
Modeling and Solving Project Scheduling with
Calendars

Stefan Kreter1, Andreas Schutt2,3, and Peter J. Stuckey2,3

1 Operations Research Group, Institute of Management and Economics,
Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

2 Optimisation Research Group, National ICT Australia
3 Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

stefan.kreter@tu-clausthal.de,{andreas.schutt,peter.stuckey}@nicta.com.au

Abstract. Resource-constrained project scheduling with the objective
of minimizing project duration (RCPSP) is one of the most studied
scheduling problems. In this paper we consider the RCPSP with gen-
eral temporal constraints and calendar constraints. Calendar constraints
make some resources unavailable on certain days in the scheduling period
and force activity execution to be delayed while resources are unavail-
able. They arise in practice from, e.g., unavailabilities of staff during
public holidays and weekends. The resulting problems are challenging
optimization problems. We develop not only four different constraint
programming (CP) models to tackle the problem, but also a specialized
propagator for the cumulative resource constraints taking the calendar
constraints into account. This propagator includes the ability to explain
its inferences so it can be used in a lazy clause generation solver. We
compare these models, and different search strategies on a challenging
set of benchmarks using a lazy clause generation solver. We close 83 of
the open problems of the benchmark set, and show that CP solutions
are highly competitive with existing Mip models of the problem.

1 Introduction

The resource-constrained project scheduling problem with general temporal and
calendar constraints (RCPSP/max-cal) is an extension of the well-known RCPSP
and RCPSP/max (see, e.g., [14, Chap. 2]) through calendars. The RCPSP/max-
cal can be given as follows. For a set of activities, which require time and renew-
able resources for their execution, execution time intervals must be determined
in a way that minimum and maximum time lags between activities are satisfied,
the prescribed resource capacities are not exceeded, and the project duration is
minimized. The difference with RCPSP/max is that a calendar is given for each
renewable resource type that describes for each time period whether the resource
type is available or unavailable. Time periods of unavailability can occur, e.g.,
due to weekends or public holidays. The activities and time lags are dependent
on the resource calendars, too, and some activities can be interrupted for the

0

0

∅

1

3

{1, 2, 3}
2

1

{3}

3

3

{1, 2, 3}
4

2

{1, 2}

5

0

∅

�
�
��

@
@
@R

-

@
@
@R

�

-
� �

�
��

(a) Logic diagram of the example project

-

6

t
1 2 3 4 5 6 7 8 9 10

Cal1

Cal2

Cal3

J
JJ

J
JJ

J
JJ

(b) Time periods of unavailability

-

6

t
1 2 3 4 5 6 7 8 9 10

1

3

4

-

6

t
1 2 3 4 5 6 7 8 9 10

1

3 3

4

�
�
�
�@

@
@
@

�
�
�
�@

@
@
@

�
�
�
�@

@
@
@

�
�
�
�@

@
@
@

-

6

t
1 2 3 4 5 6 7 8 9 10

1

2

3 3

�
�@
@

�
�@
@

�
�@
@

�
�@
@

resource 1

resource 2

resource 3

(c) Possible resource allocation

Fig. 1: Illustrative Example for RCPSP/max-cal

duration of a break while others cannot be interrupted due to technical reasons.
For the interruptible activities a start-up phase is given during which the activ-
ity is not allowed to be paused. Concerning the renewable resource types one
distinguishes resource types that stay engaged or are blocked, respectively, dur-
ing interruptions of activities that require it and resource types that are released
and can be used to carry out other activities during interruptions.

Our motivation for developing CP models for the RCPSP/max-cal and us-
ing lazy clause generation to solve it lies in the very good results obtained by
[18,19,20] solving RCPSP and RCPSP/max by lazy clause generation.

Example 1. Figure 1 shows an illustrative example with six activities and three
renewable resource types. The project start (activity 0) and the project end
(activity 5) are fictitious activities, i.e., they do not require time or resources. A
logic diagram of the project is given in Fig. 1(a) where each activity is represented
by a node with the duration given above and the set of resource types used by
the activity below the node. The arcs between the nodes represent time lags.

The calendars of the three renewable resource types are depicted in Fig. 1(b).
If there is a box with an X for a resource type k and time t, then resource type k
is not available at time t. Resource type 1 is always available and can be thought
of as a machine. Resource types 2 and 3 can be thought of as different kinds of
staff where resource type 2 (3) has a five-day (six-day) working week. In addition,
assume that resource type 1 stays engaged or is blocked, respectively, during a
break of an activity that requires resource type 1 for its execution while resource
types 2 and 3 are released during interruptions of activities.

A possible resource allocation of the three renewable resource types is shown
in Fig. 1(c). Activity 3 requires all renewable resource types for its execution.

Since resource type 2 is not available in periods 6 and 7, activity 3 is interrupted
during these periods. While resource type 1 stays engaged during the interrup-
tion, resource type 3 can be used to carry out activity 2 in period 6. ut

Few authors have dealt with calendars in project scheduling so far. A time
planning method for project scheduling with the same calendar for each resource
type is introduced in [23]. In [6] the RCPSP/max with different calendars for
each renewable resource type is investigated for the first time but the start-
up phase of the interruptible activities are not taken into account. [6] proposes
methods to determine the earliest and latest start and completion times for the
project activities and priority rule methods. Procedures to determine the earliest
and latest start times if a start-up phase is taken into account are presented in
[7] and [14, Sect. 2.11]. In addition, they sketch how priority-rule methods for
the RCPSP/max can be adapted for calendars. In the approach in [7] and [14,
Sect. 2.11] all resources stay engaged during interruptions of activities. Within
the priority-rule methods in [6,7], and [14, Sect. 2.11] the procedures to deter-
mine the earliest and latest start times must be carried out in each iteration.
Recently, a new time planning method, three binary linear model formulations,
and a scatter search procedure for the RCPSP/max-cal were developed in [9].
Moreover, Kreter et al. [9] introduce a benchmark test set which is based on
the UBO test set for RCPSP/max [8]. The time planning method determines all
time and calendar feasible start times for the activities and absolute time lags
depending on the start times of the activities once in advance and then uses this
throughout the scatter search.

In CP, the works [3,4] respectively propose calendar constraints/rules for
ILOG Schedule and Cosytech CHIP. The former [3] was generalized to intensity
functions of activities in IBM ILOG CP Optimizer, while breaks of activities
extend the length between their start and end times, only resource types that
stay engaged can be modeled directly. The latter [4] introduces constraint rules
in the global constraint diffn for parallel machine scheduling.

A practical application where calendars must be considered as well as other
additional constraints can be found in batch scheduling [21]. Problems that are
related to the RCPSP/max-cal are treated in [22,5]. An alternative approach to
include calendars into project scheduling that makes use of calendar independent
start-start, start-end, end-start, and end-end time lags is proposed in [22] and [5]
studies the RCPSP with non-preemptive activity splitting, where an activity in
process is allowed to pause only when resource levels are temporarily insufficient.

2 Problem description

In this section we describe the RCPSP/max-cal formally and give an example
instance. We use identifiers and definitions from [9]. In what follows, we assume
that a project consists of a set V := {0, 1, . . . , n, n + 1}, n ≥ 1, of activities,
where 0 and n + 1 represent the begin and the end of the project, respectively.
Each activity i has a processing time pi ∈ N0. Activities i with pi > 0 are called
real activities and the set of real activities is denoted by V r ⊂ V . Activities 0

and n + 1 as well as milestones, which specify significant events of the project
and have a duration of pi = 0, form the set V f = V \ V r of fictitious activities.

A project completion deadline d ∈ N has to be determined in order to define
the time horizon of the calendars and the time axis is divided into intervals
[0, 1), [1, 2), . . . , [d−1, d) where a unit length time interval [t−1, t) is also referred
to as time period t. The set of renewable resource types is denoted by R and for
each renewable resource type k ∈ R a resource capacity Rk ∈ N is given that
must not be exceeded at any point in time. The amount of resource type k that
is used constantly during the execution of activity i ∈ V is given by rik ∈ N0.
For fictitious activities i ∈ V f rik := 0 holds for all k ∈ R. For each resource
type a resource calendar is given.

Definition 1. A calendar for resource k ∈ R is a step function Calk(·) :
[0, d)→ {0, 1} continuous from the right at the jump points, where the condition

Calk(t) :=

{
1, if period [btc, bt+ 1c) is a working period for k
0, if period [btc, bt+ 1c) is a break period for k

is satisfied.

With Ri := {k ∈ R | rik > 0} indicating the set of resource types that is used
to carry out activity i ∈ V , an activity calendar Ci(·) : [0, d) → {0, 1} can be
determined from the resource calendars as follows:

Ci(t) :=

{
mink∈Ri

Calk(t), if Ri 6= ∅
1, otherwise.

Then, for every activity i and a point in time t ∈ T := {0, 1, . . . , d} functions
next breaki(t) and next starti(t) give the start time and the end time of the
next break after time t in calendar Ci, respectively.

next breaki(t) := min{τ ∈ T | τ > t ∧Ci(τ) = 0}
next starti(t) := min{τ ∈ T | τ > t ∧Ci(τ) = 1 ∧Ci(τ − 1) = 0}

When calendars are present, we have to distinguish activities that can be in-
terrupted for the duration of a break in the underlying activity calendar and
activities that are not allowed to be interrupted. The set of (break-)interruptible
activities is denoted by V bi ⊂ V and the set of non-interruptible activities is
given by V ni = V \ V bi, where V f ⊆ V ni holds. The execution of an activity
i ∈ V bi must be interrupted at times t with Ci(t) = 0, and the execution must
be continued at the next point in time τ > t with Ci(τ) = 1. Si ∈ T indicates the
start time and Ei ∈ T represents the end of activity i ∈ V . Since the jump points
in the calendars Calk, k ∈ R, are all integer valued, the points in time where an
activity is interrupted or continued are integer valued, too. The completion time
of activity i ∈ V can be determined by Ei(Si) := min{t |

∑t−1
τ=Si

Ci(τ) = pi}.
For each activity i ∈ V a start-up phase εi ∈ N0 is given during which activity
i is not allowed to be interrupted. For all activities i ∈ V ni εi := pi holds. We
assume that the underlying project begins at time 0, i.e., S0 := 0. Then, the

project duration equals Sn+1. In addition, we assume that no activity i ∈ V can
be in execution before the project start, i.e., Si ≥ 0, or after the project end,
i.e., Ei ≤ Sn+1.

Between the activities a set A of minimum and maximum time lags is given.
W.l.o.g. these time lags are defined between the start times of the activities (see
[6,9]). For each time lag 〈i, j〉 ∈ A, a resource set Rij ⊆ R and a length δij ∈ Z
are given, from which we can compute a calendar Cij(·) : [0, d)→ {0, 1} for each
time lag by

Cij(t) :=

{
mink∈Rij Calk(t), if Rij 6= ∅

1, otherwise

i.e., at least tu time units must elapse after the start of activity i before activity j
can start where tu = min{t |

∑t−1
τ=Si

Cij(τ) = δij}.
With parameter ρk we indicate whether renewable resource types k ∈ R

stay engaged or are blocked, respectively, during interruptions of activities that
require it (ρk = 1) or are released and can be used to carry out other activities
during interruptions (ρk = 0). A vector S = (S0, S1, . . . , Sn+1) of all activity
start times is called a schedule. Given a schedule S and point in time t the set
of all real activities i ∈ V r that are started before but not completed at time
t is called the active set and can be determined by A(S, t) := {i ∈ V r | Si ≤
t < Ei(Si)}. Then, the resource utilization rcalk (S, t) of resource k ∈ R at time t
according to schedule S can be computed by

rcalk (S, t) :=
∑

i∈A(S,t)|Ci(t)=1

rik +
∑

i∈A(S,t)|Ci(t)=0

rik ρk.

With the introduced notation the following mathematical formulation for the
RCPSP/max-cal can be given (cf. [6]):

Minimize Sn+1 (1)

subject to
∑Si+εi−1

t=Si

Ci(t) = εi i ∈ V (2)∑Sj−1

t=Si

Cij(t)−
∑Si−1

t=Sj

Cij(t) ≥ δij 〈i, j〉 ∈ A (3)

rcalk (S, t) ≤ Rk k ∈ R, t ∈ T \ {d} (4)

Si ∈ T i ∈ V (5)

The aim of the RCPSP/max-cal is to find a schedule that minimizes the project
makespan (1) and satisfies the calendar constraints (2), time lags (3), and re-
source capacities (4).

Each project can be represented by an activity-on-node network where each
activity i ∈ V is represented by a node and each time lag 〈i, j〉 ∈ A is given by
an arc from node i to node j with weights δij and Rij . The activity duration as
well as the start-up phase is given above node i in an activity-on-node network
and the resource requirements of activity i ∈ V are given below node i. For
the case where time lags depend on calendars, the label-correcting and triple
algorithm (see, e.g., [2, Sects. 5.4 and 5.6]) can be adapted and integrated in

Legend: i

pi, εi

ri1, ri2, ri3

j

pj , εj

rj1, rj2, rj3

-δij ,Rij

0

0,0

0,0,0

1

3,1

2,1,2

2

1,1

0,0,3

3

3,2

1,2,1

4

2,2

2,1,0

5

0,0

0,0,0

�
�
�
���

0,∅

@
@
@
@@R

0,∅

-3,R1

@
@
@
@@R

1,R2

�
-7,R2

-3,R3

�
-3,R3

�
�
�
���

2,R4

�
-10,∅

r
-

6
t

2 4 6 8 10

1

Cal1(t)

r r r
-

6
t

2 4 6 8 10

1

Cal2(t)

rqrq
r r r

-
6

t
2 4 6 8 10

1

Cal3(t) rq rq

Fig. 2: Activity-on-node network and resource calendars

a time planning procedure that determines a set Wi for each activity i ∈ V
containing all start times that are feasible due to the time lags and calendar
constraints, i.e., this procedure determines the solution space of the resource
relaxation of the RCPSP/max-cal (problem (1)–(3), (5)) [9]. In addition to the
sets Wi, the time planning procedure in [9] determines the “absolute” durations
of each activity and time lag with respect to the activities start times. The
absolute duration of an activity i ∈ V is denoted by pi(Si) := Ei(Si) − Si and
the absolute time lag for 〈i, j〉 ∈ A by dij(t) for each t ∈Wi.

Example 2. Figure 2 shows the problem of Ex. 1 again, but now filled with
information for the activites start-up phases and resource requirements as well
as information for the time lags.

Activities 0, 2, 4, and 5 are non-interruptible while activities 1 and 3 form
the set V bi and therefore can be interrupted for the duration of a break in the
underlying activity calendar. By applying the determination rules from above
Cal1 = C0 = C5 = C01 = C03 = C50, Cal2 = C1 = C3 = C4 = C12 = C34 =
C43 = C45, and Cal3 = C2 = C21 = C25 hold for the activity and time lag
calendars. Since both time lags between activities 3 and 4 depend on the same
calendar and p3 = δ34 = −δ43, activity 4 must be started when activity 3 ends
or more precisely at the next point in time after the end of activity 3 where the
calendar equals 1. The arc from the project end (node 5) to the project start
(node 0) represents an upper bound on the planning horizon of d = 10.

For the given example the time planning procedure from [9] determines the
sets W0 = {0}, W1 = {0, 1, 2, 3, 4}, W2 = {3, 4, 5, 7, 8, 9}, W3 = {0, 2, 3}, W4 =
{3, 7, 8}, and W5 = {5, 6, 7, 8, 9, 10}. For example, activity 4 cannot start at
times 5 or 6 since there is a break in calendar C4 from 5 to 7. Moreover, activity
4 cannot start at time 4 because it has to be executed without interruptions.
Due to the time lag between activities 3 and 4, activity 3 cannot start at time
1, because if activity 3 started at time 1 activity 4 must start at time 4.

For the time- and calendar-feasible schedule S = (0, 1, 5, 3, 8, 10) the resource
profiles are given in Fig. 3. As already mentioned in the introduction resource

-

6

t

rcal1 (S, t)

5 10

1

2

3

1

3

3
4s sr

s srs sr
s srs sr

s -

6

t

rcal2 (S, t)

5 10

1

2

3

1

3

3 3
4s srs sr

s srs sr
s sr

s srs srs

-

6

t

rcal3 (S, t)

5 10

1

2

3

1

3

3 3

2s sr
s srs sr

s sr
s sr

s srs srs
Fig. 3: Resource profiles of schedule S = (0, 1, 5, 3, 8, 10)

type 1 stays engaged during interruptions (ρ1 = 1) while resource types 2 and
3 are released during interruptions (ρ2 = ρ3 = 0). If the inequality Rk ≥ 3 is
fullfilled for each k ∈ R, schedule S is resource feasible and therefore a feasible
solution for the given example. 2

3 Models for RCPSP/max-cal

In this section, we present four different ways of modeling the RCPSP/max-cal.
The first three approaches use only well-known constraints from finite domain
propagation, while a new constraint to model the resource restrictions of the
RCPSP/max-cal and a corresponding propagator are used in the fourth model.

3.1 Model timeidx (time indexed formulation)

In preprocessing, the time planning procedure of [9] is used to determine the
sets Wi of all time- and calendar-feasible start times for each activity i ∈ V and

Si ∈Wi i ∈ V (6)

must be satisfied. Since the absolute time lags between the activities are depen-
dent on the start time of activity i for each 〈i, j〉 ∈ A, element constraints are
used to ensure that the correct values are taken into account.

element(Si,dij , d
′
ij) 〈i, j〉 ∈ A (7)

Thereby, dij is an array that contains for all Si ∈Wi the corresponding dij(Si)
value. Then, the constraints modelling time lags are

Sj − Si ≥ d′ij 〈i, j〉 ∈ A (8)

Absolute durations of the activities i ∈ V are used and the correct assignment
is ensured again by element constraints, where pi is an array containing for all
Si ∈Wi the coresponding pi(Si) value.

element(Si,pi, p
′
i) i ∈ V (9)

We implement the resource constraints using a time-indexed decomposition with
binary variables bit for each real activity i ∈ V r and point in time t ∈ T where
bit is true when i runs at t.

bit ↔ Si ≤ t ∧ t < Si + p′i i ∈ V r, t ∈ T (10)∑
i∈V r

bit rik (Ci(t) + (1−Ci(t)) ρk) ≤ Rk k ∈ R, t ∈ T (11)

Model timeidx can now be given by: Minimize Sn+1 subject to (6)− (11).

3.2 Model 2cap (doubling resource capacity)

Usually global propagators should be used to implement the resource constraints,
since more information is taken into account during propagation. This model
and the next make use of the global cumulative propagator [1] that explains
its propagation [16]. If the resource k ∈ R under investigation stays engaged
during interruptions of activities that require k for their execution, i.e., ρk = 1,
the global cumulative propagator can be used directly with the absolute activity
durations. If we regard the absolute duration of each activity i ∈ V and assume
that activity i requires rik units of resource k ∈ R with ρk = 0 at each point
in time {Si, . . . , Ei(Si) − 1}, there can be resource overloads at break times of
an activity even if the corresponding schedule is feasible. One way to handle
resources k ∈ R with ρk = 0 is to determine points in time Rtimesk where
there exist an activity that can be in execution and another activity that can
be interrupted, double the resource capacity Rk, introduce a set V dk of dummy
activities that require exactly Rk units of resource k at each point in time t ∈
T \ Rtimesk , and use the global cumulative propagator:

cumulative(S, p′, rk, Rk) k ∈ R : (ρk = 1 ∨Rtimesk = ∅) (12)

cumulative(S ∪ Sd, p′ ∪ pd, rk ∪ rdk, 2Rk) k ∈ R : (ρk = 0 ∧Rtimesk 6= ∅) (13)

Note that rk is a vector containing the resource requirements on resource k of all
activities i ∈ V and that the vectors Sd, pd, and rdk contain start times, absolute
durations, and resource requirements on resource k, respectively, for all j ∈ V dk .
In addition, some decomposed constraints from (10) and (11) are required to
enforce non-overload of resource k at times Rtimesk .

bit ↔ Si ≤ t ∧ t < Si + p′i i ∈ V r, t ∈
⋃

k∈R:ρk=0
Rtimesk (14)∑

i∈V r

bitrik Ci(t) ≤ Rk k ∈ R : ρk = 0, t ∈ Rtimesk (15)

For all k ∈ R with ρk = 0 the set Rtimesk is defined as follows.

Rtimesk := {t ∈ T | ∃ i, j ∈ V : rik > 0 ∧ rjk > 0 ∧minWi ≤ t < Ei(maxWi)∧
minWj ≤ t < Ej(maxWj) ∧Ci(t) 6= Cj(t)}

Model 2cap can be achieved by deleting constraints (10) and (11) from model
timeidx and adding constraints (12)–(15) instead.

Example 3. Regarding the example project from Fig. 2 on page 6, resource 3
is the only resource where Rtimesk 6= ∅. We can see in Fig. 3 on page 7 that
in time period 6 activity 2 is in execution and activity 3 is interrupted. Hence
Rtimes3 = {5}. The solution presented in Fig. 3 is resource feasible for R3 = 3 but
cumulative does not know that activity 3 is interrupted and detects a resource
overload if resource limit R3 = 3 is used. By doubling the resource capacity and
introducing a set V d3 of dummy activities requiring 3 resources in all periods
but 6, the cumulative of (13) does not detect a resource overload. The reason
for the decomposed constraint (15) for time point 5 is clear when we imagine
another activity 2′ that requires resource type 3 for its execution and could be
in execution in time period 6 just like activity 2, then for any solution where
both activities 2 and 2′ are in execution in time period 6 there is a resource
overload, which the cumulative does not detect when the resource capacity is
doubled. ut

3.3 Model addtasks (adding split tasks)

Another way to handle resources k ∈ R with ρk = 0 is to introduce for each in-
terruptible activity i ∈ V bi a set Addi := {ai1, ai2, . . . , ai|Addi|} of additional (non-

interruptible) activities that cover only those points in time t ∈ {Si, . . . , Ei(Si)−
1} with Ci(t) = 1, i.e., resource k is released during an interruption of activity
i. For the start times and processing times of activites aij ∈ Addi the following
equalities must be guaranteed.

Sai1 = Si i ∈ V bi (16)

Saij = next starti(Saij−1
) i ∈ V bi, j ∈ {2, . . . , |Addi|} (17)

paij = min(next breaki(Saij), pi −
j−1∑
h=1

paih) i ∈ V bi, j ∈ {1, . . . , |Addi|} (18)

raij ,k = rik i ∈ V bi, j ∈ {1, . . . , |Addi|} (19)

Thereby, next breaki(t) gives the start time of the next break after time t in
calendar Ci and next starti(t) gives the end time of the next break as defined
in Sect. 2. Finally, the resource requirement of each additional activity aij ∈ Addi
is set equal to rik and the global cumulative propagator can be used:

cumulative(S, p′, rk, Rk) k ∈ R : ρk = 1 (20)

cumulative(Sa, pa, rak , Rk) k ∈ R : ρk = 0 (21)

In constraints (21), the vectors Sa, pa, and rak contain not only the start times,
durations, and resource requirements of the additional activities aij , i ∈ V bi, j ∈
{1, . . . , |Addi|}, but also the start times, durations, and resource requirements
of the non-interruptible activities i ∈ V ni.

Model addtasks can be achieved by deleting constraints (10) and (11) from
model timeidx as well as adding constraints (16)–(21) instead.

3.4 Model cumucal (global calendar propagator)

For our fourth model for RCPSP/max-cal, we created a global cumulative prop-
agator that takes calendars into account and named it cumulative calendar.
The fourth model (cumucal) can be achieved by deleting constraints (9), (10),
and (11) from model timeidx as well as adding constraints (22)

cumulative calendar(S, p, rk, Rk,C, ρk) k ∈ R (22)

with p being the vector of all constant processing times pi and C being the vector
of all activity calendars Ci, i ∈ V .

The cumulative calendar propagator is made up of two parts, a time-table
consistency check and filtering. The basic ideas of these two parts are the same as
in the cumulative propagator of [18], but non-trivial adaptions were necessary to
consider calendars. These adaptions are described in the following. The compul-
sory part [10] of an activity i ∈ V is the time interval [ub(Si), lb(Si)+pi(lb(Si))),
where lb(Si) (ub(Si)) represents the current minimum (maximum) value in the
domain of Si. If ρk = 1 for the resource k ∈ R then activity i requires rik units
of resource k at each point in time of its compulsory part. Otherwise (ρk = 0),
activity i requires rik units of resource k only at points in time of its compulsory
part where Ci(t) = 1. The intervals where an activity requires resource k within
its compulsory part are named the calendar compulsory parts. At the begin of
the cumulative calendar propagator the calendar compulsory parts of all ac-
tivities are determined and a resource profile including all these parts is built.
Within the consistency check, resource overloads in this profile are detected. If
an overload of the resource k occurs in the time interval [s, e) involving the set
of activities Ω, the following conditions hold:

ub(Si) ≤ s ∧ lb(Si) + pi(lb(Si)) ≥ e i ∈ Ω
(1− ρk) ·Ci(t) + ρk = 1 i ∈ Ω, t ∈ [s, e)∑
i∈Ω

rik > Rk

In a lazy clause generation solver integer domains are represented using Boolean
variables. Each variable x with initial domain D0(x) = {l, . . . , u} is represented
by two sets of Boolean variables Jx = dK, l ≤ d ≤ u and Jx ≤ dK, l ≤ d < u which
define which values are in D(x). A lazy clause generation solver keeps the two
representations of the domain in sync. In order to explain the resource overload,
we use a pointwise explanation [18] at TimeD, which is the nearest integer to
the mid-point of [s, e).

∀i ∈ Ω : Jback(i, T imeD + 1) ≤ SiK ∧ JSi ≤ TimeDK→ false

back(i, t) :=

{
max{τ ∈ T |

∑t−1
z=τ Ci(z) = pi} if Ci(t− 1) = 1

max{τ ∈ T |
∑t−1
z=τ Ci(z) = pi − 1} if Ci(t− 1) = 0.

The definition by cases for back(i, t) is necessary to guarantee the execution of
activity i at time t−1, if Si = t−back(i, t) holds. If for a time t with Ci(t−1) = 0

back(i, t) would be calculated with the first case, then Ei(t− back(i, t)) < t and
the explanation would be incorrect.

If there exists a proper subset of activities Ω′ ⊂ Ω with
∑
i∈Ω′ rik > Rk, the

explanation of the resource overload is done on set Ω′. Sometimes more than
one such subset exists. In this situation the lexicographic least set of activities
is chosen as was done in [18].

Time-table filtering is also based on the resource profile of calendar compul-
sory parts of all activities. In a filtering without explanations the height of the
calendar compulsory parts concerning one time period or a time interval is given.
For an activity the profile is scanned through to detect time intervals where it
cannot be executed. The lower (upper) bound of an activity’s start time is up-
dated to the first (last) possible time period with respect to those time intervals
and the activity calendar. If we want to explain the new lower (upper) bound we
need to know additionally which activities have the calendar compulsory parts
of those time intervals.

A profile is a triple (A,B,C) where A = [s, e) is a time interval, B the set of
all activities that have a calendar compulsory part in the time interval A, and
C the sum of the resource requirements rik of all activities in B. Here, we only
consider profiles with a maximal time interval A with respect to B and C, i.e.,
no other profile ([s′, e′), B,C) exists where s′ = e or e′ = s.

Let us consider the case when the lower bound of the start time variable
for activity i can be maximally increased from its current value lb(Si) to a new
value LB(i) using time-table filtering (the case of decreasing upper bounds is
analogous and omitted). Then there exists a sequence of profiles [D1, . . . , Dp]
where Dh = ([sh, eh), Bh, Ch) with e0 = lb(Si) and ep = LB(i) such that

∀h : 1 ≤ h ≤ p;Ch + rik > Rk ∧ sh < eh−1 + pi(eh−1)

In Sect. 2, we introduced pi(t) only for t ∈Wi. Note that pi(t) can be calculated
in the same way for t /∈ Wi, where pi(t) takes the value d − t if less than pi
working periods are following after t in calendar Ci. In addition, if ρk = 0 is
satisfied then

∀h : 1 ≤ h ≤ p;∃ t ∈ [sh, eh) : Ci(t) = 1

Hence each profile Dh pushes the start time of activity i to eh.
Again we use pointwise explanations based on single time points. Unlike

the consistency case, we may need to pick a set of time points no more than
the absolute duration of activity i apart to explain the increasing of the lower
bound of Si over the time interval. For a profile with length greater than the
absolute processing time of activity i we may need to pick more than one time
point in a profile. Let {t1, . . . , tm} be a set of time points such that t0 = lb(Si),
tm + 1 = LB(i), ∀1 ≤ l ≤ m : tl−1 + pi(tl−1) ≥ tl and there exists a mapping
P (tl) of time points to profiles such that ∀1 ≤ l ≤ m : sP (tl) ≤ tl < eP (tl). Then
we build a pointwise explanation for each time point tl, 1 ≤ l ≤ m

Jback(i, tl + 1) ≤ SiK ∧
∧
j∈Bh

(Jback(j, tl + 1) ≤ SjK ∧ JSj ≤ tlK)→ Jtl + 1 ≤ SiK

Example 4. We illustrate cumulative calendar for the example network from
Fig. 2. To explain both the time-table consistency check and the time-table
filtering we are using two different cases. For the first case (consistency check),
we assume that in the current search node lb(S1) = 3, ub(S1) = 4, lb(S2) =
8, ub(S2) = 9, lb(S3) = ub(S3) = 3, and lb(S4) = ub(S4) = 8 holds, i.e., activities
3 and 4 are already fixed. We examine the cumulative calendar for resource
type 1 with a resource capacity of R1 = 2. The calendar compulsory parts
are [4, 8) for activity 1, [3, 8) for activity 3, and [8, 10) for activity 4. Note
that activity 2 is not taken into account since r21 = 0 and that the calendar
compulsory parts equal the compulsory parts for this example because ρ1 = 1.
The compulsory parts of activities 1 and 3 cover the interval [4, 8) and a resource
overload of resource 1 occurs, since r11 + r31 = 2 + 1 = 3 > 2 = R1. A pointwise
explanation of the resource overload is done at TimeD = 6:

J3 ≤ S1K ∧ JS1 ≤ 6K ∧ J3 ≤ S3K ∧ JS3 ≤ 6K→ false

For activities i = 1 and i = 3, respectively, Ci(TimeD − 1) = 0 is satisfied
and back(i, T imeD) is calculated through the second case. Without case differ-
entiation for back(i, t) only the first case would be considered, resulting that
back(1, T imeD) would equal 1 and the explanation would be wrong.

For the second case (time-table filtering), we assume that in the current
search node lb(S1) = ub(S1) = 0, lb(S2) = 3, ub(S2) = 8, lb(S3) = ub(S3) = 3,
and lb(S4) = ub(S4) = 8 holds. We examine the cumulative calendar for
resource type 3 with a resource capacity of R3 = 3. Activity 2 is the only task
where the start time is not fixed and the consistency check detects no resource
overload. The calendar compulsory parts are [0, 3) for activity 1, [3, 5), [7, 8) for
activity 3, and [8, 10) for activity 4. For the profile (A,B,C) with A = [3, 5),
B = {3}, and C = 1 the condition C + r23 = 1 + 3 > 3 = R3 is satisfied and
therefore the lower bound for variable S2 can be increased to LB(2) = 5. Since
the activity duration p2 equals 1 a pointwise explanation is done for t0 = 3 and
t1 = 4. The explanation for t0 = 3 is J3 ≤ S2K ∧ J1 ≤ S3K ∧ JS3 ≤ 3K→ J4 ≤ S2K
and for t1 = 4 it is J4 ≤ S2K ∧ J2 ≤ S3K ∧ JS3 ≤ 4K→ J5 ≤ S2K. ut

3.5 Time Granularity Considerations

All models depend on the granularity chosen for the time. If the granularity
increases then the size of T increases respectively. Thus, the number of linear
constraints and auxiliary Boolean variables increases for the models timeidx and
2cap, especially for the former. Moreover, filtering algorithms for the element
constraints (used in all models) might be negatively affected due to a larger size
of the input arrays. The implemented time-table consistency check, filtering, and
explanation generation for resource overloads and start time bounds updates in
cumulative calendar depend on the granularity, too. Their respective runtime
complexity are O(x× y log(x× y) + x× z), O(x2 × z × y), and O(x× z) where
x is the number of tasks, y − 1 is maximal possible number of interruptions of
any task and z the maximal possible absolute duration of any task.

4 Experiments and Conclusion

We conducted extensive experiments on Dell PowerEdge R415 machines running
CentOS 6.5 with 2x AMD 6-Core Opteron 4184, 2.8GHz, 3M L2/6M L3 Cache
and 64 GB RAM. We used MiniZinc 2.0.1 [13] and the lazy clause generation [15]
solver chuffed rev 707.

A runtime limit of 10 minutes was imposed excluding runtimes needed for
pre-processing, initial solution generation, and compiling the MiniZinc models
to solver-dependent FlatZinc models. We used the same benchmarks and initial
solutions as in [9], which are available at www.wiwi.tu-clausthal.de/en/chairs/

unternehmensforschung/research/benchmark-instances/.
Since instances with 10 or 20 activities could easily be solved within a few

seconds by any combination of solver, model, and search, we concentrate on in-
stances with 50 and 100 activities. The average runtime needed for pre-processing
and initial solution generation are less than a few seconds for instances with 50
activities and less than 30 seconds for instances with 100 activities, respectively.

4.1 Comparing Search Strategies

For finding the shortest project duration, we employ a branch-and-bound strat-
egy for which we investigate following four different search combinations. Those
seem likely to be most suitable based on our previous experience on solving
scheduling problems using lazy clause generation (see, e.g., [18,19,17]).

ff: Selects the variable with the smallest domain size and assigns the minimal
value in the domain to it.

vsids: Selects the literal with the highest activity counter and sets it to true,
where the literal is a part of the Boolean representation of the integer vari-
ables, i.e., Jx = vK, Jx ≤ vK, where x is an integer variable and v ∈ D(x).
Informally, the activity counter records the recent involvement of the literal
in conflicts and all activity counters are simultaneously decayed periodically.
The activity counter of a literal is increased during conflict analysis when
the literal is related to the conflict. It is an adaption of the variable state
independent decaying sum heuristic [12]. The search vsids is combined with
Luby restarts [11] and a restart base of 100 conflicts.

hs: The search starts off with ff and then switches to vsids after 1000 conflicts.
alt: The search alternates between ff and vsids starting with ff. It switches

from one to the other after each restart where we use the same restart policy
and base as for vsids.

Tables 1 and 2 show the results of chuffed on the cumucal model using dif-
ferent search strategies on instances with 50 and 100 activities, respectively. The
search strategies behave similar with the other models. We show the number of
instances proven optimal (#opt), not proven optimal but where feasible solutions
were found (#feas), proven infeasible (#inf), and where nothing was determined
(#un). We compare the average runtime in seconds (avg. rt) and average number

Table 1: Comparison of search strategies on instances with 50 activities.
cmp(179) all(180)

model search #opt #feas #inf #un avg. rt avg. #cp avg. rt avg. #cp

cumucal alt 161 0 19 0 1.13 3847 1.71 5236
cumucal ff 160 1 19 0 7.54 16401 10.83 16310
cumucal hs 161 0 19 0 1.33 5358 1.80 6349
cumucal vsids 161 0 19 0 4.27 18495 4.79 19445

Table 2: Comparison of search strategies on instances with 100 activities.
cmp(140) all(180)

model search #opt #feas #inf #un avg. rt avg. #cp avg. rt avg. #cp

cumucal alt 158 11 11 0 7.58 11498 56.18 25170
cumucal ff 150 16 10 4 13.73 14305 82.51 16420
cumucal hs 152 17 11 0 20.33 34900 85.20 45109
cumucal vsids 133 36 11 0 76.87 146172 185.61 122457

of choice points to solve (avg. #cp), on two subsets of each benchmark. The cmp
subset are all the benchmarks where all solvers proved optimality or infeasibility,
and all is the total set of benchmarks.

The alt search is clearly the fastest, also leading to the lowest average number
of nodes explored in comparison to the rest. Interestingly, the performance of
vsids significantly decays from instances with 50 activities to those ones with
100 activities in proportion to alt and ff. This decay also affects hs, but not
so dramatically. The strength of the alt method is the combination of integer
based search in ff which concentrates on activities that have little choice left,
with the robustness of vsids which is excellent for proving optimality once a
good solution is known.

4.2 Comparing Models

Tables 3 and 4 compare the effect of the different models using chuffed and the
best search method alt. As expected, the time-indexed model, timeidx, is the
worst in terms of times due to the large model size, but it propagates effectively
as illustrated by the low number of explored nodes (only ever bettered by cu-
mucal). The model addtasks performs worst with respect to the average number
of nodes, which can be explained by the shorter activities causing weaker time-
table propagation in the cumulative propagator. The best model is cumucal
that takes the advantage of using fixed durations, since the variability is han-
dled directly by the propagator, and because it generates the smallest model.
We also show the average flattening time (avg. ft.) for all benchmarks, where
clearly cumucal is advantageous.

4.3 Comparing Solvers

Table 5 compares the results obtained by chuffed to those obtained by Opturion
CPX 1.0.2 (ocpx), which is available at www.opturion.com/cpx, and the best

Table 3: Comparison of models on instances with 50 activities.
cmp(177) all(180)

model search #opt #feas #inf #un avg. rt avg. #cp avg. ft avg. rt avg. #cp

addtasks alt 160 1 19 0 9.10 14232 0.84 15.39 17924
cumucal alt 161 0 19 0 0.92 3203 0.48 1.71 5236
timeidx alt 158 3 19 0 22.20 3484 18.65 31.82 3426
2cap alt 161 0 19 0 1.55 5341 0.72 3.12 9619

Table 4: Comparison of models on instances with 100 activities.
cmp(138) all(180)

model search #opt #feas #inf #un avg. rt avg. #cp avg. ft avg. rt avg. #cp

addtasks alt 139 28 10 3 25.88 26344 4.05 139.47 35525
cumucal alt 158 11 11 0 3.24 5037 2.45 56.18 25170
timeidx alt 131 38 10 1 83.37 4947 78.24 196.63 4031
2cap alt 153 16 11 0 6.13 8798 4.05 78.96 30728

Table 5: Comparison of solvers on instances with 50 activities.
cmp(170) all(180)

model search #opt #feas #inf #un avg. rt avg. #cp avg. ft avg. rt avg. #cp

cumucal chuffed+alt 161 0 19 0 0.59 2198 0.48 1.71 5236
timeidx chuffed+alt 158 3 19 0 10.45 1662 18.65 31.82 3426
timeidx ocpx+free 159 2 19 0 69.95 13383 19.97 83.92 14155
mip 153 7 18 2 222.42 — — 750.25 —

solution obtained by any mixed-integer linear programming formulation from [9]
(mip), which is solved using CPLEX 12.6 on an Intel Core i7 CPU 990X with
3.47 GHz and 24GB RAM under Windows 7. For mip the runtime limit was
set to 3 hours and 8 threads were used. To get an idea of the impact of the
machine used, we also ran ocpx with the deterministic search ff on the same
Windows machine. ocpx was more than 3 times faster on that machine. It can
be seen that chuffed and ocpx clearly outperform the state-of-the-art solution
approach, which is mip, and that the machine we used is even slower than the
machine used in [9].

Overall the cumucal model closes all open benchmarks of size 50 and 75 of
size 100, and clearly, we significantly advance the state of the art.

Acknowledgements NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT Centre of Excellence
program. This work was partially supported by Asian Office of Aerospace Re-
search and Development (AOARD) grant FA2386-12-1-4056.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modelling 17(7), 57–73
(1993)

2. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall, Englewood Cliffs
(1993)

3. Baptiste, P.: Constraint-Based Scheduling: Two Extensions. Master’s thesis, Uni-
versity of Strathclyde, Glasgow, Scotland, United Kingdom (1994)

4. Beldiceanu, N.: Parallel machine scheduling with calendar rules. International
Workshop on Project Management and Scheduling (1998)

5. Cheng, J., Fowler, J., Kempf, K., Mason, S.: Multi-mode resource-constrained
project scheduling problems with non-preemptive activity splitting. Computers
& Operations Research 53, 275–287 (2015)

6. Franck, B.: Prioritätsregelverfahren für die ressourcenbeschränkte Projektplanung
mit und ohne Kalender. Shaker, Aachen (1999)

7. Franck, B., Neumann, K., Schwindt, C.: Project scheduling with calendars. OR
Spektrum 23, 325–334 (2001)

8. Franck, B., Neumann, K., Schwindt, C.: Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained
project scheduling. OR Spektrum 23, 297–324 (2001)

9. Kreter, S., Rieck, J., Zimmermann, J.: Models and solution procedures for the
resource-constrained project scheduling problem with general temporal constraints
and calendars. Submitted to European Journal of Operational Research (2014)

10. Lahrichi, A.: Scheduling: The notions of hump, compulsory parts and their use in
cumulative problems. Comptes Rendus de l’Académie des Sciences. Paris, Série 1,
Matématique 294(2), 209–211 (1982)

11. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47, 173–180 (1993)

12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of Design Automation Conference –
DAC 2001. pp. 530–535. ACM, New York, NY, USA (2001)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) Principles and
Practice of Constraint Programming CP 2007. Lecture Notes in Computer Science,
vol. 4741, pp. 529–543. Springer Berlin Heidelberg (2007)

14. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Win-
dows and Scarce Resources. Springer, Berlin, 2 edn. (2003)

15. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

16. Schutt, A.: Improving Scheduling by Learning. Ph.D. thesis, The University of
Melbourne (2011), http://repository.unimelb.edu.au/10187/11060

17. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propaga-
tion for the cumulative resource constraint. In: Gomes, C.P., Sellmann, M. (eds.)
Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems. Lecture Notes in Computer Science, vol. 7874, pp.
234–250. Springer Berlin Heidelberg (2013)

18. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

19. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. Journal of Scheduling 16(3), 273–289 (2013)

20. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: A satisfiability solving ap-
proach. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Manage-
ment and Scheduling, Vol. 1, pp. 135–160. Springer International Publishing (2015)

21. Schwindt, C., Trautmann, N.: Batch scheduling in process industries: An applica-
tion of resource-constrained project scheduling. OR Spektrum 22, 501–524 (2000)

22. Trautmann, N.: Calendars in project scheduling. In: Fleischmann, B., Lasch, R.,
Derigs, U., Domschke, W., Rieder, U. (eds.) Operations Research Proceedings 2000.
pp. 388–392. Springer, Berlin (2001)

23. Zhan, J.: Calendarization of timeplanning in MPM networks. ZOR – Methods and
Models of Operations Research 36, 423438 (1992)

