
Stochastic MiniZinc?

Andrea Rendl1, Guido Tack1, and Peter Stuckey2

1 National ICT Australia (NICTA) and Faculty of IT, Monash University, Australia
andrea.rendl@nicta.com.au, guido.tack@monash.edu

2 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
pstuckey@unimelb.edu.au

Abstract. Combinatorial optimisation problems often contain uncertainty that
has to be taken into account to produce realistic solutions. However, existing
modelling systems either do not support uncertainty, or do not support combi-
natorial features, such as integer variables and non-linear constraints. This paper
presents an extension of the MINIZINC modelling language that supports uncer-
tainty. Stochastic MINIZINC enables modellers to express combinatorial stochas-
tic problems at a high level of abstraction, independent of the stochastic solving
approach. These models are translated automatically into different solver-level
representations. Stochastic MINIZINC provides the first solving technology ag-
nostic approach to stochastic modelling we are aware of.

1 Introduction

In contrast to deterministic optimisation problems where all problem parameters are
known a priori, stochastic optimisation problems deal with parameters that are uncer-
tain, such as customer demand, resource capacities or travel times. This uncertainty has
to be taken into account to provide realistic solutions.

Several stochastic modelling and solving systems have been established in recent
years, such as AIMMS [16], AMPL [21,22] or GAMS [10]. These systems provide a
strong support for stochastic linear problems on continuous variables, however have
only limited or no support for problems with integer variables and non-linear con-
straints. Moreover, most of these systems force the modeller to commit to a particular
solving approach at the modelling stage. This poses significant limitations to modellers
who are interested in formulating stochastic combinatorial problems and solving them
using different solving techniques.

For combinatorial problems, expressive high-level modelling languages have been
developed, such as ESRA [2], Essence [4], Essence’ [7], OPL [23], ZINC [11] and
MINIZINC [12,13]. The benefit of high-level modelling is that users can focus on the
problem formulation without committing to a particular solving approach. Some mod-
elling systems, including MINIZINC, perform automated translations from the high-
level model for different backend solvers, such as CP, MIP or SMT solvers. This way
problems can be solved using different solving approaches without any background

? NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

knowledge of the respective technique. Unfortunately, none of the existing combinato-
rial modelling languages provides means for dealing with uncertainty. Stochastic ex-
tensions for OPL have been proposed in [25], however, they have never been made
available [26].

In this work we present Stochastic MINIZINC, an extension of MINIZINC that
supports uncertainty. It allows the user to augment deterministic models to stochas-
tic models without the need to commit to a particular solving strategy. To solve these
stochastic models, we present transformations from Stochastic MINIZINC to determin-
istic MINIZINC for three different stochastic solving approaches: scenario-based [19]
and policy-based [24] deterministic equivalents, as well as progressive hedging [15].
These are the only known stochastic solving techniques that can deal with both inte-
ger decision variables and non-linear constraints. Our transformations generate stan-
dard MINIZINC, enabling the use of any backend solver technique that supports the
MINIZINC tool-chain.

2 Background

Stochastic optimisation deals with problems where some parameters are uncertain. Un-
certain parameters become known at some point in time, which divides the problem
into different stages: the stage before the parameter is known, and the stage after it is
known. Typically, decisions have to be made before the uncertain parameters become
known. For instance, a car factory has to decide how many cars to produce before the
actual demand is known. These ‘beforehand’-decisions are called first stage decisions.
The second stage decisions are made after the uncertain parameters are known. In the
car factory, after the demand is known (and the production is completed), decisions may
have to be made to deal with overproduction or shortage, depending on the actual de-
mand. The aim of second stage decisions is to compensate for ‘bad’ first stage decisions
with respect to the uncertain parameters. This is referred to as recourse.

The values of uncertain parameters can often be estimated, e.g. from historical
data or simulations, resulting in a set of possible outcomes called scenarios. All ap-
proaches discussed here assume a finite number S of scenarios. Each scenario has a
weight w1, . . . , wS reflecting its likeliness. In the car factory example, we may have
three different scenarios for the demand, d1 = 13, 000, d2 = 16, 000 and d3 = 22, 000,
with weights w1 = 1, w2 = 6 and w3 = 3.

Stochastic events may happen repeatedly, resulting in multiple stages. For instance,
the car factory may have to decide its production every quarter, taking into account
the surplus/shortage from the previous quarter. The yearly production plan then con-
tains four stochastic events (one for each quarter), dividing the problem into five stages,
where decisions at stage i influence the decisions at stage i + 1. Problems with only
one stochastic event are called two-stage problems, as opposed to multi-stage problems
with more than one event.

The stages of a stochastic optimisation problem divide its objective into differ-
ent parts. For instance, in the car factory example, the first stage objective is to min-
imise production costs, while the second stage objective is to minimise storage costs (in
case of overproduction) and unmet demand penalties (in case of underproduction). The
first stage objective is independent of the stochastic parameters. The objectives in later

2

stages do depend on the stochastic parameters. The overall objective therefore requires
a probabilistic interpretation over all scenarios. Here, we focus on the expected value
of the stochastic parameters. Given an objective function f(V) of the original problem
formulation, the stochastic objective then becomes E[f(V)]. Other interpretations, such
as optimising for the worst case, can be realised in a similar manner.

Only three stochastic solving approaches exist for non-linear integer stochastic prob-
lems, all of which reformulate the problem into a deterministic model. The Scenario-
based Deterministic Equivalent [20,19] is a single model that expands the stochastic
model for each scenario and stage. All stochastic parameters and each second (and
higher-)stage variable is copied for each scenario, as well as all constraints involving
higher stage parameters or variables. Policy-based Search [24] treats stochastic param-
eters as decision variables and uses and-or-search to explore all possible scenarios.
Finally, Progressive Hedging [15] solves each scenario to optimality in isolation, and
then iteratively adapts the objective function to minimise the gap between the first stage
variables.

3 Stochastic MINIZINC

The design of Stochastic MINIZINC follows four objectives. (1) The stochastic exten-
sion is conservative, the stochastic model can be run, debugged, and solved determinis-
tically, without changing the model. (2) The model is agnostic of the solving approach,
so that the user does not have to commit to a specific stochastic approach during mod-
elling. (3) Basic knowledge of stochastic optimisation should suffice to formulate a
stochastic problem. (4) The stochastic extensions are lightweight additions to the lan-
guage. As a result, Stochastic MINIZINC is a simple extension of standard MINIZINC
that includes stochastic annotations.

A stochastic MINIZINC problem specification has three parts: a core problem model,
a deterministic and a stochastic data specification. The core model is a standard MiniZ-
inc model, augmented with annotations to mark stochastic parameters and stages. The
deterministic data defines deterministic, first stage parameters. The stochastic data is
given as a list of deterministic data files, one per scenario. Note that the core model
combined with the deterministic data and a single scenario is a valid, deterministic
MiniZinc model for that scenario. From the scenario list and a list of scenario weights,
a combined stochastic data specification can be generated. Alternatively, the combined
representation can be specified directly.

3.1 Stochastic Annotations in MINIZINC

The annotation ::stage(n) associates a variable or parameter with stage n. A pa-
rameter in stage 1 is known from the outset and not stochastic. Variables and parameters
without stage annotations belong to the first stage. The objective function is annotated
to identify how the probabilistic nature of the scenarios is aggregated. We introduce an
annotation ::expected to optimise the expected value over all scenarios. The anno-
tation ::scenario_weight identifies the weights that reflect the likeliness of each
scenario. The scenario weights have to be given as an array of the same length as the
number of scenarios.

3

3.2 An Example: The stochastic Vehicle Routing Problem
We illustrate Stochastic MINIZINC by formulating a stochastic variant of the vehicle
routing problem (VRP) [9]. In the deterministic VRP, the aim is to find tours for m
vehicles to serve n customers, minimising travel costs. In the stochastic variant of the
VRP, the travel times are uncertain, and the aim is to find a vehicle-customer assign-
ment that minimises the expected travel times. This means that the vehicle-customer
assignments are the first stage decisions, and the optimal tours for each vehicle are the
second stage decisions.

Fig. 1 shows a stochastic VRP model based on the classical VRP formulation [9],
omitting the redundant predecessor variables for brevity. In line 13 we annotate the
stochastic parameter, and in lines 16-18 we annotate the stochastic variables with their
stages. The objective is annotated with expected since we want to find the optimal
solution wrt. the expected arrival times of each vehicle. Note that all parameters, vari-
ables, constraints and the objective are defined deterministically, and the model can thus
be solved as such. For instance, the data sets d1.dzn and d2.dzn in the bottom left
each correspond to a single scenario.

The stochastic data d stoch.dzn is generated from the scenarios d1.dzn and
d2.dzn using the specification in the bottom left. Each parameter has an added di-
mension for the scenario. The distance is now three-dimensional, the first dimen-
sion indexing the scenario. The transformations in the next section link the stochastic
parameter back to the model using the scenario as an index.

4 Transformations

This section shows how Stochastic MINIZINC can be implemented by transformation
into standard MINIZINC. We consider three different formulations: a scenario-based
deterministic model, a policy-based search, and a version of progressive hedging. Since
the transformations generate standard MINIZINC, all solvers that support MINIZINC
can be used. For policy-based search and progressive hedging, the backend solvers need
to support search combinators [18]. The results of transforming the VRP from Fig. 1
can be found at [14] (and in the appendix for our reviewers).

We only present the two-stage version of the transformations, multi-stage problems
are a straightforward generalisation [17]. In addition to the first and second stage sets of
decision variables V1 and V2, we use C1 and C2 for the sets of first and second stage con-
straints, p for the set of stochastic parameters, and o for the original objective function.
The transformations rely on a substitution operation substitute(S, [x1/y1, . . . , xn/yn]),
meaning that all occurrences of each xi in S are simultaneously replaced by yi.

4.1 The Scenario-based Deterministic Equivalent
A Stochastic MINIZINC model is transformed into the deterministic equivalent by cre-
ating a copy of the second stage variables, with the stochastic parameters substituted by
the concrete values for the scenario.

The objective from the stochastic model needs to be modified to represent the ex-
pected value over all scenarios. We introduce an array of variables o for the contribution
of each scenario to the overall objective. The expected value is then computed as the

4

1 % ============== Stochastic Vehicle Routing Problem ============= %
2 include "globals.mzn";
3 include "stochastic.mzn";
4

5 int: nC; int: nV; int: timeBudget;
6 set of int: VEHICLE = 1..nV;
7 set of int: CUSTOMER = 1..nC;
8 set of int: NODES = 1..nC+2*nV;
9 set of int: START_DEPOT_NODES = nC+1..nC+nV;

10 set of int: END_DEPOT_NODES = nC+nV+1..nC+2*nV;
11 set of int: TIME = 0..timeBudget;
12 array[NODES] of int: serviceTime;
13 array[NODES, NODES] of int: distance :: stage(2);
14

15 % -------- variables ------------- %
16 array[NODES] of var VEHICLE: vehicle :: stage(1);
17 array[NODES] of var NODES: successor :: stage(2);
18 array[NODES] of var TIME: arrivalTime :: stage(2);
19

20 % -------- first stage constraints ---------- %
21 constraint forall (n in START_DEPOT_NODES) % associate each start
22 (vehicle[n] = n-nC); % node with a vehicle
23 constraint forall (n in END_DEPOT_NODES) % associate each end
24 (vehicle[n] = n-nC-nV); % node with a vehicle
25

26 % -------- second stage constraints ---------- %
27 constraint forall (n in nC+nV+1..nC+2*nV-1) % successors of end nodes
28 (successor[n] = n-nV+1); % are start nodes
29 constraint successor[nC+2*nV] = nC+1;
30

31 constraint forall (n in START_DEPOT_NODES) % vehicles leave the
32 (arrivalTime[n] = 0); % depot at time zero
33 constraint circuit(successor); % hamiltonian circuit
34

35 constraint forall (n in CUSTOMER) % use the same vehicle
36 (vehicle[successor[n]] = vehicle[n]); % along a subtour
37 constraint forall (n in 0..nC+nV)
38 (arrivalTime[n] + serviceTime[n] + distance[n,successor[n]]
39 <= arrivalTime[successor[n]]); % time constraints
40

41 % -------- objective ------------ %
42 solve minimize % expected overall travel time of each vehicle
43 (sum (n in END_DEPOT_NODES) (arrivalTime[n])) :: expected;

1 % ====================== deterministic data =========================== %
2 nV = 1; nC = 3; timeBudget = 30;
3 serviceTime = [2,2,2,0,0];

1 % ==== d1.dzn ====== %
2 distance = [| 0, 4, 3, 5, 5
3 | 4, 0, 2, 3, 3
4 | 3, 2, 0, 2, 2
5 | 5, 3, 2, 0, 0
6 | 5, 3, 2, 0, 0 |];

1 % ==== d2.dzn ====== %
2 distance = [| 0, 4, 3, 5, 5,
3 | 4, 0, 2, 6, 3,
4 | 3, 2, 0, 2, 2,
5 | 5, 6, 2, 0, 0,
6 | 5, 3, 2, 0, 0 |];

1 % === implicit stochastic data == %
2 array[1..2] of string: scenarios =
3 ["d1.dzn","d2.dzn"];
4 array[1..2] of int: weights = [1,1];

1 % === d_stoch.dzn === %
2 distance = array3d(1..2, % scenarios
3 1..5, 1..5,
4 [0, 4, 3, 5, 5, % scenario 1
5 4, 0, 2, 3, 3,
6 3, 2, 0, 2, 2,
7 5, 3, 2, 0, 0,
8 5, 3, 2, 0, 0,
9

10 0, 4, 3, 5, 5, % scenario 2
11 4, 0, 2, 6, 3,
12 3, 2, 0, 2, 2,
13 5, 6, 2, 0, 0,
14 5, 3, 2, 0, 0]);
15 array[1..2] of int: weights = [1,1]
16 :: scenario_weights;

Fig. 1. A stochastic vehicle routing problem

5

weighted sum using the array of weights w. We use an integer representation for sim-
plicity, but if the target solver supports continuous variables, a version using float
variables could be used.

1 function var int: expected(array[int] of int: w, array[int] of var int: o) =
2 sum (i in index_set(o)) (w[i]*o[i]) div sum(w);

1 V1;
2 C1;
3 array[1..S] of var int: o;
4 constraint forall (s in 1..S) (let {
5 substitute(V2, [p/p[s], o/o[s]]);
6 } in substitute(C2, [p/p[s], o/o[s]]));
7 solve minimize expected(w,o);

The deterministic equivalent is then constructed by looping over all scenarios and
creating a fresh set of second stage variables for each scenario using a let construct.
The second stage constraints C2 are moved into the loop. For both these code sections
we add a scenario argument s to each second stage parameter.

4.2 Policy-based Search
Policy-based search for stochastic constraint programming [24] turns stochastic param-
eters into decision variables and then uses backtracking search to explore the different
scenarios. Instead of copying the second stage model for each scenario as in Sect. 4.1,
policy-based search implements the forall over all scenarios using a variant of and-
or search. Decision variables are searched in the usual or-fashion, while stochastic
variables represent and-nodes.

Our implementation adds decision variables for each stochastic parameter in p, and
a single integer variable scenario that selects the scenario. Element constraints con-
nect the parameter variables to the actual parameters for the selected scenario. The
original objective o is left unchanged, but an additional expected objective eo is added
as in Sect. 4.1.

1 V_1;
2 C_1;
3 array[1..S] of var int: os;
4 var 1..S: scenario;
5 for each array[1..S] of int: p add var int: pV = p[scenario];
6 substitute(V_2, [p/pV]);
7 substitute(C_2, [p/pV]);
8 var int: eo = expected(w,os);
9 solve two_stage(eo,o,os);

The and-or search can be implemented elegantly using search combinators [18], an
expressive domain-specific language for sophisticated search strategies. The combina-
tor two_stage used above can be realised as follows:

1 combinator s_bab(svar int: i, array[int] of svar int: best, var int: o) =
2 post(scenario=i /\ o<best[i], and(search_stage_2,assign(best[i],o)));
3 combinator two_stage(var int: eo, var int: o, array[int] of var int: os) =
4 bab(eo,
5 let { array[1..S] of svar int: best = [∞ | i in 1..S] } in
6 and([search_stage_1,
7 for (i,1,S, s_bab(i,best,o)),
8 post(os = best)]));

6

The main structure of the combinator is an outer branch-and-bound search (bab in
line 4) over the expected objective, combined with an inner branch-and-bound for every
scenario (scenario_bab, line 7). The optimum of the second stage for each scenario
is collected in an array best, and after all scenarios have been processed, is posted
back into the variables os, constraining the expected objective. The search strategies
search_stage_1 and search_stage_2 can be user-defined or default searches
for the first and second stage variables, respectively.

4.3 Progressive Hedging
Progressive hedging [15] solves each scenario to optimality in isolation, producing dif-
ferent assignments to the first stage variables for each scenario. The objective of each
scenario is then augmented with a term to minimise these first stage differences between
scenarios. This is iterated until the differences between first stage variables across all
scenarios are sufficiently small.

The transformation of a stochastic model using progressive hedging adds weights
xw that will be updated after each iteration, and an augmented objective o_hedge that
accounts for the differences between the first stage variables:

1 V_1;
2 C_1;
3 var 1..S: scenario;
4 array[1..|V1|] of int: xw;
5 for each array[1..S] of int: p add var int: pV = p[scenario];
6 substitute(V_2,[p/pV]);
7 substitute(C_2,[p/pV]);
8 var int: o_hedge = o + hedge(xw,V1);
9 solve progressive_hedging(o_hedge);

1 combinator progressive_hedging(var int: o) =
2 restart(distance > epsilon,
3 let { array[1..S,1..|V1|] of svar int: V } in
4 or(for (i,1,S,
5 let { svar int: best = ∞ } in
6 post(scenario=i /\ o < best,
7 and([search_stage_1, search_stage_2, assign(best,o),
8 assign(V[i],V1)]))
9),

10 update_weights(distance,xw,V)
11));

The progressive_hedging combinator iterates over all scenarios (line 4), per-
forming a branch-and-bound search on the modified objective o_hedge similar to
scenario_bab. The results of the first stage variables V1 are stored in the array
V (line 8). After search in all scenarios has completed, the distance between the V1

variables and the weights in the extended objective function are updated (line 10).
The update_weights function requires some integration with the underlying solver,
since it changes the parameters of an existing constraint. We are currently implementing
this feature.

5 Related Work
The closest related approach is Stochastic OPL [25], a proposed extension of the OPL
modelling language [23] with support for stochastic variables, chance constraints, and
an objective function based on expectation. Similar to Stochastic MINIZINC, the ex-
tended language is compiled into the deterministic equivalent in standard OPL. Our

7

approach is more general, with translations into policy-based search and progressive
hedging using search combinators. We also took a conservative approach to language
extension, where stochastic features are represented using annotations, while the basic
model is perfectly valid deterministic MINIZINC. Finally, using MINIZINC as the base
language yields a solver agnostic approach, enabling the modeller to experiment with
all the different backend solvers that support MINIZINC.

AIMMS [16] is a commercial modelling and solving framework, where models can
be formulated using a graphical user-interface or by employing the internal program-
ming language. It provides strong support for stochastic linear, continuous problems,
but has very limited support for non-linear integer problems.

AMPL is a commercial algebraic modelling language with a number of stochas-
tic extensions [5,6,3,20,22]. The SAMPL [22] extension, including the Stochastic Pro-
gramming Integrated Environment (SPiNE) [21], has been integrated into AMPL. It
has annotations for stochastic parameters and other stochastic features. However, the
modeller has to formulate the deterministic (scenario-based) equivalent and thus has to
commit to this approach.

GAMS is a commercial modelling and solving framework that incorporates a high-
level modelling language with a stochastic extension [10]. Stochastic models contain
annotations that associate parameters to random distributions and assign variables and
constraints to stages. The annotation compilation must be explicitly stated by the mod-
eller, and non-linear constraints are not supported.

Lingo [1] is a commercial optimisation framework for Microsoft Excel with sup-
port for stochastic programming. It provides a modelling language and strong support
for stochastic linear problems, however, integer or non-linear problems can only be
translated into their scenario-based deterministic equivalents.

PySP [27] is an open modelling and solving library based on Pyomo [8], an alge-
braic modelling language extending Python. PySP supports stochastic integer problems
that can be solved either as scenario-based deterministic equivalents or by progressive
hedging. It has no known support for non-linear constraints.

6 Conclusions

We have presented Stochastic MINIZINC, an extension of the MINIZINC modelling
language that introduces syntax for modelling stochastic constraint (optimisation) prob-
lems. We have shown how to translate Stochastic MINIZINC automatically into stan-
dard MINIZINC, using three different standard approaches for dealing with uncertainty:
the scenario-based deterministic equivalent, policy-based search, and progressive hedg-
ing. The resulting system enables modellers to express stochastic problems at a high
level of abstraction, and to experiment with different solving approaches. Stochastic
MINIZINC is the first solving technology agnostic approach to stochastic modelling we
are aware of.

The presented stochastic extensions of MINIZINC are implemented, as well as the
automated transformation to the scenario-based deterministic model, which takes frac-
tions of a second to translate. We expect to finish the implementation of the automated
transformation to policy-based search and progressive hedging in the near future, and
plan to release Stochastic MINIZINC soon.

8

References

1. Atlihan, M., Cunningham, K., Laude, G., Schrage, L.: Challenges in adding a stochastic
programming/scenario planning capability to a general purpose optimization modeling sys-
tem. In: Sodhi, M.S., Tang, C.S. (eds.) A Long View of Research and Practice in Operations
Research and Management Science, International Series in Operations Research & Manage-
ment Science, vol. 148, pp. 117–135. Springer US (2010)

2. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a Relational Language for Modelling
Combinatorial Problems. In: Rossi, F. (ed.) CP. LNCS, vol. 2833, p. 971. Springer (2003)

3. Fourer, R., Lopes, L.: StAMPL: A Filtration-Oriented Modeling Tool for Multistage Stochas-
tic Recourse Problems. INFORMS Journal on Computing 21(2), 242–256 (2009)

4. Frisch, A.M., Harvey, W., Jefferson, C., Hernandez, B.M., Miguel, I.: Essence: A Constraint
Language for Specifying Combinatorial Problems. Constraints 13(3), 268–306 (2008)

5. Gassmann, H., Ireland, A.: Scenario formulation in an algebraic modelling language. Annals
of Operations Research 59, 45–75 (1995)

6. Gassmann, H., Ireland, A.: On the formulation of stochastic linear programs using algebraic
modelling languages. Annuals of Operations Research 64, 83–112 (1996), stochastic pro-
gramming, algorithms and models (Lillehammer, 1994)

7. Gent, I.P., Miguel, I., Rendl, A.: Tailoring Solver-Independent Constraint Models: A Case
Study with Essence’ and Minion. In: Miguel, I., Ruml, W. (eds.) SARA. Lecture Notes in
Computer Science, vol. 4612, pp. 184–199. Springer (2007)

8. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical pro-
grams in Python. Math. Program. Comput. 3(3), 219–260 (2011)

9. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., Beek, P.v., Walsh, T. (eds.) Handbook of
Constraint Programming, chap. 23, pp. 799–834. Elsevier Science Inc., New York, NY, USA
(2006)

10. Loewe, M., Ferris, M.: Stochastic programming (SP) with EMP (GAMS) (2013),
http://www.gams.com/dd/docs/solvers/empsp.pdf

11. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The
design of the zinc modelling language. Constraints 13(3), 229–267 (2008)

12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP’07. LNCS, vol. 4741, pp. 529–
543. Springer (2007)

13. NICTA: MinZinc (2014), http://www.minizinc.org
14. NICTA: Stochastic MiniZinc examples (2014), http://www.minzinc.org/stochastic/
15. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under un-

certainty. Mathematics of Operations Research 16(1), 119–147 (1991)
16. Roelofs, M., Bisschop, J.: AIMMS: The language reference 3.9 (2009)
17. Ruszczyński, A., Shapiro, A.: Stochastic Programming. Handbooks in operations research

and management science, Elsevier (2003)
18. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. Con-

straints 18(2), 269–305 (2013)
19. Tarim, A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based

Approach. Constraints 11(1), 53–80 (2006)
20. Thénié, J., Delft, C., Vial, J.: Automatic formulation of stochastic programs via an algebraic

modeling language. Computational Management Science 4(1), 17–40 (2007)
21. Valente, C., Mitra, G., Poojari, C.: A Stochastic Programming Integrated Environement

(SPiNE), pp. 115–136. Philadelphia, PA: Society for Industrial and Applied Mathematics
(SIAM). Philadelphia, PA: MPS, Mathematical Programming Society (2005)

9

22. Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling languages for
stochastic programming. INFORMS Journal on Computing 21(1), 107–122 (2009)

23. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge,
MA, USA (1999)

24. Walsh, T.: Stochastic Constraint Programming. In: van Harmelen, F. (ed.) ECAI. pp. 111–
115. IOS Press (2002)

25. Walsh, T.: Stochastic OPL. Proceedings of the Workshop on Modelling and Solving with
Constraints (2002)

26. Walsh, T.: personal communication (2014)
27. Watson, J.P., Woodruff, D.L., Hart, W.E.: PySP: modeling and solving stochastic programs

in Python. Math. Program. Comput. 4(2), 109–149 (2012)

10

A Transformation examples of the stochastic VRP

For our reviewers, we provide the results of each transformation when imposed on
the stochastic Vehicle Routing Problem. All these examples are available online at
http://www.minzinc.org/stochastic/, however, we provide them in this appendix to al-
low the reviewers to preserve their anonymity since the online examples are hosted on
our websites (and the origin of visitors could be traced back). Fig. 2 shows the scenario-
based deterministic equivalent formulation, Fig. 3 shows the policy-based search model
for the VRP, and Fig. 4 is the variant using progressive hedging.

1 array[1..S,NODES, NODES] of int: distance; % stochastic parameters
2 array[NODES] of var VEHICLE: vehicle; % first stage variables
3 array[1..S] of var int: o; % second stage objective contribution
4

5 constraint forall (s in 1..S) (let {
6 array[NODES] of var NODES: successor; % second stage variables
7 array[NODES] of var TIME: arrivalTime; % second stage variables
8 } in (
9 forall(n in START_DEPOT_NODES) (% associate each start

10 vehicle[n] = n-nC % node with a vehicle
11)
12 /\ forall(n in END_DEPOT_NODES) (% associate each end
13 vehicle[n] = n-nC-nV % node with a vehicle
14)
15 /\ forall(n in nC+nV+1..nC+2*nV-1)) (% successors of end nodes
16 successor[n] = n-nV+1 % are start nodes
17)
18 /\ successor[nC+2*nV] = nC+1
19

20 /\ forall(n in START_DEPOT_NODES) (% vehicles leave the
21 arrivalTime[n] = 0 % depot at time zero
22)
23 /\ circuit(successor) % hamiltonian circuit on giant tour rep.
24

25 /\ forall(n in CUSTOMER) (% use the same vehicle
26 vehicle[successor[n]] = vehicle[n] % along a subtour
27)
28 /\ forall(n in 0..nbCustomers+nbVehicles) (% time constraints
29 arrivalTime[n] + serviceTime[n] + distance[s,n,successor[n]]
30 <= arrivalTime[successor[n]]
31)
32 /\ o[s] = sum (n in END_DEPOT_NODES) (arrivalTime[n])
33);
34 solve minimize expected(weights,o) % expected overall travel time of each vehicle

Fig. 2. Scenario-based deterministic version of the stochastic Vehicle Routing Problem

11

1 array[1..S,NODES, NODES] of int: distance; % stochastic parameter
2 array[NODES] of var VEHICLE: vehicle;
3 array[NODES] of var NODES: successor;
4 array[NODES] of var TIME: arrivalTime;
5

6 var 1..S: scenario; % scenario variable
7

8 array[1..S] of var int: os; % objective per scenario
9

10 % stochastic parameter variables
11 % linked using element constraints
12 array[NODES,NODES] of var int: distanceV = distance[scenario,..,..];
13

14 constraint forall(n in START_DEPOT_NODES) (% associate each start
15 vehicle[n] = n-nC % node with a vehicle
16);
17 constraint forall(n in END_DEPOT_NODES) (% associate each end
18 vehicle[n] = n-nC-nV % node with a vehicle
19);
20 constraint forall(n in nC+nV+1..nC+2*nV-1) (% successors of end nodes
21 successor[n] = n-nV+1 % are start nodes
22); % (giant tour representation)
23 constraint successor[nC+2*nV] = nC+1;
24

25 constraint forall(n in START_DEPOT_NODES) (% vehicles leave the
26 arrivalTime[n] = 0 % depot at time zero
27);
28 constraint circuit(successor); % hamiltonian circuit
29

30 constraint forall(n in CUSTOMER) (% use the same vehicle
31 vehicle[successor[n]] = vehicle[n] % along a subtour
32);
33 constraint forall(n in 0..nC+nV) (% scenario variable substitued
34 arrivalTime[n] + serviceTime[n] + distanceV[n,successor[n]]
35 <= arrivalTime[successor[n]] % time constraints
36);
37 var int: o = sum (n in END_DEPOT_NODES) (arrivalTime[n]);
38 %----- additional policy-search constraints --------- %
39 var int: eo = expected(weights,os);
40 % -------- objective ------------ %
41 solve two_stage(eo,o,os);

Fig. 3. Policy-based search of the stochastic Vehicle Routing Problem

12

1 array[1..S,NODES, NODES] of int: distance; % stochastic parameter
2 array[NODES] of var VEHICLE: vehicle;
3 array[NODES] of var NODES: successor;
4 array[NODES] of var TIME: arrivalTime;
5

6 var 1..S: scenario; % scenario variable
7

8 array[NODES] of int: xw; % hedging weights
9

10 % stochastic parameter variables
11 % linked using element constraints
12 array[NODES,NODES] of var int: distanceV = distance[scenario,..,..];
13

14 constraint forall(n in START_DEPOT_NODES) (% associate each start
15 vehicle[n] = n-nC % node with a vehicle
16);
17 constraint forall(n in END_DEPOT_NODES) (% associate each end
18 vehicle[n] = n-nC-nV % node with a vehicle
19);
20 constraint forall(n in nC+nV+1..nC+2*nV-1) (% successors of end nodes
21 successor[n] = n-nV+1 % are start nodes
22); % (giant tour representation)
23 constraint successor[nC+2*nV] = nC+1;
24

25 constraint forall(n in START_DEPOT_NODES) (% vehicles leave the
26 arrivalTime[n] = 0 % depot at time zero
27);
28 constraint circuit(successor); % hamiltonian circuit
29

30 constraint forall(n in CUSTOMER) (% use the same vehicle
31 vehicle[successor[n]] = vehicle[n] % along a subtour
32);
33 constraint forall(n in 0..nC+nV) (% scenario variable substitued
34 arrivalTime[n] + serviceTime[n] + distanceV[n,successor[n]]
35 <= arrivalTime[successor[n]] % time constraints
36);
37 %----- progressive hedging objective function --------- %
38 var int: o_hedge =
39 sum (n in END_DEPOT_NODES) (arrivalTime[n]) + hedge(xw,vehicle);
40 % -------- objective ------------ %
41 solve progressive_hedging(h_hedge);

Fig. 4. Progressive hedging for the stochastic Vehicle Routing Problem

13

