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Abstract. Constraint Programming (CP) standardizes many special-
ized “global constraints” allowing high-level modelling of combinatorial
optimization and feasibility problems. Current Mixed-Integer Linear Pro-
gramming (MIP) technology lacks both a modelling language and a solv-
ing mechanism based on high-level constraints.

MiniZinc is a solver-independent CP modelling language. The solver in-
terface works by translating a MiniZinc model into the simpler language
FlatZinc. A specific solver can provide its own redefinition library of
MiniZinc constraints.

This paper describes improvements to the redefinitions for MIP solvers
and to the compiler front-end. We discuss known and new translation
methods, in particular we introduce a coordinated decomposition for
domain constraints. The redefinition library is tested on the benchmarks
of the MiniZinc Challenges 2012-2015. Experiments show that the two
solving paradigms have rather diverse sets of strengths and weaknesses.
We believe this is an important step for modelling languages. It illustrates
that the high-level approach of recognizing and naming combinatorial
substructure and using this to define a model, common to CP modellers,
is equally applicable to those wishing to use MIP solving technology. It
also makes the goal of solver-independent modelling one step closer. At
least for prototyping, the new front-end frees the modeller from consider-
ing the solving technology, extracting very good performance from MIP
solvers for high-level CP-style MiniZinc models.

Keywords: combinatorial optimization, high-level modelling, automatic
reformulation, linear decomposition, context-aware reformulation

1 Introduction

Constraint Programming (CP) operates in terms of specialized constraints, from
basic ones such as arithmetic, to high-level “global constraints” [3], and their
filtering /explanation algorithms. A solver which handles a model’s high-level
structure in terms of global constraints, can take advantage of this knowledge
in different ways. When the solver does not provide a handler for a certain
constraint, the latter can be expressed by more basic entities.



Current Mixed-Integer Programming (MIP) technology lacks a modelling
language based on global constraints, so that a dedicated MIP modeller has to
hard-code a chosen MIP decomposition of his real problem. Moreover, a MIP
solver might need to reverse-engineer the high-level model information for effi-
ciency [24].

We consider automatic linearization of CP models, producing good quality
MIPs. MiniZinc [21] is a solver-independent Constraint Programming modelling
language. A MiniZinc model is translated into FlatZinc, a low-level language,
and the translation is controlled by a redefinition library. The MiniZinc front-
end is now supported by some 20 solvers, including finite domain solvers, SAT
solvers, Lazy Clause Generation solvers, and even local search solvers [4]. Annual
MiniZinc competitions [27] provide a basis for comparing solvers and exploring
their strengths and weaknesses.

A number of modelling front-ends are available for MIP solvers, including
GAMS [2] and AMPL [10] which focus on general Mathematical Programming.
For combinatorial problems, AMPL supports logical constraints and counters.
A similar functionality is offered by ZIMPL [15]. There are a number of CP
languages offering automatic translation to MIP [1].

Our vision is that MiniZinc becomes an accepted and even widely-used mod-
elling language within the OR community, thus helping to narrow the divide
between OR, CP and SAT researchers, and to simplify prototyping. To this pur-
pose we seek to ensure that pure MIP models, when formulated in MiniZinc,
have similar performance to AMPL and GAMS. This requires no reformulation,
but care needs to be taken in user and solver interfaces. Beyond that, we try
to optimize the MIP-compatible reformulation of CP models to make it flexible
and extensible. This enables the modeller to use the CP style modelling where
combinatorial substructure is captured using global constraints, and obtain good
performance for their problem, using state-of-the-art MIP, CP and SAT solving
technologies on the same models.

In the MiniZinc Challenge [27] MIP solvers have had some success, but MIP
did not appear competitive on most of the Challenge benchmarks. Some models
are inherently more efficient for MIP solving, e.g., assignment problems (see
the example in Section 2.2), and problems involving network flow. But we were
suspicious that the relatively poor performance of MIP solvers was an artifact
of a naive transformation of CP models to MIP. By improving linearization we
can see the true potential of MIP solvers on the Challenge benchmarks.

In automatic reformulation, it is up to the modelling system to provide ef-
ficient translation for the target solver. To yield efficient transformed models it
is important to ensure that auxiliary variables generated during reformulation
are not unnecessarily duplicated [23]. Cire et al [7] define an interactive system
that aids automatic detection of equivalent auxiliary variables produced in re-
formulations of various parts of a model. MiniZinc 2.0 takes a different approach
through user-defined functions [28] which are used to avoid duplication in the
first place.



Refalo [23] presents a system for automatic reformulation of global con-
straints into MIPs. He observes that the reformulations are usually standard and
tight. The system supports dynamic reformulation: as more information about
the model becomes available during solving, the reformulation is updated. How-
ever, the implementation is bound to a hybrid of specific CP and MIP solvers.

Among the “basic” non-linear constraints we consider domain constraints,
restricting an integer variable to take values in a specified set, both in static as
well as reified version (i.e., depending on another condition). Such constraints
can appear on their own in a model, or be produced by the decomposition
of other non-linear constraints, such as disjunction, array element access, and
many others. We propose a coordinated decomposition of domain constraints
which takes into account all those of a group of dependent variables.

The next section gives introductory examples. Section 3 discusses general
linearization methods, in particular introducing the new domain constraint de-
composition. Experimental results follow.

2 Basics and Redefinition Examples

This section provides an overview of MiniZinc’s redefinition mechanism and some
motivating examples.

2.1 Basics on MiniZinc and Solver-Specific Redefinitions

MiniZinc [28] is a declarative modelling language. It builds constraint structures
using predicates, here is a toy example:

predicate small(int: m, var int:y) = -m <=y /\ y <= m;
predicate p(int: u, var bool: b, var int: x) =

(b <-> small(u,x));
constraint p(4,false,v);

Global constraints [3], such as the well known alldifferent, are also specified
as predicates.

When the model is compiled for a specific solver, the front-end looks for
a solver-specific redefinition of the global constraints used. If none is provided,
MiniZinc has a default decomposition, for example the standard library definition
for alldifferent is:

predicate alldifferent (array[int] of var int: x) =
forall(i,j in index_set(x) where i < j)

C x[il '= x[31 );

However the solver can provide its own redefinition. In particular, it can for-
ward the predicate call unchanged and use specialized algorithms. The trans-
lated model is converted to the low-level FlatZinc format and can be passed to
the solver, or used directly if the solver is linked in the same executable.

For example, the alldifferent constraint can be redefined in a different
way than given above for a linear solver:



predicate alldifferent (array [Setl] of var Set2: x) =
forall (j in Set2)( sum(i in Set1) (x[il==j) <= 1 );

This redefinition automatically introduces an auxiliary zero-one variable to en-
code the assignment of a variable to a value, x[1]==j, see Section 3. Note that
this auxiliary variable is re-used whenever this equality is encoded again, see
Section 3.1.

The redefinition library for MIP is located in folder share/minizinc/linear
of the MiniZinc distribution. To use this library, the mzn2fzn compiler is called
with options -G linear. In particular, files redefinitions*.mzn re-define the
basic constraints, such as logical connectives and min/max. Most global con-
straints are specified in dedicated files, for example lex_less.mzn. If a library
does not provide a header for some global, its default decomposition is taken
from the standard library share/minizinc/std.

2.2 Linearization Example: Assignment Problem

Consider an assignment problem. Its natural CP model is:

set of int: WORKER ; / workers

set of int: TASK ; % tasks to be assigned to workers

array [WORKER, TASK] of int: value;

array [WORKER] of var TASK: task; / which task worked on by each worker
include "alldifferent.mzn";

constraint alldifferent(task); / each worker works on a different task
solve maximize sum(w in WORKER) (value [w,task([w]]);

The natural MIP formulation of the model is the following one:

set of int: WORKER ; / workers
set of int: TASK ; % tasks to be assigned to workers
array [WORKER , TASK] of int: value;
array [WORKER , TASK] of var 0..1: worker_task;
constraint forall(w in WORKER) % one task per worker
(sum(t in TASK) (worker_task[w,t]) = 1);
constraint forall(t in TASK)
(sum(w in WORKER) (worker_task([w,t]) <= 1); 7/ alldifferent
solve maximize sum(w in WORKER, t in TASK) (value[w,t] * worker_task([w,t]);

Unsurprisingly the MIP solver is effectively ”infinitely” faster than a CP solver
on this problem since the MIP solver will effectively implement a polynomial-
time maximal matching algorithm using the linear integer constraints that arise
in its formulation. The challenge for the automatic linearization is to ensure that
the "natural” CP model above results in the MIP formulation being sent to the
MIP solver, so that we can make use of the insights of combinatorial substructure
without being penalized. This is particularly important when we want to solve
assignment problems with other side constraints.

As explained in Section 2.1, our automatic linearization of alldifferent
produces the exact equivalent of its “natural” MIP decomposition. For the ob-
jective function, which accesses element task [w] in each row w of matrix value,
the compiler transforms nested matrix access valuel[w,task[w]] into a stan-
dard array access represented by the global constraint element [3]. The latter is
linearized as follows [13]:




sum (t in TASK) ( valuelw,t] * (task[wl==t) )

Note that the auxiliary binary variable representing the equality task [i]==]
is re-used, which altogether gives the natural MIP formulation. There will be
some overhead for the (now useless) original task variables. However we have
an instance of a 3D orthogonal packing model where such variables improve
search behavior of IBM ILOG CPLEX 12.6.3 [14].

2.3 Linearization Example: Tour Guide Allocation Problem

An application brought to us by a local company is the tour guide allocation
problem. For a set of planned tours with fixed locations and times, the require-
ment is to minimize the total number of guides needed as well as the travel costs
of the guides between their tours.

Let matrix travel_cost contain the travel costs between tours and a 4-
column matrix tour contain start day, duration, start and end location of a
tour in each row. Variable array succ describes the successors of each tour in its
guide’s sequence of tours, as follows:

int: tour_ct; % The total number of planned tours

set of int: C = 1..4; ] Columns of tour data structure

int: SDay = 1; int: Dur = 2; int: SLoc = 3; int: ELoc = 4; / Column names
array [1..tour_ct,C] of int: tour;

int: loc_ct; Number of locations

array [1..loc_ct, 1..loc_ct] of int: travel_cost;

array [1..tour_ct-1] of var 1..tour_ct: succ;

BN

The last tour with index tour_ct is the END tour with a zero distance to all
other tours’ locations. This ensures that in an optimum no two tours have the
same successor (different from END).

The total travel cost is the sum of the cost of traveling from the end of each
tour to the start of its successor (as recorded by succ):

constraint total_travel_cost = sum (t in 1..tour_ct-1)
(travel_cost [tour[t,ELoc],tour [succ[t],SLoc]]);

As in Section 2.2, the nested matrix element accesses are simplified by the com-
piler, resulting in a linear constraint.

Another array of decision variables is first_tour. It tells us how many tour
guides are to be used. It does this by selecting certain tours to be the first tour
on (some) tour guide’s sequence of duties. Then, every tour must have a tour
guide (either it must be a first tour or it must be the successor of another tour):

array [1..tour_ct-1] of var bool: first_tour;
constraint forall(t in 1..tour_ct-1)
( first_tour[t] \/
( exists (t2 in 1..tour_ct-1) (t = succ[t2]) )
) 8

Again, decisions t==succ[t2] are converted into auxiliary binary variables, us-
ing either unary decomposition or domain refinement (Section 3). These auxiliary
variables are automatically the same as in the linearization of the travel cost.

Finally, the successor of tour t must have a start date greater than or equal
to the start date of t plus the duration of t:




constraint forall(t in 1..tour_ct-1)
(tour [t,SDayl+tour [t,Dur] <= tour[succ[t],SDayl);

The “every tour must have exactly one tour guide” constraint can be made
explicit by a direct MIP-tailored network flow-type formulation as follows:

constraint forall(t in 1..tour_ct-1)
(first_tour[t] + sum(t2 in 1..tour_ct-1)(t = succ[t2]) = 1);

On an example with 25 locations and 41 tours, CP finds only a suboptimal solu-
tion in observable time. Previously it was necessary to write a different MiniZinc
model to elicit the efficient performance of a network-flow model with a MIP
solver. Now, with automatic linearization, with or without the ”every tour has
exactly one tour guide” constraint, IBM ILOG CPLEX 12.6.3 [14] proves an
optimum without branching.

3 Linearization

This section discusses some basic linearization principles, introduces domain
refinement, and discusses decomposition of the most commonly used global con-
straints.

3.1 Linearization Principles

Linearization by “Big-M”s. The basic linearization method for complex
constraints is the so-called big-M transformation (see e.g. [19, 13]). Given a linear
constraint e < 0 in disjunction with a Boolean b, that is e < 0V b or equivalently
—b — e <0, then if M is the largest possible value linear expression e can take,
this can be expressed using the linear constraint e < Mb.

For example, x # y is equivalent to a disjunction between two inequalities:

r>y+1Vy>zc+1 (1)

which can in turn be transformed by introducing a binary variable b into the
conjunction of two implications: b — = >y + 1 and =b — y > x + 1, which can
then be transformed to linear constraints. Assume z and y range over [0, 10] we
can encode the first constraint using the linear constraint y +1 —z < 11(1 — b)
and the second by x +1 —y < 11b.

Linearization of complex constraints consists of breaking them down into
reified linear constraints, and then replacing these with linear constraints using
the big-M method illustrated above, or other methods described in this sec-
tion. For space reasons we don’t describe the MIP decompositions of other basic
constraints, such as logical ones, referring the reader, e.g., to [13,23].

Ezxample 1. Consider the model on the left in Fig. 1. Using “big-M"s, we can
linearize the two constraints as shown on the right in the same figure. Its con-
tinuous relaxation allows the solution x==5.5; betal==beta2==0.75. O




var 0..10: x;

var bool: betal;

var bool: beta?2;
constraint betal <-> x<=4;
constraint beta2 <-> x>=7;

x-4 <= 6x(1-betal)
5-x <= bx*betal
7-x <= Tx(1-beta2)
x-6 <= 4*beta2

Fig. 1. Example model and its “big-M” linearization

Linearization with Unary Encoding of the Domain. An alternative ap-
proach to linearization of complex constaints is to introduce a binary variable b},
for each value k in the domain D(z) of x [23]. The correspondence between the
binary variables and the original integer variable can be enforced by the linear
constraints

ZkeD(a:) by =1, (2a)
ZkeD(x) kby = . (2b)

Unary encoding introduces a lot of auxilliary variables, however it is usually
preferred due to its tighter continuous relaxation. There are many constraints
which are best transformed using these binary variables, including alldifferent,
element (see [23] and Section 2.2), inverse, multiplication of variables, and
some others.

Tight Reformulation Using Common Subexpression Elimination. To
achieve a tight MIP model without duplicate variables and constraints, it is
essential that when a constraint on the same variable is transformed using its
unary encoding, the same binaries are used. When the translation is controlled
by a library, this can be achieved automatically through MiniZinc’s mechanism
of user-definable functions [28].

To introduce these binaries, we use the function eq_encode(var int: x)
(which was named int2array in [28]), returning an array of 0-1 variables and
imposing linear constraints (2). Now every time this function is invoked on a
variable x, MiniZinc’s common subexpression elimination ensures that the same
binaries are reused, even if the function is embedded in a predicate or another
function.

However there still can be information loss. For example, x % y — 5 or y # =
would be linearized using unary encodings of variables 2z’ = z — y + 5 and
2" = y — x, respectively. The current capabilities of the MiniZinc language do
not allow it to recognize that we could make use of the same unary encoding for
these cases and we tackle this issue together with unified domain refinement in
Section 3.2.

Multiplication. In MiniZinc 1.6, the decomposition for FlatZinc predicate
int_times constraining z = zy was z = (ZYmin; - - - » TYmax ) y—ymm+1, O €quiv-
alently, using explicit calls to the global constraint element [3], element(y —



Ymin + Ls [TYmin, - - - TYmax), ), WHETe Ymin, Ymax are the finite bounds of y. Note
this method will also work when z is real-valued.

In the cases of a small (chosen as 4..20) product domain size |D(x)| x |D(y)|
and no variable domain having the form {0, k}, k € Z\ {0}, experiments proved
that it is advantageous to use the following alternative encoding;:

=Y, ixjxb,  where bY =16 (b =1A0 =1). 3)
If |D(z)] = |D(y)] = 2 and 0 € D(z) N D(y), we apply Boolean conjunction in-
stead. All these decompositions seem reasonably strong because experimentation
with McCormick envelopes [18] did not show better results.

3.2 Linearization of Domain Constraints

A critical class of constraint for linearization are the so called domain constraints.
Under domain constraint for variable x € Z we understand any of the following:

r €S, (4a)
B < xz €S, (4b)

where S C Z is a finite integer set and S a Boolean variable. (4a) is a static and
(4b) is a reified domain constraint. In FlatZinc they are imposed by predicates
set_in(_reif).

This class of constraints generalizes some other non-linear constraints, such
as comparisons with a constant: x # a (static and reified, int_ne(_reif)),xz = a
and z < a (reified, int_(eq/le) _reif). Of the two latter, only reified versions
are non-linear. W.l.o.g., FlatZinc doesn’t consider other comparison operations
as they can be reduced to “<” by variable substitution.

Moreover, comparisons between two variables x,y € Z can be transformed
to constraints (4a), (4b) by introducing a variable for their difference: z = z —y.
Then, for example, x # y is equivalent to z # 0.

Domain constraints (4a) and (4b) can be straightforwardly linearized using
the unary encoding (2) by the following constraints (5a) and (5b), respectively:

1= Zkes b, (5a)
5 = Zkes bglg' (5b)

Domain Refinement for Integer Variables. The unary encoding (2) can
introduce a lot of auxilliary variables b for x with a big domain D(z) C Z. We
propose a refined domain structure as follows. Let x € S be a constraint of the
form (4a). Let the following list:

SL(S) = argmin{n | S=7Zn U[li,ui], li,u; €8, zl,n} (6)

i=1



be the smallest list of integer-bounded intervals covering S and including no
other integer values. Then, x € S is equivalent to the following system:

b =1, (7b)
b € {0,1},  i=1,[SL(9)]. (7¢)

System (7) generalizes the unary encoding (2). Note that when the full unary
encoding eq_encode (x) is already introduced for a given variable x, the MiniZinc
transformation ensures that it is used for the domain constraints instead of the
above. This prevents both systems (2) and (7) from being present in the model.

System (7) can be seen as a disjunction of 1D polyhedra. However we are
not aware of any previous results in line with the unified domain refinement
introduced below.

Unified Domain Refinement. We propose a single domain refinement which
can be used to decompose all the domain constraints on a given variable, as well
as those on dependent variables.

Ezample 2 (continued from Example 1). For the model of Fig. 1, consider the
following list of intervals:

SL = (]0,4],[5,6],[7,10]),

and the corresponding system (7). Then we can linearize the model by imposing
the following equivalences:

ﬁl = 517 (8&)
By = bs. (8b)
The solution betal = beta2 = 0.75; x == 5.5; of Example 1 is no longer
feasible, in the linear relaxation, simply by (7b). O

W.lo.g., for a given variable = we have exactly one static domain constraint
(4a) (with S = D(x)) and possibly several reified constraints (4b).

Definition 1. Given an integer variable x and all its domain constraints

x € D(x), (9a)
,@j Ad .TESj, J € Jy, (Qb)

define the unified domain refinement SL, as the list of the isolated intervals of
the set
S. = SL(D(@) N ) (SL(S;) USL(D()\ ). (10)
J€Jx
Note that unary encoding (2) represents a special case of domain refinement,

namely it is equivalent to system (7) based on the degenerate interval list
(lkyur] | Iy = u, = k, k € D(x)).



Theorem 1. For an integer variable x, system (7) based on the interval list
SL, correctly linearizes the static constraint (9a). For each j € J,, the reified
constraint (9b) is correctly linearized by the following equation:

szz{i)i|li7ui65j7 16{1,,|STI|}} (11)

Proof. Note that S, NZ = D(x), which proves correctness for (9a). The sublist
([li;wi] | li,u; € Sj) of SL, covers all elements of S; N D(x), proving (11). O

Theorem 2. For an integer variable x with domain constraints (9), the contin-
uous relaxation of the decompositions (7), (11) based on unified domain refine-
ment SL, as well as that of unary encoding (2), (5b) are equally strong in terms
of the high-level variables (v and 55, j € J).

Proof. Given a continuous solution (m, 6j|jejw7b£|k€D(x)) of unary encoding, it
is easy to see that (l;l =k, bi)uiﬁ'“l fulfills (7) and (11).

Vice versa, given a continuous solution ( ,/8]|jejr7b || SLe l) of (7), (11), set

— >, Libi
r= $~ZZ = € [0,1].
> uibi =32, lib;

For each i € {1,... , if l; = u; then set bf = bi, otherwise select (b7)|vL,
so that b; = ity bi (Whlch provides (2a) and (5b)) and

which is in general non-unique. This fulfills (2b):

[STal u; (ST |
Zkbx_ZZW_Zb i)+ li) = O
keD(x) i=1 k=l;

We see that unary encoding can have non-unique equivalents for a solution of
unified refinement, leading to symmetries.

Dependent variables. When there is a set of variables {z1,...,z,} that are
pairwise linearly dependent (i.e. V1 < i < j < ndai;bi; s.t.x; = ajx; + bij), if
at least one of them has a unary encoding generated by a specialized global, it
can be re-used for the domain constraints of all {z;}. Otherwise, all the domain
constraints on {z;} can be projected onto just one of them, using a single unified
domain refinement.

The unification procedure was implemented as a post-processing step in the
MiniZinc compiler v2.0.10 but still controllable from the redefinition library. It
looks for linearly dependent variables in several ways, for example if two vari-
ables are initialized by linear expressions whose non-constant parts are multiples
of each other. This occurs for various auxiliary variables introduced in reformu-
lations.

10



3.3 Global Constraint Decompositions

The MiniZinc distribution defines default decompositions for over 100 global
constraints. The reformulations described in 3.2 above ensure that most of these
default decompositions can be directly re-used for MIP, producing tight linear
reformulations of the global constraints, where duplication of auxiliary variables
has been automatically minimised.

For a few constraints where default decomposition is not MIP-efficient, we
have implemented tailored MIP formulations, listed in the directory share/minizinc/linear
of the MiniZinc distribution.

alldifferent, inverse, alldifferent_except_0: We have already seen how
alldifferent is linearised using the unary encoding. One can linearise inverse
similarly. The constraint alldifferent_except_0 is a simple variation of alldifferent
and much more pleasing than the constraint programming decomposition:

predicate alldifferent_except_O(array [Setl] of var Set2: x) =
forall (j in Set2 diff {0}) ( sum(i in Setl) (x[il==j) <=1 );

element, table: We have already seen how element is linearised using the unary
encoding. The table constraint table([z1,...,z,], T) is encoded by defining
auxiliary 01 variables \;, 1 < ¢ < m for each of the m rows in the table and then
equating z; = >.1"; A\;T;;. This is a direct extension of the element encoding,
minus the index element.

cumulative: The global cumulative constraint, limiting the total amount of
a renewable resource available to all tasks at any moment of time, is frequent
in scheduling problems [25]. It can be used to express alldifferent, as in the
ghoulomb.mzn benchmark, and as a redundant constraint in packing problems
[26].

Two forms of reasoning used in the cumulative constraints are reasoning
about the ordering of tasks (“task decomposition”) [25], and reasoning about
the tasks running at each time slot (“time decomposition”) [12].

Transforming the cumulative constraint for MIP can be costly in terms of
both the number of variables and constraints. While the number of variables
resulting from the task decomposition is proportional to the number of tasks
squared, the time decomposition ultimately requires a variable for each task
indicating its relation to each time slot, which requires a number of variables
proportional to the product of tasks and time slots.

The time decomposition of cumulative is currently the default in MiniZinc,
and thus was solely used by the previous linearization library. We found that
when the product of the number of time slots and the number of tasks exceeds
a certain parameter (chosen as 2000), it is advantageous to use the task decom-
position of cumulative and not the time decomposition.
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circuit and subcircuit: The global constraints circuit and subcircuit
take an argument vector x, where x[i] denotes the successor of node i (or just
i if it is not included in the subcircuit). They ensure that there are no separate
cycles and each node is in exactly (for subcircuit, in at most) one loop.

The previous linearization library had no special translation for them, re-
sulting in the usage of standard decompositions. As an example, for subcircuit
they involved ordering constraints of the type

({ordering condition)) => order[x[i]l] = order[i] + 1

where auxiliary variable order[i] is the order of node i in the subcircuit,
starting from the least-index node. The order of excluded nodes is not con-
strained. Expression order [x[i]] is a variable subscript (flattened as predicate
array_var_int_element) and hard to linearize efficiently.

These globals are now encoded as variants of the Miller-Tucker-Zemlin formu-
lation [20]. Interestingly, in an experiment with the lifted MTZ cuts of Desrochers
and Laporte [9], we observed inferior behaviour when we tested them using IBM
ILOG CPLEX 12.6.1 [14].

regular: Probably the most difficult global constraint for the previous lineariza-
tion library is regular. It requires that the sequence of values in the control vec-
tor x satisfies a deterministic finite automation defined by the acceptable states
vector a and a transition function d mapping the current state and the control
value into the next state: a[i+1] = d[a[i], x[i]]. The default decomposition
just uses the latter prescription directly, resulting in a series of element’s.

Specialized propagation algorithms for regular, cf. [8], construct the graph
of achievable/feasible states for each step, called layered graph. Its nodes corre-
spond to the unary encodings of the state variables a[i] for each step i: node
(¢, k) means a[il==k, and arcs denote the transitions between the nodes of the
consecutive steps (layers). A network-flow approach in [8] uses such a graph, im-
plemented by an external procedure, and formulates the network-flow constraints
in a MIP-typical way, namely with binary variables A(; x,),(i+1,k,) € {0,1} for
the flow on each arc ((4, k1), (1 + 1, k2)).

We implemented this reformulation in MiniZinc, iteratively tightening the
domains of the state variables a[i] and introducing the above-mentioned arc
flow variables.

4 Experiment

To validate the MIP reformulations described above, we tested them on leading
commercial and free MIP solvers, and compared them with the best solvers based
on results from the MiniZinc Challenge.

As test instances we used 400 instances from MiniZinc Challenges 2012—-2015.
Naturally these instances are advantageous for the solvers proven on the very
same test set!

The MIP solvers we tested were:
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— commercial solver Gurobi 6.5.1 [11],
— commercial solver IBM ILOG CPLEX 12.6.3 [14],
— free solver COIN-OR Branch-and-Cut (CBC) 2.9.8 [17].

We tested the MIP solvers each under three configurations: default (with all
linearization approaches), “no DR” (without domain refinement, Section 3.2),
and “old” (with the old linearization library from MiniZinc 1.6 however supple-
mented with MIP-tailored globals alldifferent, table, and inverse, Sections
2 and 3). The multi-pass compilation of models suggested in [16] was not con-
sidered as it currently fails on 15 instances.

The best solvers from the MiniZinc Challenge we used for comparison were:

— Opturion CPX [22], overall official winner of the Challenges 2013 and 2015,
— Chuffed [5, 6], not prize-eligible in the Challenge.

For these solvers we used the search strategy specified by the model.

All solvers were executed sequentially (1 thread) on an Intel i7-4771 CPU
@ 3.50 GHz with a memory limit of 12 GB per process. MiniZinc 2.0.13% was
used to flatten the models. The actual FlatZinc-to-solver interfaces are going to
be released as part of the upcoming MiniZinc 2.1. Solving time was limited to 5
minutes total CPU time per method/instance. Flattening time was not limited.

In Table 1 we report the following data for each solver and configuration: the
number of optimal (opt), feasible but not optimal (feas), satisfied (sat), proven
infeasible (inf), not flattened (nofzn), failed (fail) (solver crashed or did not stop
normally in 500s), and other cases (other) — where none of the previous results
were achieved. i.e., the solver ran without finding feasible solutions and did not
crash.

Table 1. Comparison of solvers and configurations

Solver+config opt feas sat inf nofzn fail other
Gurobi 160 113 48 3 5 1 70
Gurobi, noDR 157 115 45 2 5 2 74
Gurobi, old 133 118 28 5 16 4 96
CPLEX 139 121 46 2 5 1 86
CPLEX, noDR 141 124 47 3 5 0 80
CPLEX, old 124 118 26 4 16 2 110
CBC 86 82 24 2 5 32 169
CBC, noDR 78 69 20 1 5 40 187
CBC, old 61 58 8 1 16 51 205
Chuffed 157 142 54 5 2 0 40
Opturion CPX 130 159 37 5 2 0 67

3 minizinc.org
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1. Note from Table 1 that sometimes the MiniZinc-to-FlatZinc compilation can-
not produce a working model (columns nofzn and fail). For MIP, the main
causes were the globals cumulative, regular and table involving variables
with large domains, leading to huge decompositions and thus to big MIP
models where MIP solvers run out of memory or just stop responding. The
same happens to the CP solvers when they don’t handle a global constraint
directly and it has to be decomposed, in this case cumulative with variable
durations and resource demands in 2 instances of mznc2013/f jsp.

2. The linear solvers successfully find and prove optimality - Gurobi beats both
Chuffed and Opturion CPX in terms of number of optimal solutions.

3. The new domain refinement is definitely beneficial to Gurobi and more so
for CBC, while strangely it is disadvantageous for CPLEX. We believe it
may interfere with some presolve simplifications in CPLEX.

Even the free MIP solver CBC, with helpful support from its developers, now
runs bug-free and gives results on nearly half the instances. Moreover, as revealed
in Table 2 CBC sometimes succeeds where the Challenge solvers fail.

In Table 2 we present pairwise set difference analysis for the solvers’ best
configurations. For each comparison of two solvers/configurations, we report the
following numbers: Oopt is the number of cases where only that solver proved
optimality (and the other solver had at best feasibility); Ofea is the number
of cases where only that solver found a feasible solution (and the other none);
Oinf is the similar value for infeasible cases; Bpri and Bdua are the numbers of
instances for each solver when it has found a better primal/dual bound if both
had one, respectively.

Gurobi outperforms Chuffed on over 100 instances, and even CBC outper-
forms Chuffed on over 50 instances. The differences between the MIP solvers
and the Challenge solvers are particularly evident on proofs of optimality and
feasibility (Oopt and Ofea). In this comparison, CBC outperforms Chuffed on
30 instances, while CPX only outperforms Chuffed on 8 instances.

What emerges from these tests is that, now that the linearization of CP
models has been improved, MIP shows complementary strengths in contrast
with the Challenge solvers. Given a new MiniZinc model it makes sense to try
eveluating it with different classes of solvers, including MIP.

The work that has been done ensuring the behaviour of CBC is sound can
also pay off by enabling constraint programmers to have immediate access to a
free MIP solver adding an additional weapon to the CP modeller’s armoury.

5 Conclusion

The results show that MIP solvers are highly competitive with CP solvers on
MiniZinc benchmarks, which are, for the most part, written with CP solvers
in mind. This is good news since it validates the constraint programming view
of modelling: that the model should be written in the highest level possible,
and it should be up to tools to map this to a suitable form for the solver if
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Table 2. Comparison of difference sets

Solver—+config Oopt Ofea Oinf Bpri Bdua
Gurobi vs Chuffed
Gurobi 52 22 0 41 -
Chuffed 49 45 2 23 -
CPLEX(noDR) vs Chuffed
CPLEX(noDR) 40 19 0 42 -
Chuffed 56 50 2 29 -
CBC vs Chuffed
CBC 21 9 0 25 -
Chuffed 92 112 3 24 -
Gurobi best cfg vs CPLEX best cfg
Gurobi 21 19 0 46 98
CPLEX(noDR) 3 14 0 33 31
Chuffed vs Opturion CPX
Chuffed 30 26 0 49 -
CPX 3 5 0 37 -

needed (of course the CP perspective is that the preferred mapping would be to
a global propagator, but also MIP solvers might start providing global constraint
handlers). This is also a challenge to CP since it illustrates that MIP solvers can
be used out of the box to tackle problems that we often consider are suited to the
CP solving technology. Of course there is a place for both CP and MIP solving
technology, and one of the aims of a solver-independent modelling language is to
avoid users committing early to the wrong technology. Better linearization makes
MiniZinc a more attractive modelling language for the general OR community,
which may then make them more aware of the CP view of modelling and solving.

There is plenty of scope for further improvement of automatic linearization
of MiniZinc models. Issues that we plan to investigate are: better continuous
relaxations of nonlinear expressions, avoiding symmetry creation in decomposi-
tions, providing a declarative interface to domain refinement to allow the user
to control the process using annotations.
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