
Interval Constraints with Learning:
Application to Air Traffic Control

Thibaut Feydy1(B) and Peter J. Stuckey1,2

1 Data61, CSIRO, Melbourne, Australia
{thibaut.feydy,peter.stuckey}@data61.csiro.au

2 Department of Computing and Information Systems,
University of Melbourne, Melbourne, Australia

Abstract. Lazy Clause Generation (LCG) is a learning extension of
Constraint Programming that combines the power of SAT and CP. In
this paper we present an extension of Lazy Clause Generation from finite
domain constraints to interval constraints, that is: non-linear constraints
over the reals. Because LCG solvers must be able to negate literals
involved in computation, LCG for intervals must represent both open
and closed intervals. This makes LCG for intervals quite different from
LCG for integers. We illustrate the advantage of the technology by solv-
ing a mixed integer non-linear Air Traffic Control problem .

1 Introduction

The capacities of European en-route Air Traffic Control (ATC) centers are far
exceeded by a constant growth in air traffic demand, resulting in ever increas-
ing flight delays. To overcome this issue, novel Air Traffic Management (ATM)
schemes are designed while keeping the hard constraint of a minimal 5 nauti-
cal mile horizontal safety separation between every pair of aircraft. Nowadays,
solutions to avoid conflicts are empirical, and human controllers rely on stan-
dard routes and traffic organization to devise them. However, the complexity of
conflicts could grow tremendously within future ATM systems, should the air-
craft fly on direct routes, from take-off airport to destination. Human controllers
would no longer be able to solve them efficiently on their own, thus requiring
automated solvers. Former approaches like [6] use local search (namely genetic
algorithms) to solve the conflict problem. These meta-heuristics are well suited
to solve large scale and difficult problems when no other relevant techniques are
known, but stochastic search inherently lacks existence and optimality proofs. An
interval constraint approach was offered in [8]. While the method allows proof of
optimality and the existence of solutions, it does not scale to the size of a general
air traffic sector. The difficulty in handling the required constraints is related to
the fact that the separation must be kept at any time. In this paper we propose
to solve this problem by extending an Interval Constraint Solver with Learning.
Learning methods such as lazy clause generation [15] can exponentially reduce
the search complexity and are particularly well suited to such a problem where
some of the variables can be discretized. After presenting interval constraint
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 224–232, 2016.
DOI: 10.1007/978-3-319-44953-1 15

Interval Constraints with Learning: Application to Air Traffic Control 225

methods and its extensions to learning, we present the air traffic control models
and their implementation and provide results validating the approach.

2 Preliminaries

2.1 Finite Domain Constraint Programming

A valuation, θ, is a mapping of variables to values, denoted {x1 !→ d1, . . . , xn !→
dn}. Define vars(θ) = {x1, . . . , xn}. A primitive constraint, c, is a set of val-
uations over a set of variables vars(c). A valuation θ is a solution of c if
{x !→ θ(x) | x ∈ vars(c)} ∈ c. A constraint C is a conjunction of primitive
constraints, which we often treat as a set. A valuation θ is a solution of con-
straint C if it is a solution for each c ∈ C. We write C1 |= C2 if every solution
of C1 is a solution of c2.

An atomic constraint is a unary constraint of the form ⟨x = d⟩, ⟨x ̸= d⟩,
⟨x ≥ d⟩, ⟨x ≤ d⟩, or false. We write atomic constraints in angle brackets to
emphasize their special status. A domain D is a conjunction of atomic con-
straints. D is a false domain if it has no solutions. We use notation D(x) =
{θ(x) | θ is a solution of D}. A singleton domain is one where |D(x)| = 1, x ∈
vars(D), and we let θD = {x !→ dx | x ∈ vars(D),D(x) = {dx}} in this case.

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a set of atomic constraints p(c)(D), where D∧c |= p(c)(D). We assume each
propagator is checking, that is if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD
is a solution of c and {false} otherwise. A propagation solver prop(P,D) applied
to a set of propagators P and a domain D repeatedly applies the propagators
p ∈ P until p(D′) = ∅ for p ∈ P , and returns D′.

A constraint satisfaction problem (CSP) P = (V,D,C) is a constraint C and
domain constraint D over variables V = vars(C)∪ vars(D). A CP solver solves
the CSP by applying the propagation solver prop({p(c) | c ∈ C},D) to obtain a
new domain D′, then if this is not a false domain or singleton domain, guessing
an atomic constraint decision a, and solving the two problems (V,D′∧a,C) and
(V,D′ ∧ ¬a,C).

2.2 Lazy Clause Generation for Integers

Lazy clause generation (LCG) solvers [15] are hybrid CP and SAT solvers that
combine CP propagation based solving with SAT nogood learning. An LCG
solver represents an integer variable with initial domain [l .. u] by the Boolean
variables [[x = d]], l ≤ d ≤ u (equality variables) and [[x ≥ d]], l < d ≤ u (bounds
variables). Note that each atomic constraint defined earlier, is exactly a Boolean
literal using this representation: ⟨x = d⟩ is [[x = d]], ⟨x ̸= d⟩ is ¬[[x = d]], ⟨x ≥ d⟩
is [[x ≥ d]] and ⟨x ≤ d⟩ is ¬[[x ≥ d+ 1]].

The Boolean variables are connected to an integer domain propagator which
ensures that they maintain a consistent representation of an integer variable, that
is [[x ≥ d+ 1]] → [[x ≥ d]], l < d < u, and [[x = d]] ↔ [[x ≥ d]] ∧ ¬[[x ≥ d+ 1]], l <
d < u, [[x = l]]↔ ¬[[x ≥ l + 1]], and [[x = u]]↔ [[x ≥ u]].

226 T. Feydy and P.J. Stuckey

In LCG solvers propagators are also required to return explanations for each
new consequence l ∈ p(c)(D), that is an explanation clause e ≡ l1 ∧ · · · ln → l
where ∀1 ≤ i ≤ n,D |= li and c |= e. In LCG solvers during propagation [7,15],
a trail of newly inferred literals representing atomic constraints is created, each
of which has an explanation clause showing which previously true literals made
it true.

When an LCG solver infers false it, like a SAT solver, repeatedly replaces
literals in the explanation for the failure until only one literal that became true
since the last decision remains. The resulting explanation of failure is the so
called 1UIP nogood [14]. This nogood is then stored in the system as a new
constraint (propagator), and the solver backjumps to the second last decision
level in the nogood. At this point the nogood is guaranteed to propagate new
information. See [15] for more details.

Example 1. Consider a CSP with constraints x ≥ y, t ≥ 2→ b, b→ x ≤ 3z, b→
y ≥ 2, over integers x, y, z and t, and Boolean b and initial domainD = ⟨x ≥ 0⟩∧
⟨x ≤ 10⟩ ∧ ⟨y ≥ 0⟩ ∧ ⟨y ≤ 10⟩ ∧ ⟨z ≥ 0⟩ ∧ ⟨z ≤ 10⟩ ∧ ⟨t ≥ 0⟩ ∧ ⟨t ≤ 10⟩. An initial
decision ⟨z ≤ 5⟩ (¬[[z ≥ 6]]) causes no propagation. The next decision ⟨t ≥ 6⟩
([[t ≥ 6]]) causes b which in turn causes [[y ≥ 2]] and (with ¬[[z ≥ 6]]) ¬[[x ≥ 2]], and
these two propagate to false. The initial nogood is [[y ≥ 2]] ∧ ¬[[x ≥ 2]] → false,
replacing ¬[[x ≥ 2]] by its reasons gives ¬[[z ≥ 6]] ∧ b ∧ [[y ≥ 2]] → false, then
replacing [[y ≥ 2]] gives ¬[[z ≥ 6]] ∧ b → false. The resulting 1UIP nogood is
[[z ≥ 6]] ∨ ¬b. ⊓1

2.3 Interval Arithmetic

Given the discrete representation of numbers by computers it is impossible to
solve continuous problems exactly. Interval constraint solvers use interval arith-
metic [13] to compute sound approximations of the constraint system, through
a combination of local consistencies and search.

Let R be the set of real numbers, and let R∞ be R ∪ {+∞,−∞}. Let F be
the subset of R of the representable floating-point numbers in a given format,
and let F∞ be F ∪ {+∞,−∞}. Let ↓ (r) (resp. ↑ (r)) be the downward (resp.
upward) roundings to F∞ of a real number r. Given two numbers a ∈ F∪{−∞}
and b ∈ F ∪ {+∞} the closed interval [a, b] is the set {x ∈ R | a ≤ x ≤ b}.

Less usual for interval arithmetic we will also consider open and semi-open
intervals. The open interval (a, b) is the set {x ∈ R | a < x < b}, while the two
forms of semi-open intervals (a, b] and [a, b) represent the sets {x ∈ R | a < x ≤
b} and {x ∈ R | a ≤ x < b} respectively.

We will use I to represent the set of closed intervals, which is closed under
intersection. We will use I+ to represent the set of (all) intervals, including open
and semi-open intervals, which is also closed under intersection.

Given a closed interval I we define ⌊I⌋ (resp. ⌈I⌉) as the smallest (resp.
largest) element of I.

Given a real operator ∗, the associated interval operator ! is defined
by X!Y =

⋂
I {Z | ∀x ∈ X,∀y ∈ Y, x ∗ y ∈ Z}, e.g. [a, b] ⊖ [c, d] =

[↓ (a− d), ↑ (b− c)].

Interval Constraints with Learning: Application to Air Traffic Control 227

2.4 Interval Constraints Solving

A real (resp. interval) constraint is an atomic formula arising from a relation
over real (resp. interval) expressions and variables. In practice interval constraint
propagators enforce approximate consistencies, often hull consistency [3] or box
consistency [2]. The original hull consistency algorithm hc3 decomposes con-
straints into primitives constraints implemented each by a corresponding prop-
agator.

Example 2. The constraint c: (x+y)+2∗ b = 0 can be decomposed into c1 : z =
x + y and c2 : z + 2 ∗ b = 0. The hull consistent propagator for the constraint
c1, with the domains X, Y , and Z computes the common fixed-point of the
projection operators:X ← X∩(Z⊖Y), Y ← Y ∩(Z⊖X), and Z ← Z∩(X⊕Y). ⊓1

A refinement of the hc3 algorithm is hc4 [12] which avoids decomposing
the constraints by working directly on a tree-like representation of constraints
where each node is either a variable, a constant or a primitive function operator.
The variables domains pruning is done through a forward evaluation of the tree
followed by a backward top-down projection narrowing operation. During the
top-down pruning the algorithm may prematurely end by the computation of
an empty interval, in which case the constraint is inconsistent w.r.t the current
domain.

Example 3. The constraint c : (x + y) + (2 ∗ b) = 0 has the tree representation
c : (e1 : (e2 : x+ y)+ (e3 : 2 ∗ b)) = 0. Given the domain X, Y , B, the evaluation
phases computes e2.f = X ⊕ Y , e3.f = [2, 2] ⊗ B, e1.f = e2.f ⊕ e3.f . The top-
down pruning phases enforces the projection e1.b ← e1.f ∩ [0, 0], e2.b ← e2.f ∩
(e1.b⊖e3.f), X ← X∩(e2.b⊖Y), Y ← Y ∩(e2.b⊖X), e3.b← e3.f∩(e1.b⊖e2.f),
B ← B ∩ (e3.b⊘ [2, 2]). ⊓1

3 Lazy Clause Generation for Intervals

The critical question in defining a learning solver is how to represent the changes
in variables. A natural representation for interval variable x would be using
atomic constraints of the form ⟨x ∈ I⟩, which record the entire interval I attached
to the variable. Indeed there are finite domain learning solvers which take this
approach [16]. The disadvantages of this approach is that resulting nogoods
are unlikely to be very reusable, and the atomic constraints themselves interact
in complex ways. A stronger disadvantage is that atomic constraints will be
negated, and the negative form of these constraints is hard to reason about.

The obvious choice, analogous to the integer case is to use the atomic con-
straints ⟨x ≥ a⟩, ⟨x ≤ a⟩, a ∈ F. This allows us to represent all closed intervals.
Unlike the integer case we cannot get away with a single set of bounds variables
since ¬ ⟨x ≥ a⟩ ̸↔ ⟨x ≤ a⟩. Hence we need 2 sets of Boolean variables [[x ≥ a]]
and [[x ≤ a]]. Since ⟨x < a⟩ ↔ ¬[[x ≥ a]] and ⟨x > a⟩ ↔ ¬[[x ≤ a]], we will be able
to represent open and semi-open intervals.

228 T. Feydy and P.J. Stuckey

Clearly we cannot create a Boolean variable for each possible atomic con-
straint ⟨x ≥ a⟩, ⟨x ≤ a⟩, a ∈ F for variable x apriori, there are far too many.
Indeed even during propagation far too many atomic constraints will appear for
us to represent them each by a Boolean variable. In an LCG (and SAT) solver
each Boolean variable is a non-trivial data structure storing watch lists, activity
counts, and any associated atomic constraint.

To avoid the cost of creating many Boolean variables during propagation
we make use of a stateless atomic constraint representation (tagged pointer),
which carries its meaning with it, and use this for propagation, and recording
the implication graph in the trail, and the explanations of propagation, and
for building explanations. Most atomic constraints will appear on the trail, and
simply be removed by backtracking/backjumping. We will only create Boolean
variables corresponding to atomic constraints that end up in the nogoods that
are created.

Example 4. Reconsider the CSP of Example 1 where now x, y, z and t are inter-
val variables. An initial decision ⟨z ≤ 5⟩ causes no propagation. The next decision
⟨t ≥ 6⟩ causes b which in turn causes ⟨y ≥ 2⟩ and (with ⟨z ≤ 5⟩)

〈
x ≤↑ 5

3

〉
, and

these two propagate to false. The initial nogood is ⟨y ≥ 2⟩ ∧
〈
x ≤↑ 5

3

〉
→ false,

replacing
〈
x ≤↑ 5

3

〉
by its reasons gives ⟨z ≤ 5⟩∧b∧⟨y ≥ 2⟩ → false, then replac-

ing ⟨y ≥ 2⟩ gives ⟨z ≤ 5⟩∧b→ false. The resulting 1UIP nogood is ¬[[z ≤ 5]]∨¬b.
Note how the entire process uses atomic constraints, except the final stored
nogood which uses literals. ⊓1

A critical component of the interval learning solver is the interval domain
propagator which is responsible for mapping interval domain information to
atomic constraints and any associated Boolean literals, and vice versa.

The domain of interval variable x is implemented as a sorted map from float
values a to atomic constraints ⟨x < a⟩, ⟨x ≤ a⟩ , ⟨x ≥ a⟩, and ⟨x > a⟩. We cache
the current upper and lower bounds for x, but not their positions in the map.
Changes to D(x) require walking the map to determine which atomic constraints
become true or false. Note that in this way the domain propagator for x also
maintains the consistency of the Boolean literals associated with x, which will
be added to the queue for propagation.

When a new atomic constraint is created, it is inserted appropriately in the
map. Note usually a new atomic constraint is only created by propagation which
makes it true, so we can implement this simply by walking the map from the
current bound to the position of the new bound and inserting it, since we have
to walk the map setting the other atomic constraints in the path true or false
appropriately.

3.1 Propagation with Learning

Note that although we must represent open, semi-open and closed intervals, in
order to have the representation of intervals closed under negation, the interval
propagation almost always relaxes intervals to be closed. The only cases where

Interval Constraints with Learning: Application to Air Traffic Control 229

this does not occur is when no floating point operations occur on the interval
bounds, for example in equality, min and max. Clearly the resulting computation
is still safe.

In order to provide explanations for variable domain updates, interval oper-
ations are augmented to maintain the reasons for their results, in the form of a
set of atoms per bound. For example the augmentation " of the operator ⊕ is
defined as (X, lx, ux) " (Y, ly, uy) = (X ⊕ Y, lx ∪ ly, ux ∪ uy). Given a variable x
with a domain X let ∆(x) = (X, {⟨x ≥ ⌊X⌋⟩}, {⟨x ≤ ⌈X⌉⟩}). These augmented
operators are used in the implementation of propagators, to derive reasons for
failure or variables bounds updates,

Example 5. Reconsiding Example 3 in the context of learning, the bottom-up
evaluation now computes e2.f = ∆(x) " ∆(y), e3.f = ([2, 2], {}, {}) # ∆(b),
e1.f = e2.f " e3.f . The top-down pruning phases enforces the projection e1.b←
e1.f ∩ ([0, 0], {}, {}), e2.b← e2.f ∩ (e1.b $ e3.f), e3.b← e3.f ∩ (e1.b $ e2.f) and
the following potential updates augmented with explanations for x, y, and b :
∆(x)∩ (e2.b $ ∆(y)), ∆(y)∩ (e2.b $ ∆(x)) and ∆(b)∩ (e3.b ! [2, 2]).

Consider the constraint with domains x ∈ [−2, 0], y ∈ [−1, 0] and b ∈ [0, 1]
when b changes to [1,1], ignoring any rounding problems for simplicity. We
recalculate e3.f = ([2, 2], {⟨b ≥ 1⟩}, {}), e2.b = ([−2,−2], {}, {⟨b ≥ 1⟩}), e2.b $
∆(y) = ([−2,−1], {⟨y ≤ 0⟩}, {⟨b ≥ 1⟩ , ⟨y ≥ −1⟩}), x = ([−2,−1], {⟨x ≥ −2⟩},
{⟨b ≥ 1⟩ , ⟨y ≥ −1⟩}). The explanation for the change in x is ⟨b ≥ 1⟩∧⟨y ≥ −1⟩ →
⟨x ≤ −1⟩. ⊓1

In practice it is possible, during forward evaluation, to simply flag bits indicating
which of an expression children bounds are used during evaluation of its f field
to avoid the systematic creation and union of sets of atoms. A reason will be
then reconstructed, if needed, when a variable bound is updated.

4 Mixed Models

In this section we present the models first introduced in [8]. An aircraft i is char-
acterized by an initial position pi(0) = (xi(0), yi(0)), a speed vi, a heading θi and
a waypoint or destination wi along its path (see Fig. 1). We consider horizontal
maneuvers between aircraft at the same altitude. At any given time, two aircraft
are in conflict when the distance between them is less than a safety separation d.
The considered maneuvers for maintaining separation involve deviations of the
aircraft headings. Given that these maneuvers are orders for pilots, the starting
time and deviation angle of a maneuver are discrete variables, indeed arbitrarily
precise orders would be unrealistic.

4.1 Horizontal TCAS Model

This simple model is for emergency situations and could be used for a real-time
Traffic Collision Avoidance System (TCAS): at the initial time, deviations are

230 T. Feydy and P.J. Stuckey

i

(xi(0),y i(0))

vi

j
vj

(xj(0),y j(0))

wi
wj

deviated path

time t1time t1+ t

Fig. 1. Illustration of a deviated path to avoid conflict in the human controller model.

applied to the aircraft headings to avoid conflicts. It has one discrete decision
variable αi per aircraft i.

Given two aircraft i and j, let vij be the relative speed and pij (t) the relative
position between them at time t, and d the safety distance. We have pij (t) =
pij (0) + vij (t− 0). These two aircraft are not in conflict at a given time t if the
distance separating them is greater than d: P (i, j) = pij (t)2 − d2 > 0. If the
discriminant ∆P (i,j) of P (i, j) is negative, these two aircraft will not enter into
conflict, hence the inequality constraint per pair of aircraft is:

(pij (0)vij)2 − (pij (0)
2 − d2)v2ij < 0

with :

pij (0) =
(
xi(0)− xj(0)
yi(0)− yj(0)

)
vij =

(
vicos(θi + αi)− vjcos(θj + αj)
visin(θi + αi)− vjsin(θj + αj)

)

4.2 Horizontal Human Controller Model

In this model we consider that the aircraft is initially heading toward a waypoint.
To avoid a conflict, it is possible to deviate the aircraft from its original heading,
at some time t1. After an amount of time δt it will then head back toward its
original destination. The path of an aircraft p is then composed of three segments
sp1, sp2 and sp3. Given a pair of aircraft i and j, a conflict can arise for each pair
of segments (six, sjy), resulting in 9 avoidance constraints per pair of aircraft.

Given two segments six, sjy, let P (six, sjy) be the associated distance poly-
nomial as defined in the previous model. The avoidance constraint is defined by
the following disjunction :

– there is no common time segment during which the aircraft i flies over six and
aircraft j flies over sjy, or

– the discriminant of P (six, sjy) is negative, or
– the roots of P (six, sjy) are outside the common flight time.

Interval Constraints with Learning: Application to Air Traffic Control 231

5 Experiments

The lazy clause generation solver Chuffed [5] was extended with interval con-
straint support, which can be used both with or without learning. The optimiza-
tion strategy chosen was the minimisation of the sum of the absolute deviations
|αi| which is a good approximation of how disruptive the solution is.

Other possible optimization strategies would be the minimization of number
of deviated aircraft, which is a relevant criterion for a human controller, or to
minimize the total lengthening of the paths, which better captures the airline
operators’ concerns.

In Table 1, we compare the performance of Interval Constraints without learn-
ing (IC) and with Lazy Clause Generation for simple avoidance problems (tcasx)
and human controller model (hmcx) involving 4, 8 and 12 aircraft with a 90 s
timeout. We obtain an exponential search space reduction from learning, with
IC only solving the smaller human controller model problem. Since the aircrafts
are constrained pairwise, it is likely that the nogoods transpose well to different
parts of the search space. The benchmarks are available in MiniZinc format at
people.unimelb.edu.au/pstuckey/atc.

Table 1. Comparison of Interval Constraints with and without learning.

Problem IC LCG
#bts t(s) #lits #bts t(s)

tcas4 13 0.1 65 26 0.1
tcas8 1001 0.2 237 128 0.1
tcas12 52863 4.65 2107 1655 0.3

Problem IC LCG
#bts t(s) #lits #bts t(s)

hcm4 513342 60.1 21206 27621 4.4
hcm8 — >90 28521 42372 21.2
hcm12 — >90 43234 64890 62.1

6 Related Work and Conclusion

Constraint systems such as ECLiPSe [4] support both integers and interval
constraints. The framework presented in [11] and the SMT solver HySAT [9],
based on the iSAT algorithm [10], combine interval constraint propagation with
the learning framework of SMT to solve real constraints, implementing a form
of hc3 augmented by explanations (as opposed to hc4 that we implement).

The SMT approaches do not tightly integrate the handling of integer and
interval variables which is a distinct disadvantage for applications such as ATC.
They both elide the issue of too many literals appearing in the trail, which may
be because the benchmarks they use are quite distinct from those appearing in
typical CP interval problems where interval propagation can take many iterations
to quiesce. Hence it appears the implementation issues for LCG and SMT for
intervals are quite different.

The domain of Air Traffic Management is very complex and contains many
hard combinatorial problems. Although there is little existing work regarding

232 T. Feydy and P.J. Stuckey

continuous or mixed problems, CP approaches has been developed for many of
the combinatorial problems in this area such as arrival management, runway
allocation, workload management. See [1] for a survey.

References

1. Allignol, C., Barnier, N., Flener, P., Pearson, J.: Constraint programming for air
traffic management: a survey. Knowl. Eng. Rev. 27(03), 361–392 (2012)

2. Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp (intervals) revisited. Rap-
port technique, p. 30. Citeseer (1994)

3. Benhamou, F.: Interval constraint logic programming. In: Podelski, A. (ed.) Con-
straint Programming: Basics and Trends. LNCS, vol. 910, pp. 1–21. Springer,
Heidelberg (1995)

4. Brisset, P., Sakkout, H.E., Fruhwirth, T., Gervet, C., Harvey, W., Meier, M.,
Novello, S., Le Provost, T., Schimpf, J., Shen, K., Wallace, M.: ECLiPSe Con-
straint Library Manual, October 2005

5. Chu, G.G.: Improving combinatorial optimization. Ph.d. thesis, The University of
Melbourne (2011)

6. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using
genetic algorithms. In: Proceedings of the 1996 ACM Symposium on Applied Com-
puting, pp. 289–298. ACM (1996)

7. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

8. Feydy, T., Barnier, N., Brisset, P., Durand, N.: Mixed conflict model for air traffic
control. In: IntCp 2005, Workshop on Interval analysis, constraint propagation,
applications (2005)

9. Fränzle, M., Herde, C.: Hysat: an efficient proof engine for bounded model checking
of hybrid systems. Formal Methods Syst. Des. 30(3), 179–198 (2007)

10. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
Satisfiability, Boolean Model. Comput. 1, 209–236 (2007)

11. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Formal Methods in Computer-Aided Design (FMCAD
2012), pp. 131–140. IEEE (2012)

12. Ilog, S.: Revising hull and box consistency. In: Logic Programming: Proceedings
of the 1999 International Conference on Logic Programming, p. 230. MIT press
(1999)

13. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an

efficient SAT solver. In: Proceedings of the 39th Design Automation Conference
(DAC 2001) (2001)

15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

16. Veksler, M., Strichman, O.: Learning general constraints in CSP. In: Michel, L.
(ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 410–426. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-18008-3 28

