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Abstract. An effective translation from procedural code into equiva-
lent constraints is necessary in order to facilitate automated reasoning
about the behaviour of programs. We consider the translation of bounded
loops, proposing a new form of loop unwinding called loop untangling.
In comparison to standard loop unwinding the constraints representing
each iteration of the loop are greatly simplified. This is achieved by de-
coupling the execution order from the representation of each individual
iteration. We illustrate this new technique using two different examples
and provide experimental results verifying that the technique produces
simpler models which result in much better solver performance.

1 Introduction

A translation from procedural code into equivalent constraints is a prerequisite
for various applications based on automatic reasoning about program behaviour,
such as program testing [15], test generation [19] and program verification [10,
14]. This paper is concerned specifically with the treatment of loops (for loops
and while loops) during this translation.

We focus on bounded loops, where a limit on the number of iterations is
assumed or can be computed. Bounded loops arise in bounded model checking
(e.g.[6]), simulation optimization (e.g. [11, 5]), and other forms of symbolic execu-
tion. The typical approach to handling bounded loops is loop unwinding, which
involves flattening the loop by creating a copy of the body for each potential
iteration. This is used in e.g. [11, 12, 5, 6, 3, 4].

The key insight of this paper is that the iterations of a loop do not necessarily
need to be identified by the order of execution. That is, when creating copies of
the loop body we do not have to label them as the iteration reached by execution
first, second, and third, as is done in standard loop unwinding. Instead we can
choose a different way of identifying each potential iteration, and then link them
together using a separate representation of the execution order.

We describe here a new technique called loop untangling which does just
that. Instead of execution order, iterations are identified by the value taken by
a key expression within the loop body. This can vastly simplify the constraints
for each copy of the loop body as the value of this key expression is known. As
shown in Section 4, the result is greatly improved solver performance.



2 Motivating Examples

We give here two example programs where standard loop unwinding produces
a particularly inefficient model, and sketch how loop untangling can provide a
better translation. We will later show how this can be achieved automatically.

Our motivating examples come from a tool which allows combinatorial opti-
misation problems to be defined procedurally [11, 12]. A programmer with no
modelling experience can define an optimisation problem by writing a Java
method which uses provided non-deterministic library methods to build a ran-
dom solution to the problem, and then evaluates that solution, returning a mea-
sure of its quality or throwing an exception if it is invalid. The tool automatically
finds the values to be returned by the library functions in order to produce the
best return value. This is achieved by translating the code into equivalent con-
straints and passing the resulting model to a constraint solver. More details can
be found in [11] but are not important for this work.

Our first example (below) is a routing problem which was one of the original
benchmarks from [11]. Given a set of jobs, each of which has a pickup stop
and a delivery stop, the problem is to choose the shortest Hamiltonian route
visiting all stops, with no delivery stop visited before the corresponding pickup.
Note that the ChoiceMaker argument provides the non-deterministic decision
making methods. In this case the method chooseOrder is used, which returns a
permutation of the given list.

1 int buildRoute(ChoiceMaker chooser) {
2 List<Stop> route = chooser.chooseOrder(allStops);
3 // compute arrival times
4 int currentLocation = startLocation;
5 int currentTime = 0;
6 for(Stop stop: route) {
7 int nextLocation = stop.getLocation();
8 currentTime += travelTime(currentLocation, nextLocation);
9 stop.arrivalTime = currentTime;

10 currentLocation = nextLocation;
11 }
12 tripFinishTime = currentTime + travelTime(currentLocation, startLocation);
13 // check no pickup is after the corresponding delivery
14 for(Job j : jobs) {
15 if(j.pickupStop.arrivalTime > j.deliveryStop.arrivalTime)
16 throw new Exception();
17 }
18 return tripFinishTime;
19 }

Fig. 1: Java code defining a routing problem.

Consider the first loop, which computes the arrival time for each stop. Let us
assume the list allStops contains three stops [A,B,C], which means these three
stops also occur exactly once in the route list, but in an unknown order. Using
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standard loop unwinding we would create a copy of the loop body for the first,
second, and third iteration. For each of these, the value of stop may be A, B, or
C. All of the other variables depend on stop, so their values are also unknown.
Furthermore, when we later look up the arrival time for the pickup and delivery
stop for each job, the value retrieved could be the currentTime value computed
in any of the three iterations.

Figure 2(a) shows the (idealized) MiniZinc [16] produced by loop unwinding.
The decisions are the permutation of the stops, enforced by alldifferent. Ex-
pressions computed within the loop body are represented using arrays indexed
by iteration time Ite = 1..n (where n is the number of iterations), or Ite0 = 0..n
for those having a version before the loop. Constraints simulate the calculation
within the loop, using the locations and dist arrays to look up parameter val-
ues referenced within the getLocation and travelTime methods. To constrain
the final arrival time for each stop s we need to determine which iteration was the
last where we changed the arrivalTime field of the stop s, encoded using which.
We then can lookup the currentTime in that iteration to give the arrivalTime.

array[Ite] of var Stop: route;
constraint alldifferent(route);

array[Ite] of var Location: nextL;
array[Ite0] of var Location: currL;
array[Ite] of var int: travT;
array[Ite0] of var int: currT;
constraint currL[0] = startL;
constraint currT[0] = 0;
constraint forall (i in Ite) (

nextL[i] = locations[route[i]] ∧
travT[i] = dist[currL[i-1],nextL[i]] ∧
currT[i] = currT[i-1] + travT[i] ∧
currL[i] = nextL[i]

);
array[Stop] of var Ite: which;
constraint forall(s in Stop) (

which[s] = max(i in Ite)
(i∗bool2int(route[i] = s)));

constraint forall (j in Job) (
currT[which[pickup[j]]] <=
currT[which[delivery[j]]]

);

array[Stop] of var Stop0: prevS;
constraint path(prevS, ,0);

array[Stop] of var Location: nextL;
array[Stop0] of var Location: currL;
array[Stop] of var int: travT;
array[Stop0] of var int: currT;
constraint currT[0] = 0;
constraint currL[0] = startL;
constraint forall (s in Stop) (

nextL[s] = locations[s] ∧
travT[s] = dist[currL[prevS[s]],nextL[s]] ∧
currT[s] = currT[prevS[s]] + travT[s] ∧
currL[s] = nextL[s]

);

constraint forall (j in Job) (
currT[pickup[j]] <= currT[delivery[j]]

);

(a) (b)

Fig. 2: (Idealized) Constraints generated using (a) unwinding, and (b) untan-
gling.

The observation we make in this paper is that instead of creating copies of
the loop body for each iteration in order of execution, it would be much better
to create a copy for the iteration where stop equals A, B, and C. We know that
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each of these iterations will be executed, the only uncertainty is the order in
which this will happen. With a known value for stop, the value of nextLocation
is fixed, and crucially the stop whose arrival time we set in each iteration is also
known, so when we later look up the arrival time for each stop we know which
version of currentTime is relevant in each case. Obviously we still need to link
the iterations to each other, as expressions used within the loop depend on the
previous iteration. Actually the value of e.g. currentLocation for a given iteration
is exactly the value of nextLocation from the previous iteration. So this linking
can be achieved with a path [13] or DomReachability constraint [18].

The (again idealized) MiniZinc produced using loop untangling is shown in
Figure 2(b). Since we are identifying iterations by the value of stop, the arrays
for expressions calculated within the loop are indexed by Stop or Stop0 (which
includes an artificial initial stop 0). The decisions are prevS, that is for each
iteration/stop, what is the previous iteration/stop (or 0 for the first iteration).
This is used to look up values that depend on the previous loop iteration (or
initialization), while a path constraint ensures that these predecessor variables
correspond to a Hamiltonian path starting anywhere and ending at the artifi-
cial stop 0. The arrivalTime for a stop is now simply equal to the currentTime
computed in the iteration corresponding to that stop.

Our second example is a pizza ordering problem which was the running exam-
ple from [12], part of which is shown in Figure 3. The task is to find the cheapest
pizza order which will satisfy a group of discriminating pizza eaters. The code
computes the acceptable pizzas for each person, then chooses from these for each
slice up to the number the person requires. Once the slices are chosen the cost of
the order is calculated taking into account a discount for ordering whole pizzas.

1 int buildOrder() {
2 order = new Order(menu);
3 for(Person person : people) {
4 // Find acceptable pizzas
5 pizzas.clear();
6 for(OrderItem item : order.items)
7 if(person.willEat(item))
8 pizzas.add(item);
9 // Choose type for each slice

10 for(int i=0; i<person.slices; i++) {
11 OrderItem pizza =
12 chooser.chooseOne(pizzas);
13 pizza.addSlice();
14 } }
15 return order.totalCost();
16 }

17 class OrderItem
18 {
19 int fullPizzas = 0;
20 int numSlices = 0;
21
22 void addSlice() {
23 numSlices = numSlices + 1;
24 if(numSlices == slicesPerPizza) {
25 numSlices = 0;
26 fullPizzas = fullPizzas + 1;
27 } }
28
29 ...
30 }

Fig. 3: Extract from a Java simulation of a pizza ordering optimisation problem.

The loop we consider this time is the one on lines 10–14, within which we
make the decisions and tally up the number of slices and pizzas for each pizza
type. Here the order of iterations is actually irrelevant to the final result (the
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cost of the order). It is only the number of times each type of pizza is chosen
which matters. Unwinding the loop introduces symmetries and also creates a
lot of added uncertainty as the pizza type whose numSlices and numPizzas field
is changed in each iteration is unknown. It would be much better to create
a variable giving the number of times each type of pizza is chosen, and then
constrain the final value of numSlices and numPizzas for each pizza type to be a
function of this variable.

Loop untangling achieves this by labelling the iterations by the return value
of chooseOne (assigned to the pizza variable on line 11/12). Note that in this case
the label is not unique, so we will need a copy of the body for e.g. the first time
Vegetarian is chosen, and the second time, up to the maximum times possible.
In each of these iterations the value of numSlices and numPizzas will be fixed.
Furthermore, when we later look up these values for a particular pizza type, we
know that the result will be the value computed in one of the iterations corre-
sponding to that pizza type. Which iteration will depend only on the number of
times that pizza type is chosen. The resulting constraint system is far simpler
and propagates much more efficiently.

We describe in the following sections our loop untangling technique which can
be applied to any loop, and which when applied to the examples above results in
much better performance than standard loop unwinding. It is not necessary to
detect specifically that in the first example the value of currentLocation is exactly
the value of nextLocation from the previous iteration, nor to detect in the second
example that the order of iterations is irrelevant. Provided the appropriate choice
of labelling scheme for iterations our generalised implementation automatically
produces a model which is equivalent to the better model in both cases.

3 General Loop Untangling Technique

This section explains the process of converting code into equivalent constraints
using loop untangling rather than loop unwinding. The underlying translation
technique is the query based approach described in [12]. The key feature of this
technique is that rather than modelling the current state of the program at each
execution step, we simply constrain the value of each state query to correspond
correctly to the preceding state changes. This is a necessary prerequisite for loop
untangling because it allows the execution order of state changes to be viewed
as a decision.

The translation is broken into two phases. First the code is flattened into a
list of basic steps: state changes, state queries, and path control points. Then the
result of each state query in this list is constrained to correspond correctly to the
changes and control points. The difference between the technique we describe
here and that used in [12] is a new approach to making copies of loop bodies
while flattening, and a different representation for the constraints defining which
state changes occur before which state queries.
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3.1 Programs as Ordered State Changes and State Queries

We consider a Java program to consist of a sequence of basic steps, each of which
is a state change, state query, or path control point. At the lowest level all state
changes are assignments and all state queries are variable references. However,
since our application of interest (defining combinatorial optimisation problems
using imperative code) tends to make heavy use of collections (sets, lists and
maps), we treat the core collection operations as atomic state changes (e.g. add
item to list) and state queries (e.g. length of list). Path control points are points
in the code where execution branches or merges. That is, break, continue and
return statements, plus the beginning and end of then blocks, else blocks and
loop bodies, and the end of methods (if there are multiple return statements).

3.2 Flattening

c1: currentTime := 0 (5)
c2: i := 0 (6)
q1: i < route.size() (6)
p1: start loop (q1) (6)
p2: start loop body (6)
q2: route.get(i) (6)
c3: stop := q2 (6)
q3: stop.getLocation() (7)
c4: nextLocation := q3 (7)
q4: currentTime+travelTime(..) (8)
c5: currentTime := q4 (8)
q5: currentTime (9)
q6: stop (9)
c6: q6.arrivalTime := q5 (9)
q7: nextLocation (10)
c7: currentLocation := q7 (10)
q8: i+1 (11)
c8: i := q8 (11)
q9: i < stopsInOrder.size() (11)
p3: end loop body (q9) (11)
p4: end loop (11)
q10: currentTime+travelTime(..) (12)
c9: tripFinishTime := q10 (12)

Fig. 4: Flattened loop

The first step in our translation is to con-
vert the code into a list of basic steps.
For example the code in lines 5-12 of
the routing example (Figure 1) is flat-
tened as shown in Figure 4. To save
space we have not separated compound
queries into individual parts. For example
stop.getLocation() is actually a query for
the value of the stop variable, and then
a query for the result of the getLocation
method called on that stop variable, which
is itself a query for the location field of the
stop.

Note that this list is not really flat
yet, as items inside loop bodies may oc-
cur more than once in an execution of the
program. To solve this we need to create
copies of the loop body in such a way that
each copy is executed at most once.

3.3 Creating Iterations

When standard loop unwinding is used (as
in [12]), we create a copy of the loop body
for each potential iteration and label them
as the first, second, third etc. The execu-
tion order is fixed, but each individual iteration can have a large amount of
uncertainty. The idea behind loop untangling is to instead create and label our
iterations in a way that reduces the uncertainty within each individual iteration.

The first step is to choose a state query inside the body to be used as the
label query. The label query is how we will refer to the loop iteration, and ideally
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knowing the value of the label query will make the loop body much easier to
model. Currently this choice is specified via annotation, although it seems clear
that some simple static analysis should give us good choices. In our illustrative
examples, we choose the iteration argument stop (q2 in Figure 4) and the choice
of pizza type assigned to pizza (line 11 in Figure 3).

Given a label query qL, we determine the maximum number of times the
loop body may be executed (n), and for each iteration i ∈ 1..n we compute the
set of possible values Di which could be taken by qL. This is exactly the same
calculation as would be done as part of standard loop unwinding.

We then create copies of the loop body as follows. For each value v in the
union of the domains Di computed above, we create k copies of the loop body,
where k is the number of iterations in which Di contains v. For each copy, we add
a constraint that if this iteration is reached by execution then the value of qL is
v. This means that we can assume a fixed value for each iteration. If execution
reaches the iteration then we know its value will be v, and if execution does
not reach this iteration then the value of any query contained in it is irrelevant.
When multiple copies are created for value v we also impose a fixed execution
order on these to eliminate symmetry, and number them accordingly.

Note that the added constraint setting qL to take value v does not replace the
constraints ordinarily used to define the result of the query based on the preced-
ing state changes. These are still needed but they will now impose a constraint
on the (no longer fixed) execution order rather than the query result.

Note also that we may create more than n copies of the loop body. A good
choice of label query will remove a lot of uncertainty from individual iterations
without introducing too many extra iterations. If for the chosen label query every
computed domain Di contains only a single value, then no uncertainty can be
removed and loop untangling is equivalent to loop unwinding.

In the routing example we create a single copy of the loop body for each stop
in the allStops list, as we know that each occurs exactly once in stopsInOrder
and therefore will occur in exactly one iteration. The new list of basic steps will
have three copies of the body (assuming there are 3 stops A,B,C). We will add
subscripts a, b, c to the listed step ids in Figure 4 to refer to them.

In the pizza example, we need multiple copies for each pizza type. The number
of copies for each is the number of iterations in which that pizza type may be
contained in the pizzas list, which is calculated by unwinding as described above.
For nested loops such as this one, we create copies of the bodies separately.
That is, copies of the inner loop body are not associated with a particular outer
iteration. However, there will be multiple copies of the start and end loop nodes
for the inner loop, and each of these will belong to a particular iteration of
the outer loop. Assuming people = [Ant,Bee], if Ant wants one slice of Veg or
Capriciosa, and Bee wants two slices which could be Margherita or Veg, then
there are 3 copies of the inner loop for Veg, two copies for Mar, and one for Cap.
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3.4 Modelling State Queries

A state query is a function of the state changes occurring before it, while the path
control points determine which state changes occur before which state queries.
To achieve a correct translation from code to constraints we need to constrain
each state query in our flattened list to correspond correctly to the state changes
(including artificial state changes added at the beginning to set up the initial
program state) and path control points. The constraints described below are the
same as those used in [12].

Most types of state query (including variable references) are what we call
lookup queries, which means they return a value which is a function of only the
most recent matching state change. What is meant by matching depends on
the specific query type. For lookup queries we create a variable changeID to
represent the ID of the most recent matching state change, and then constrain
this ID and the retrieved value appropriately. For example, field references are
constrained as shown below. Note that only assignments to the queried field (not
other state changes) are relevant.

query qstep: var ref qobj.field
changes: step1: obj1.field := expr1

...
stepn: objn.field := exprn

variables: var 1..n: changeID; var int: changestep; var int: qresult;
constraints: [obj1, ..., objn][changeID] = qobj ∧

qresult = [expr1, ..., exprn][changeID] ∧
changestep= [step1, ...,stepn][changeID] ∧
before(changestep, qstep) ∧
forall (i in 1..n) (
(obji = qobj ∧ before(stepi, qstep)) → not before(changestep, stepi) );

The first constraint requires the chosen assignment to use the same object
as the query, which is the definition of matching for field references. The next
constraint sets the result of the query to the value from the chosen assignment.
The before constraint ensures that the change occurs before the query. A change
which is skipped by the execution path or which occurs after the query cannot
be chosen. We discuss the implementation of before in the next section. The final
constraint is used to ensure that we choose the latest matching assignment by
requiring that no other matching change overwrites our chosen one.

Other queries return a value which is a function of all matching state changes
occurring before the query. We call these aggregate queries. For these we use
before to constrain which changes should be included in the aggregate. For ex-
ample, list length is constrained as follows (the length of the list is the number
of matching add item changes before the query).

query: qstep: qlist.length()
changes: step1: list1.add(item1)

...
stepn: listn.add(itemn)

variables: var int: qresult;
constraints: qresult = sum (i in 1..n) (bool2int(listi = qlist ∧ before(stepi,qstep)));
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Sometimes a lookup query behaves like an aggregate query. This happens
when the most recent relevant change itself depends on the previous changes,
either because of its arguments or because earlier changes affect whether or not
execution reaches the later changes. In these cases it is still possible to use the
standard representation for lookup queries, but much better performance can
be achieved using a specialised translation. In [12] this was called special cases.
When untangling rather than unwinding loops we can use the same specialised
translations described in [12], as in each special case discussed there the query
result is not affected by the order in which the changes occur.

3.5 Modelling the Execution Path

When standard loop unwinding is used, path control points can only cause exe-
cution to skip state changes. The relative order is known. So in [12], before was
implemented by calculating a Boolean expression conda for the conditions under
which execution reaches step a, and then defining before as follows.

before(stepa, stepb) = (a < b) ∧ conda

When iterations are identified by something other than execution order, the
relative execution order of iterations, and therefore of the basic steps contained
in them, is unknown. This means we need a new implementation of before. Our
new implementation is based on a graph of the possible execution paths. This
graph is very similar to a control flow graph, but it contains a node for every
copy of each basic step, rather than a single node for each basic block. The edges
are constructed as follows.

– A state query or state change has a single outgoing edge leading to the
following step.

– The control point at the beginning of a then or else block has an edge
leading to the first step in the block, and another edge leading directly to
the end of the block.

– A continue, break, or return control point has a single outgoing edge to
the end of the associated loop body, loop, or method respectively.

– A start loop control point has an edge to its associated end loop control
point, and to every start body control point for its loop.

– An end loop body control point has an edge to the start body point for each
other iteration of that loop, and to every version of the end loop control
point.

– An exception step has no outgoing edges.

Any valid solution must correspond to a path through this graph (between
the fixed start and end steps). Note that as required by our application this
prevents exception points from being reached.

As we will be looking backwards from queries to the changes affecting them,
we assign for each basic step s a predecessor prev[s] which is the basic step
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Fig. 5: Path control graphs: (a) lines 5-12 of Figure 1, (b) lines 10-14 of Figure 3.

executed immediately before s. Clearly for most steps this is simply the unique
predecessor. The prev array can be constrained by a subpath constraint [13].

Not all paths through the graph represent valid execution paths. The use
of certain edges (where execution branches) is conditional on the result of a
Boolean state query referred to in that step. The edge leading into a then or
else block can only be used if the if condition is true or false respectively. An
edge leading into a loop body is only valid if a query for the loop entry condition
returns true. In Figure 4 the query used to control the use of edges is shown in
brackets next to the source node. For loops (both start loop and end loop body
control points) if the query shown is false then the edge to the end loop control
point must be used.

Figure 5(a) shows a portion of the execution graph for our routing example
with basic blocks collapsed. The start can reach each loop iteration for stop =
A, B or C, and these can each reach each other and the end of the loop. As an
example of the conditions on edges, consider the edges leaving step p3a. Setting
prev[p4] = p3a requires q9a = false, as this edge represents exiting the loop,
while prev[p2b] = p3a (or prev[p2c] = p3a) requires that q9a = true, as these
edges represent re-entering the loop.

For the pizza example (Figure 5(b)), edges which can be discounted upfront
due to false edge conditions or constraints on the label query are not shown.
Since Ant runs first it can reach only the first instance of Veg or Cap, and each
of these can reach its end since Ant only picks one slice. For Bee the start can
reach the first Mar or the first or second Veg. Each of these nodes can reach only
the next of the same category or any of the other category, and the end of Bee’s
loop. Outside this part of the graph is a mandatory path from the end of Ant’s
loop to the start of Bee’s.

We need further constraints on the edges for nested loops, to ensure that
we do not enter the inner loop from one outer iteration and leave to a different
outer iteration. For example we cannot enter node V 1 from sA and leave to eB.
This is prevented by adding a constraint on the start and end loop body control
points (si and ei for i in the iteration set I) for each loop.
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∀i, j ∈ I,¬(before(si, ej) ∧ before(ej , ei))

This ensures that no other end loop body step from the outer loop can come
between a pair of associated start and end body steps for that loop.

As mentioned previously, if we have created multiple iterations for a given
value of the label query, we also impose a fixed order on those (using before) to
eliminate symmetry. This means that (as shown in Figure 5(b)) edges leading
from the start loop control point to the second or later copy of the body for each
value of the label query are excluded immediately, and between iterations for
the same value we only keep edges leading between successive copies.

3.6 Redefining before

The purpose of constructing the graph described in the previous section is to
provide a new definition of the before relation used in our constraints. A simple
implementation of before can be achieved by creating a time variable for each
node in the graph of possible execution paths, and adding a constraint for each
edge to say that if that edge is used then the time of the destination is one
greater than the time of the source. Then before can be defined as follows.

before(a, b) = time[a] < time[b]

In order to prevent changes which are not included on the execution path
from affecting queries which are, we require that any step not on the path has a
time greater than the number of steps.

While this implementation is correct, it does not provide very strong prop-
agation. Consider the reference to currentTime which forms part of q4 in the
routing example (Figure 4). The options for the latest matching change are c1
and c5 (which has a version for each iteration of the loop). Imagine we are deter-
mining q4b and we have already decided that the a iteration is followed by the b
iteration prev[p2b] = p3a. Ideally we should know that q4b refers directly to c5a.
But after this decision we have that time[q4b] ∈ {26, 42}, time[c5a] = {11, 27},
time[c5c] = {11, 43}, time[c1] = 1. So according to the above definition of before
each of {c1, c5a, c5c} could be the latest matching state change.

Even harder to handle is when we decide that iteration b does not follow
a. We know that all iterations have a matching change for q4b. So if a is not
immediately before b, then there must be another iteration in between with a
matching change, even though no specific change is known to be between them.

More generally, the logic we would like to have is that whenever all paths
between change c and query q go through another change which is known to
match q, then change c cannot be chosen for q. Note that although this is related
to dominance it is not pure dominance as we do not require that the same change
overwrites c on all paths.

Ideally this would be achieved using a global constraint. Such a constraint
does not exist, but we have found that including the logic it would use in our
simplification phase is sufficient to provide good performance compared with
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loop unwinding. We intend to implement the global constraint and expect that
even better performance should be possible.

3.7 Optimisations and Simplifications

In certain cases it is possible to create a simple expression closestc defining the
conditions which must hold for change c to be the closest matching change to a
given lookup query q. When this is possible, we can change the constraints used
for q to the simpler form shown below.

query: qstep: var ref qobj.field
changes: step1: obj1.field := expr1

...
stepn: objn.field := exprn

variables: var 1..n: changeID; var int: qresult;
constraints: [obj1, ..., objn][changeID] = qobj ∧

[closest1, ..., closestn][changeID] ∧
qresult = [expr1, ..., exprn][changeID];

If all changes potentially matching a lookup query are initialisation changes
(added at the beginning to set up the initial program state), then only one can
match the query, so we can use true as the closest expression for all of them.

If for a query q there exists a node in the execution graph n such that every
edge leading in to n would create a fixed path between a matching change c for
q and q, then we can use the edges into n to define the closest conditions. For
example, consider the reference to currentTime discussed previously (part of q4
in Figure 4). The query q4b has a matching change in each iteration of the loop
(c5a, c5b, c5c), and one before the loop (c1). All edges into the node p2b (see
Figure 5) create a fixed path between one of these changes and q4b. So we can
constrain q4b as shown below. Note that since none of the edges leading in to p2b
correspond to the change c5b we can discount this change immediately.

query: q4b: currentTime
changes: c1: currentTime := 0

c5a: currentTime := q4a
c5c: currentTime := q4c

variables: var 1..3: changeID; var int: qresult;
constraints: [prev[p2b]=p1, prev[p2b]=p3a, prev[p2b]=p3c][changeID] ∧

qresult = [0, q4a, q4c][changeID];

The same can be done for query q10 outside the loop using the edges into p4.
This provides both the positive and negative reasoning discussed in the previous
section. If we decide to use an edge then the closest condition for that change
will become true and all others will become false. If we decide not to use an
edge then that closest condition will become false, excluding the corresponding
change. Although these constraints are more verbose than the idealised MiniZinc
shown in Section 2, they provide the same propagation strength.

We can also take into account the known relationship between iterations with
the same value for the label query. If all changes relevant to a query belong to
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iterations with the same label value, then their relative order is known (as we
have fixed this to avoid symmetry), so we can use the original definition of before.

If in addition all possibly matching changes are known to actually match and
the path through each iteration with a matching change is fixed, then we can
do even better. In this case it is not possible for execution to skip the change in
iteration i without also skipping those in later iterations. So the closest matching
change is the one from the last iteration to be executed before the query. Ordering
the changes by iteration version, for each change ci except the last:

closestci = before(ci, q) ∧ ¬before(ci+1, q)

The change from the last iteration is the closest whenever it is before the query.
If the query is outside the loop, then we know that all iterations not skipped by
execution will occur before the query, so we can simplify the condition further:

closestci = in[ci] ∧ ¬in[ci+1] in[stepi] = (prev[stepi] 6= stepi)

where in[stepi] means step i is included on the execution path. This can be
defined as shown above since subpath sets unused nodes to point at themselves.

Finally, for queries which are also contained in an iteration with the same
label value, we can assume that all changes in earlier iterations for this value are
included on the execution path. If not, then the query will not be reached either
so its value does not matter. Therefore for these queries the closest matching
change is set to the change from the latest iteration before the query iteration.

The above simplifications are used in the translation of the pizza example.
Consider the reference to numSlices on line 23 of the pizza code (Figure 3), in
the first Veg iteration. Let us call this query qnv1. The relevant changes are the
initialisation assignment for Veg which sets numSlices to 0, and the assignments
on lines 23 and 25. All versions of these assignments from non-Veg iterations are
known not to match qnv1 as they refer to a different pizza object, and all versions
from later Veg iterations are known to be after this query. The versions from
the current iteration are also after this query, so actually only the initialisation
assignment can be chosen. Therefore the value of qnv1 can be fixed to 0. This in
turn will fix the value assigned to numSlices on line 23 to 1, and the condition on
the following line (24) to false (assuming slicesPerPizza is fixed to say 2), which
means that the assignment on line 25 is not reached by execution.

Now consider the reference to numSlices in the next Veg iteration, query qnv2.
As explained above, since the path through the earlier Veg iteration is fixed and
the query is also inside a Veg iteration, we can simply use the change from the
closest iteration to this one (V 1). The value of qnv2 is therefore 1. The value
assigned on line 23 will be 2, and the test on line 24 will succeed. Again the
path through this iteration is fixed, but it goes through the assignment on line
25, setting numSlices back to zero. When we consider qnv3 applying the same
simplification again gives a value of 0.

For the query to Veg.numSlices after the loop (inside the totalCost method),
we can use the definition of closest described above for queries outside the loop,
because all matching changes belong to Veg iterations (except for the init change)
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and are known to match, and the path through every Veg iteration is fixed. The
constraint for this query is therefore:

query: q: var ref Veg.numSlices
changes: c0: Veg.numSlices := 0

c1v1: Veg.numSlices := 1
c2v2: Veg.numSlices := 0
c1v3: Veg.numSlices := 1

variables: var 1..4: changeID, var int: qresult
constraints: [¬in[c1v1], in[c1v1] ∧ ¬in[c2v2], in[c2v2] ∧ ¬in[c1v3], in[c1v3]][changeID]

∧ qresult = [0,1,0,1][changeID];

This is the constraint described in Section 2 which links the final value of
Veg.numSlices to the number of times Veg is chosen (which is changeID−1).

4 Experimental Results

We have implemented the loop untangling technique described above, and show
here experimental results for the two examples discussed. The constraint models
for unwinding and untangling are produced fully automatically from the input
Java code, the only additional information given to untangling was the choice of
label query for each loop. Table 1 compares untangling to unwinding (the version
called new+ in [12]) and to a hand written CP model for the same problem (also
from [12]). Each figure is the average for 30 instances of the stated size. The
times shown include instances which reached the timeout of 10 minutes, while
the failures figures (shown in thousands) exclude them. All models were solved
using G12 CPX on a 3.40GHz Intel i5-4670K with 16GB RAM.

The results clearly show the benefit of untangling. For these problems, we
are clearly better off using a simple model for each iteration and deciding the
order through them, rather than deciding what happens in the ith loop iteration
where we know the order. We expect that with a specialized global propagator
for managing the before constraint this could be further substantially improved.

Solving Time Failures (000s)
Problem unwind untangle hand unwind untangle hand

pizza 4 94.0s (2) 1.3s 0.1s 127.8 17.2 0.8
5 320.7s (13) 5.8s 0.5s 250.5 49.0 5.7
6 470.1s (22) 149.7s (6) 20.9s (1) 240.1 480.2 12.1

routing 5 12.9s 1.5s 0.4s 24.5 4.4 2.1
6 102.8s 8.1s 2.2s 112.4 18.4 9.9
7 569.3s (20) 40.8s 14.6s 343.4 67.4 45.7

Table 1: Comparative performance of unwinding and untangling.
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5 Related and Further Work

Loop untangling is related to other forms of program analysis that reason about
loops. For example, automatic parallelisation of code needs to reason about when
iterations can be reordered [17]. We could improve loop untangling by co-opting
methods from this area to detect cases where the execution order of iterations can
be fixed arbitrarily. The technique described in [2] for detecting commutativity
could be a good starting point as a similar query-based viewpoint is taken when
considering whether or not reordering iterations changes the outcome.

Loop untangling could also be improved by employing more general forms of
program analysis. Typically optimisations performed by compilers are designed
to simplify the remaining code, which would in turn simplify our translation to
the constraint model. For example, loop untangling implicitly requires reaching
definitions, and can also be simplified by constant propagation. While our tool
does a basic form of reaching definition analysis and constant propagation these
could be improved by full program analysis techniques (e.g. [1]).

An interesting direction for future work is developing a program analysis
which would automatically select the label query. By examining the reaching
definitions graph and understanding what data in the program is dependent on
decisions and what is not we can choose a label query that, when fixed, fixes
much of the computation of the loop body. But we need to trade this off against
the number of iterations it will create.

Finally our method, and indeed most methods based on symbolic execution,
currently only handles bounded loops. Unbounded loops can be approximated
by putting an artificial limit on the number of iterations, but otherwise they
require techniques to generate loop invariants including interpolation [8] or ab-
stract interpretation [7]. Loop untangling could possibly be extended to handle
unbounded loops using an approach similar to that in [9]. There constraints were
added for each iteration of the loop lazily as needed when it became known that
the previous iteration was entered. We could do something similar, lazily adding
nodes to our execution path graph.

6 Conclusion

Standard loop unwinding unnecessarily ties the actual execution order of iter-
ations with the way an individual iteration is identified. The idea behind loop
untangling is to decouple these two things by modelling the execution path ex-
plicitly. The labelling scheme can be used to reduce the uncertainty in each
copy of the loop body. Although it may be necessary to create more copies of
the loop body than through standard loop unwinding, with a good choice of la-
belling scheme this is far outweighed by the relative simplicity of the constraints
required for each copy. The final result is a model which is much easier to solve.
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