight of the simple path P from s to d in G is no more
than K. The weights of the arcs are given by the function w : E 7→ N0. The
propagations in section 4.1 and 4.2 were already introduced by Sellman [20, 21],
without explanation. As we will see in the experimental section, the explanations
greatly improve these propagations.

4.1 Propagating simple distances

This constraint fails when there is no path from s to d of cost no more than K.
This property naturally extends to all nodes in the path: the distance from s to
any node n in P must be no more than K. The best correct lower bound for
this is obviously the shortest path from s to n ∈ P : if the shortest path is longer
than K, then no solution of cost less than or equal to K exists.



We compute the shortest path from s to every node in (V, {e | ce 6= false})
(i.e. avoiding forbidden arcs) using Dijsktra’s algorithm. This yields the shortest
available path from s to all nodes. If the cost of the path to a node n is greater
than K, we can forbid n. This reasoning can be applied in both directions: d
cannot be further than K from any node n in the path. For this reason, we also
apply this rule starting Dijkstra’s algorithm at d on the reversed graph.

To explain this inference we need to find (at least a superset of) the arcs that
made the path to n too expensive. Let Fn be that set of arcs (initially empty).
Let δx be the shortest available path from s to some node x, and δ−1x the shortest
available path from x to d. Any arc e = (u, v) such that δu +w[e]+ δ−1v ≤ K can
be used to connect s to d in no more than K (we say e is in a short-enough path).
We can easily keep track of those arcs since both runs of Dijkstra’s algorithm
yield δu and δ−1v . When such an arc is forbidden, a feasible path is removed from
the graph. We then add e to Fn. Eventually, Fn contains all the arcs causing n
to be too far from either s or d. We have the following Theorem:

Theorem 1. Let Jδd ≤ KK be the literal stating that δd (i.e. the length of P )
should be less than or equal to K (K is typically a variable). Then, Jδd ≤ KK ∧∧

ef∈Fn
¬cef ⇒ ¬cn is a valid explanation for why n cannot be in G.

Note the explanation set Fn is the same for any node n further than K from the
source, its not specific to a particular n. We will address this flaw and give an
example in Fig. 2 later on. The explanations can be used to explain failure too.

These explanations can be computed very efficiently by storing a function
giving constant time access to whether an arc has been in a short-enough path.
Upon removal of an arc e, we add it to Fn if e has been in a short-enough path.

4.2 Propagating combined distances

The previous rule removes any node that is too far from the source or too far
from the destination to be in the path P , or detects failure. In addition, we can
consider nodes through which a path from s to d would be longer than K and
filter them. Similarly we can filter arcs.

Proposition 1. Let δu be the cost of the shortest path from s to u, and let δ−1u

be the cost of the shortest path from u to d. If δu + δ−1u > K, then u cannot be
in the path from s to d of cost less than or equal to K.

Proposition 2. Let e = (u, v) be an arc of cost w[e]. Let δu and δ−1v be the cost
of the shortest paths from s to u and v to d respectively. If δu +w[e] + δ−1v > K,
then e cannot be in a path from s to d of cost less than or equal to K.

We use these observations to filter out nodes and arcs that cannot participate
in the path from s to d.

To explain these propagations, we note that if the filtered element (either
node or arc) was mandatory, we would have to fail. Thus the explanations are the
same as given in Theorem 1 (applied to the node or the arc we are propagating
here). These explanations can be used for failure if either u or e is mandatory.



Algorithm 1 Shortest path from s to d containing all mandatory nodes M .

1: procedure DPBound(G, s, d, ns = {cn|n ∈ V}, es = {ce|e ∈ E}, w,M)
2: Q← newPriorityQueue();Q .push((s, {s}, 0 ));
3: tables[s][{s}]← 0 . One table per node
4: while ¬Q .empty() do
5: (u,mp , γ)← Q .top();Q .pop()
6: if tables[u].contains(mp) ∧ tables[u][mp ] < γ then continue;

7: for all e = (u, v) ∈ {e|e ∈ E} do
8: if ce = false then continue;

9: if ¬tables[v ].contains(mp) ∨ (tables[v][mp] > γ + w[e]) then
10: tables[v ][mp ]← (p, γ + w [e])
11: Q .push(v ,mp ⊕ v , γ + w [e]) . S ⊕ v adds v to set S iff v ∈M
12: return tables[d][M ]

4.3 Stronger bounding using Dynamic Programming

Although the implementation of bounded path explained above proves to be use-
ful, the bound is too weak if there are many intermediate nodes. For this reason,
we developed a dynamic programming (DP) lower bound. If the previous one
does not prune, we run a more expensive DP algorithm to find the shortest path
from s to d containing all the mandatory nodes.

The algorithm is similar to Dijkstra’s, but our priority queue stores more
information. Each entry is a tuple (u,mp, γ): a node u, the set of mandatory
nodes mp visited in some path p leading to u and the cost of p. As usual, the
priority is on the cost.

We associate a hash-table to each node n that maps sets of mandatory nodes
(encoded as bit-sets in our implementation) to the cost of visiting those nodes
before reaching n. Formally the tables are functions tables[n] : (M ′ ⊆M) 7→ N.

Then, when a tuple (u,mp, γ) is retrieved from the queue, the algorithm
considers each available arc (u, v). For each neighbor node v, we first check if
there is a set m′p in its table such that m′p = mp. If m′p exists and its associated
cost is greater than γ+w[(u, v)], we update the entry on v’s table, and enqueue
(v,mp ⊕ v, γ +w[(u, v)]) (where ⊕ adds v to mp iff v is mandatory, and returns
mp otherwise). If such m′p does not exist, we add that same entry to v’s table
and enqueue it. We do not need to enqueue or update any table if m′p exists and
its associated cost is less than γ + w[(u, v)]. The cost of the shortest path to d
containing all the nodes will be found in d’s table. If such path does not exist,
we simply return an error code and fail with the naive explanation (all the fixed
arcs and nodes). In practice, this rarely happens.

Notice that this algorithm does not give simple paths, and therefore it does
not give an exact lower bound. Indeed, if we did, we would need to keep track
of all the states in the path, making the state space grow too quickly. Instead
we only keep track of the mandatory nodes visited.

The explanation for pruning is the same as in Theorem 1, but we need to
add the conjunction of cn for all the mandatory nodes n ∈ M . Note that the



asymptotic complexity of this algorithm is O(n2|M ||M |log(n)), hence the state
may grow prohibitively. We will study solutions to this issue in the next sub-
section. Nonetheless, as we will see in the results, this explosion rarely happens
since the higher the number of mandatory nodes, the smaller the choice in arcs.

Limiting state explosion in the DP propagation

Strongly Connected Components: Some basic inference we can take into account
to reduce the state explosion is based on strongly connected components (SCC)
of the current graph. There is no point for the DP algorithm to take an arc
leaving SCC A if it has not yet visited all the mandatory nodes in A.

We use Kosaraju’s algorithm [12] to compute SCCs. We then label the SCCs
as follows. Let m be the number of SCCs containing at least one mandatory node
(we call them mandatory SCCs). The SCC D containing the destination node d
is labeled m. All other mandatory SCCs are numbered with the number of the
lowest numbered SCC they can reach minus one. All non-mandatory SCCs are
numbered with the lowest numbered SCC they can reach. It is easy to do this
in linear time using a topological sort on the graph of SCCs. We call this levels
and we denote the level of an SCC A by l(A). Then, if an arc e goes from A to
B such that l(B) > l(A) + 1, by crossing it we would skip some mandatory SCC
to which we can never go back. Similarly, if A is mandatory and l(B) = l(A) + 1
we only cross e if we have visited all mandatory nodes of A, otherwise we would
not be able to get back to A to finish visiting the mandatory nodes in A.

This process can greatly accelerate the DP algorithm without losing pruning
power. Nonetheless, because during the search the partially assigned graphs tend
to have a succession of SCCs of only one node followed by a big SCC containing
all the unassigned nodes, we often did not see a benefit from this. It is, however,
very worthwhile running at the root level. As a simple example, consider the
graph in Figure 1: it takes 0.03 seconds to solve the problem using the SCC
labeling, but 22.72s without it (same number of nodes and conflicts).

S A B

C E D

l(S) = 1 l(A) = 3 l(B) = 5

l(C) = 2 l(E) = 4 l(D) = 6

Each node on the left graph
is an SCC of the form of
the right graph (from [17]).
Each SCC contains 3 ran-
dom mandatory nodes.
All edges have weight 1.

Fig. 1. Example of use of SCCs to accelerate Algorithm 1.

Clustering mandatory nodes: Further acceleration can be achieved by reducing
the number of mandatory nodes to visit. To decide which ones to ignore, we
use the k-means clustering algorithm [11] on the set M of mandatory nodes.
We use the centroids of the clusters only as mandatory nodes (i.e., we have as
many mandatory nodes as clusters, treating the non-centroid nodes as unknown).
Because the centroids tend to be equidistant to the other nodes in the cluster,
the DP tends to also use some of the other mandatory nodes, thus visiting more



than just the centroids. Also, since k-means has some inherent randomness, we
have different clusters every time, which is also beneficial for the lower bound.

This has huge performance effects, but is a double-edged sword: the DP gets
faster but we prune much less often as the bound is not as high. In order to
regulate this, we use a simple heuristic based on the time spent by the DP. If
the DP algorithm with C clusters takes less than x seconds, we increase C by 1,
if it takes more than y seconds, we lower it. For the experiments where we used
clustering, we chose x = 0.5s, y = 8.0s and started with C = 5.

4.4 Improving the explanations

So far, the explanations for bounded path have been the set of forbidden arcs
that were in a short-enough path at some point (see Section 4.1). One problem
with these explanations is that they are not targeted. It is easy to see that some
of the arcs in the explanations may have nothing to do with the fact that some
specific node n is too far from the source. We now provide better explanations.

Simple and combined distances propagation First, during the propagation
we use Dijkstra’s algorithm on the available graph. This leaves a label on each
node indicating how far it is from the source. These labels are noted δn,∀n ∈ V .
Nodes not visited have label δn =∞.

Let n be a node that is at distance δn more than the limit K from the source.
Alg. 2 returns a set of forbidden arcs that explain why δn > K.

Algorithm 2 Explaining why n is at distance more than K from the source.

1: procedure ExplainDist(G, s, n, {δu|u ∈ V},K) . We consider all arcs in G
2: Q← newPriorityQueue();Q .push((n, 0 )); X = ∅; cost = [∞|v ∈ V]
3: while ¬Q .empty() do
4: (u, δ−1

u )← Q .top();Q .pop() . δ−1
u : cost of the shortest path from n to u

5: if u = s then break . Reached start s
6: for all e = (v, u) ∈ {e|e ∈ E} do . Notice that we take arcs backwards
7: if e ∈ F ∧ δv + w[e] + δ−1

u ≤ K then X = X ∪ { e }
8: else if cost[v] > δ−1

u + w[e] then
9: cost[v] = δ−1

u + w[e] . Update cost
10: Q .push(v , cost [v ]) . Overwrites previous instances of v in Q

11: return X

Alg. 2 mimics Dijkstra’s starting at n in G−1. For any arc e = (v, u) of weight
w[e] we know δv (obtained during propagation). We also have the distance from
u to n (the cost of the last current node in the loop, line 4). Let X be the initially
empty set of arcs explaining why n is at distance more than K from s. When
considering a forbidden arc, if δv +w[e]+δ−1u ≤ K, e participates in a path from
s to n no longer than K. Therefore we add it to the explanation and we do not
cross it. Otherwise, we can cross it. Once we dequeue s we finish since all other
paths are no shorter than δ−1s > K. See Figure 2 for an example of explanation.

Theorem 2. The clause Jδd ≤ KK∧
∧

ef∈X ¬cef ⇒ ¬cn computed by Algorithm
2 is a correct and minimal explanation for why n is too far from s to be in G.



s a b n

c e

2 2 2
10 2 2 2

e1 e2
0 2 14 18

12 16

16 14 2 0

4 2 K = 10, δn = 18 > K, thus we fail.
Algorithm 2, starting at n (line 7):
e2: 14 + 2 + 0 = 16 > K ⇒ cross it.
e1: 2 + 2 + 2 = 6 ≤ K ⇒ explanation.
Only e1 is needed in the explanation. The
basic explanation would have added both.

Fig. 2. Example of improved explanations. The labels for propagation (‘ x ’, from Di-

jkstra’s algorithm) and explanation (‘ x ’, from Alg. 2) are given next to each node.

Proof. Let F be the set of forbidden arcs at the time of explanation. At any stage
of Alg. 2, let Fp be the set of forbidden arcs not yet considered (initially F ), X
the arcs in the explanation, dG′(u, v) the shortest distance from u to v for any
G ′ ⊆ G, and u the top of Q. Let GR = G \ (Fp ∪X ). We ensure correctness and
minimality by preserving the following invariants: (1) dGR

(s, n) > K, (2) for all
(v′, u′) ∈ Fp, dGR

(u, n) ≤ dGR
(u′, n), and (3) for all e ∈ X, dGR∪{e}(s, n) ≤ K.

The three invariants hold initially: GR = G \ F = G, so (1) is the bound to
be explained, (2) holds because n is initially the head of Q and all weights are
non-negative, and (3) holds because X is initially empty.

At each iteration, we remove u from Q and process each arc e = (v , u) ∈ E
(removing all forbidden arcs (v, u) from Fp, preserving (2) as nodes are processed
in order of distance from n). We add arcs such that δv + w [e] + δ−1u ≤ K to X
(preserving property (3)). Other forbidden arcs are now made available in GR.

We show how adding these arcs toGR maintains the invariants. Note dGR
(x, n)

values for previously processed nodes x remain unchanged as any newly intro-
duced path from n must be at least as long as δ−1u . Newly available arcs may,
however, decrease dGR

(x, n) for some x which has not yet been processed. How-
ever, if dGR

(x, n) decreased as a result of (v, u) becoming available, then the
shortest path from x to n must pass through u. But, x is not yet processed, so
still dGR

(u, n) ≤ dGR
(x, n), preserving property (2). If the shortest path from s

to n were to be reduced because now δx+dGR
(x, n) < δn, there is a contradiction

since this path goes through (v, u) meaning the arc should have been added to
X and be unavailable. Hence property (1) is preserved. Adding arcs to GR can
only make paths shorter, hence property (3) is preserved.

Once s is popped from Q, our explanation is X. By (1), Fp ∪ X is a valid
explanation; but by (2), no arc e remaining in Fp may be on a shorter path from
s to n (as either n is unreachable via e, or the head of the arc is distance no less
than δ−1s from n), so e may be omitted from the explanation. Thus X is also
a valid explanation. Removing arcs from Fp, thus adding them to GR preserves
property (3). By (3), omitting any element of X introduces a path from s to n
of length no greater than K, so X is also minimal. �

Clearly, Alg. 2 runs in O(|E| + |V|log(|V|)), like Dijkstra’s algorithm. We
can use it to explain Prop. 1 and 2 as follows. For Prop. 1, we first obtain
X1 = ExplainDist(G, s, u, {δv |v ∈ V},K − δ−1u ), the explanation for u being
at distance K − δ−1u from s. The call to Alg. 2 also yields the distance δ∗u from s



to u in G that is still greater than K−δ−1u . Let X2 be the explanation for d being
at distance K − δ∗u from u. The final explanation is X = X1 ∪ X2. The same
idea can be used for Prop. 2, using the head and tail of the arc to be removed.

DP-based propagation We can also improve the explanations for the DP-
based propagation. Similarly to the simple propagation, Alg. 1 leaves a table on
each node stating the cost of visiting some subsets of mandatory nodes before
getting to that node. If d is not reachable in less than K+1 visiting all mandatory
nodes, we fail and explain the failure. To do so, we run the same Alg. 1 starting
at d on the revered graph allowing forbidden arcs (similarly to Alg. 2).

Let e−1 = (v, u) be some reversed forbidden arc of cost w[e]. On node u (the
tail of e in the original graph) lies the table left from the propagation pass of Alg.
1. Each row of the table is a pair (mu, γu) as defined in 4.3. Symmetrically, node
v contains a table where each row (mv, γv) indicates the mandatory nodes visited
from d to v. If there exists an entry (mu, γu) in u’s table and an entry (mv, γv)
in v’s table such that mv ∪mu = M , then e is an arc that could be used in a
path from s to d containing all nodes in M . If additionally, γv +w[e] + γu ≤ K,
that path would be a valid path. Therefore, e being forbidden explains why we
can’t reach d visiting all mandatory nodes in no more than K. This corresponds
to substituting the if -condition in line 8 of Alg. 1 with a call to Explain from
Alg. 3 (where e is the reversed arc of whom we are visiting the tail, namely v).

State explosion for explanations: The explanation algorithm needs to use the
same mandatory nodes as the propagation. Therefore, if we clustered, the same
clustering is given to this algorithm. Also, we cannot use SCC levels here (other
than the ones computed at the root) since we need to traverse forbidden arcs
whether or not they skip entire mandatory SCCs as there may be other forbidden
arcs leading to the skipped SCCs later.

A major problem with these explanations is that we need to traverse forbid-
den arcs. In dense graphs, this can be slow as there may be many possible paths
to consider. For this reason, we use a simple stopping condition. Let tp be the
time it takes to run Algorithm 1 for propagation. If explaining is taking more
than x × tp (we choose x arbitrarily) we switch to the version of Explain in
Algorithm 4 which corresponds to the basic explanations described in Theorem
1. We say that we interrupt the explanation when this change happens.

Algorithm 3 Better explanations

1: function explain(e, γv,mv)
2: for all (mh, ch) ∈ table[head(e)] do
3: if mh ∪mv = M then
4: if γh + w[e] + γv ≤ K then
5: explanation.add(¬ce)
6: return true
7: return false

Algorithm 4 Avoiding state explosion

1: function explain(e, γ,m)
2: . was short(e) = true⇔ e was in a

short-enough path at some point.
3: if ¬ce ∧ was short(e) then
4: explanation.add(¬ce)
5: return true
6: return false



5 Experimental results

In this section we test our bounded path in different problems (all benchmarks
available at [4]). We implemented all our work in the Chuffed solver [3]. All

tests are run on a Linux 3.16 Intel R© Core
TM

i7-4770 CPU @ 3.40GHz machine.
We annotate the tests Expl when learning is enabled, NoExpl otherwise.

We use Expl* for the improved explanations. We name the tree decomposition
for path Path, BPath the bounded path propagator without the DP algorithm,
and DPBPath when using the DP algorithm. We compare failures (the number
of times the solver has encountered a wrong valuation of the variables before
proving optimality), the number of nodes (the size of the search space explored)
and the time in seconds.

We found it beneficial to add an array of successors constrained as ce ⇔
succ[tail(e)] = head(e). Definitions of all search strategies are given in [15].

5.1 Node constrained shortest paths

Here we compare our path propagators with the results from [17] using their same
benchmarks. The aim of these problems is to find the shortest path between two
given nodes in a graph G = (N , E) passing through a set of mandatory nodes
M . We present the results in Table 1 using first_fail on the succ variables as
the search strategy.

[17] [10] Path Path+BPath Path+DPBPath
Benchmark |N | Fails Time(s) Fails Time(s)

E
x
p
l

Fails Time(s) Fails Time(s) Fails Time(s)

Ham22 22 13 4.45 24 0.00 139 0.03 19 0.01 16 0.01
Ham22full 22 0 1.22 2 0.00 19 0.01 15 0.01 15 0.01
Ham52b 52 100 402 112 0.01 1119 0.81 19 0.07 19 0.22
Ham52full 52 3 45.03 5 0.00 90 0.13 72 0.11 72 0.58 (C)
Ham52order a 52 16 57.07 97 0.02 2203 2.54 189 0.45 76 3.80
Ham52order b 52 41 117 1 0.00 49 0.04 49 0.05 49 0.08

See [17] for details on

N
o
E
x
p
l

202 0.02 34 0.01 22 0.01
on the benchmarks. 35 0.01 27 0.01 13 0.74
“full” ≡M = N 17579 6.04 1523 0.76 21 4.03
“order” ≡ the nodes 328 0.12 264 0.12 264 0.59(C)
in M must be visited 17438 7.93 1409 0.83 407 0.38
in some given order. 83 0.03 83 0.03 83 0.13

Table 1. Comparison between [17], [10], Expl, NoExpl, BPath, DPBPath and Path.
(C) indicates when clustering is used.

We clearly see that we solved the benchmarks faster than in [17]. We also
see how BPath and DPBPath improve the results obtained by Path, which
is the point of having bounded path. We can also see that the explanations re-
duced the number of failures greatly, specially for the two instances with biggest
search space (52b and 52order a). We do not show Expl* as they don’t improve
on Expl, because the search space is already very small, and Expl* is more
expensive than Expl.

Although slow, the DPBPath is still suitable for the Hamiltonian path of 22
nodes. For 52 nodes in such dense graph though, the state space explodes and
we absolutely need to cluster.



We also compared against the circuit-based path propagator with explana-
tions presented in [10]. Their propagator is surprisingly fast on these benchmarks
and requires little search. This is because their propagator has much better rea-
soning over the topology of the graph. The topological reasoning of our case is
done by the path propagator, which is a combination of directed trees (Eq. 1),
whereas their propagator makes more inferences based on strongly connected
components and starting the path at different nodes. This specific benchmarks
are simple in terms of distance (all the arcs have the same weight), but hard in
terms of topology, hence the advantage.

The take-away from this experiment is that for graphs that are topologically
hard, using our propagator might be a burden whereas using other propagators
with strong topological reasoning as [10] might be a better approach.

5.2 Metabolic networks

A metabolic network is a network of molecules and reactions. Biologists use
this to understand how some molecules transform into others and cause some
behavior in cells. For instance, this helps biologists understand how a protein
behaves or how gene expression is regulated. This problem was modeled in [25]
by creating a bipartite graph where molecules are in one partition of the nodes,
and reactions in another partition. The arcs of the graph link the substrates and
products participating in a reaction to the reaction itself.

Here, there is a set of mandatory nodes (because biologists are aware of their
existence) and mutually exclusive nodes (corresponding to mutually exclusive
reactions). Furthermore, each node is given a weight corresponding to its degree
(this is to model highly connected molecules). The objective is to find a pathway
from some given substrate to some given product minimizing the total weight of
the path, where the weight is the sum of the degrees of the nodes.

Table 2 shows a comparison between our solver and the work in [25], which
used the solvers GRASPER and CP(Graph) on an Intel Core 2 Duo 2.16GHz.
Here BPath stands for Path+BPath. There is one instance for each size.

Glycosis Lysine Heme
|N | GRASP. CP(Graph) Path BPath GRASP. CP(Graph) Path BPath GRASP. CP(Graph) Path BPath

500 0.28 0.21 0.05 0.11 0.36 0.41 0.06 0.12 0.22 0.10 0.05 0.22
600 0.38 0.31 0.07 0.17 0.48 0.44 0.06 0.16 0.28 0.12 0.06 0.31
700 0.45 0.35 0.19 0.22 0.47 0.75 0.08 0.25 0.36 0.16 0.08 0.46
800 0.53 0.50 0.24 0.29 0.53 1.00 0.12 0.37 0.41 0.19 0.11 0.55
900 0.64 0.68 0.15 0.39 0.57 1.29 0.16 0.4 0.51 0.27 0.15 0.73

1000 0.77 0.84 0.18 0.51 0.60 1.37 0.18 0.46 0.62 0.32 0.18 0.95
1100 0.91 1.00 0.17 0.71 0.73 1.29 0.19 0.64 0.65 0.33 0.32 1.08
1200 0.96 1.08 0.20 0.75 0.86 2.23 0.23 0.79 0.80 0.41 0.21 3.62
1300 1.03 1.21 0.81 0.84 0.99 2.50 0.28 1.02 0.94 0.47 0.4 1.81
1400 1.23 1.56 0.71 1.05 1.12 2.84 0.30 1.17 1.11 0.51 0.4 2.1
1500 1.40 1.85 1.25 1.28 1.25 2.92 0.39 1.33 1.14 0.52 0.94 2.09
1600 1.67 2.14 0.75 1.49 1.30 2.97 0.43 1.36 1.35 0.61 0.74 2.55
1700 1.93 2.40 0.82 1.77 1.41 3.03 0.67 1.44 1.57 0.69 0.4 3.08
1800 2.11 2.77 1.01 2.01 1.53 3.69 0.49 1.69 1.72 0.77 0.45 3.69
1900 2.27 3.02 1.19 2.21 1.75 3.93 0.60 1.95 1.96 0.84 0.48 6.21
2000 2.40 3.14 1.33 2.3 1.96 2.18 0.64 2.39 2.18 0.91 0.51 4.86

Table 2. Solving metabolic pathways in real-world networks (same strategy as [25]).



The results show that BPath slows Path down. We interpret this as the
effect of the overhead of bounded path. Indeed, the instances are solved so quickly
by Path that BPath has little to improve on. We also ran the same experiments
with the VSIDS [14] search strategy. The times were very similar to those in
Table 2 for Path, but 3 benchmarks (1200, 1300 and 1900 nodes for Heme)
were much slower (around 30 seconds). We tested the BPath version on those
three instances and noticed a big speedup (between 5 and 15 times faster).
Nonetheless, note how BPath is still faster than GRASPER and CP(Graph) in
two thirds of the tests. From this we conclude that bounding is only worthwhile
if the instances are hard to solve (i.e. there is a big search space to explore).

5.3 Task constrained shortest path

In this problem, we are required to perform a set of tasks along a path. A task
can be done at different nodes, and visiting a node where some task can be
performed is enough, we do not need to visit more than one. As an example,
consider on the drive home withdrawing money from an ATM, going to a carwash
and buying some groceries. Any ATM, supermarket or carwash on the path is
sufficient. This problem was studied in [18, 19] using dynamic programming only.

In [10], the authors used a circuit-based path propagator to solve a similar
problem (minimizing the longest arc). We compare our implementation against
theirs using the same instances (500 graphs of 20 nodes each) with the objective
of minimizing the total length of the path. The aim of this experiment is to see
if BPath and DPBPath can also improve the circuit-based path propagator.

In this experiment we compare the best runtimes of both approaches, even
if they use two different strategies. Our best search strategy is smallest (i.e.
branching on the succ variable with smallest domain) and their best search strat-
egy is first_fail on the succ variables. Additionally, we combine our bounding
propagator with theirs to see the benefits.

Expl* (all use smallest) Expl NoExpl
Version Conflicts Nodes Time(s) Opt(s) Conflicts Nodes Time(s) Opt(s) Conflicts Nodes Time(s) Opt(s)

[10] 48790 54254 3.18 2.14 48790 54254 3.18 2.14 308888 619304 7.95 6.48
[10]+BPath 18303 19883 2.90 1.49 27050 29995 3.70 2.84 174329 350327 15.99 13.67
[10]+DPBPath 636 1133 2.09 1.86 4933 6228 1.68 1.36 31256 188278 4.47 3.75

Path 26488 28801 7.05 2.27 26488 28801 7.05 2.27 200773 402943 32.63 9.81
Path+BPath 13175 14787 3.63 1.30 15238 16868 4.07 1.37 76701 156208 16.20 5.51
Path+DPBPath 54 456 0.53 0.36 221 648 1.31 0.44 381 1253 2.96 1.14

Table 3. Benefit from BPath & DPBPath with both Path and [10]. Geometric
average over 500 instances of 20 nodes.

Table 3 gives the results, also showing the time (Opt) to find (but not prove)
the optimal solution. The Path constraint finds optimal solutions very fast, but
takes time to prove optimality. On the other hand, the version from [10] is supe-
rior in both these aspects. Adding BPath and DPBPath improves both these
versions. The circuit based propagator does 89% less search when combined with
DPBPath (in its fastest version, using Expl), and Path does 98% less search
when combined with DPBPath (using Expl*). This shows how bounded path



with explanations can be used in combination with both tree-based and circuit-
based paths to enhance propagation.

5.4 Profitable Tourist path

We introduce here a new problem (as far as we are aware) similar to the prize
collecting TSP. Imagine you need to do a long layover during a trip and change
airports. You might be interested in visiting the city while waiting for your
connection flight. In this problem, we model every point of interest (POI) of a
city with a minimum visit time (i.e. the least amount of time that a visit to some
POI is worthwhile) and a profit (i.e. how much a person enjoys visiting some
POI). The path can contain a node without necessarily visiting the corresponding
POI, but in order to visit a POI the path must contain the corresponding node
and spend the minimum visit time. The objective of the problem is to find the
path with most profit such that the total time is less than a certain bound (i.e.
the time we have available between connections). The total time is the cost of
the path plus the time spent at each POI (either 0 or the minimum visit time).

We created two benchmarks, based on New York City (14 nodes, from LGA
Airport to JFK Airport) and London (12 nodes, from Heathrow Airport to
Liverpool Street Station). We added two side constraints: for London, we require
that the visit to the Tower Bridge (if it happens) takes place between two narrow
time frames (which would correspond to times where the bridge opens to let ships
go through); for NYC, the ferry to Liberty Island leaves every hour and so there
might be a waiting time added to the total time (if the visit happens).

We used Expl on all the tests to study the benefits of bounding. The results
are in Table 4. Clearly, DPBPath and BPath largely improve Path for this
problem. Again, there was no need to cluster or interrupt explanations.

New York City (14 POI) London (12 POI)
Version Fails Nodes Time(s) Fails Nodes Time(s)

Path ≥5030898 >5034046 >3600.00 236010 237263 60.14
Path+BPath (Expl) 390985 391746 379.19 24061 25190 13.86
Path+DPBPath (Expl) 44015 44606 48.82 10645 11866 2.89
Path+BPath (Expl*) 360945 361971 350.26 18546 19881 8.78
Path+DPBPath (Expl*) 2062 2690 37.45 224 670 0.16

Table 4. Profitable tourist path. Search: smallest on succ variables.

Without explanations, though, NYC takes 1598s using DPBPath and Lon-
don takes 13s, making them substantially slower than with explanations.

6 Conclusion

In this paper we have improved the bounded path propagator by adding a new
propagation technique that is clearly superior. Both propagations are enhanced
by our two new versions of explanations. First, a fast way of computing valid
but not minimal explanations is given. We then provided another version that
generates more reusable explanations.

We have shown how combining bounded path with path propagators (com-
position of directed trees or circuit-based) improves their performance, reaching
the state of the art in bounded path propagation.
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