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Abstract. Linear integer constraints are one of the most important
constraints in combinatorial problems since they are commonly found
in many practical applications. Typically, encoding linear constraints to
SAT performs poorly in problems with these constraints in comparison
to constraint programming (CP) or mixed integer programming (MIP)
solvers. But some problems contain a mix of combinatoric constraints
and linear constraints, where encoding to SAT is highly effective. In
this paper we define new approaches to encoding linear constraints into
SAT, by extending encoding methods for pseudo-Boolean constraints.
Experimental results show that these methods are not only better than
the state-of-the-art SAT encodings, but also improve on MIP and CP
solvers on appropriate problems. Combining the new encoding with lazy
decomposition, which during runtime only encodes constraints that are
important to the solving process that occurs, gives a robust approach to
many highly combinatorial problems involving linear constraints.

1 Introduction

In this paper we study linear integer (LI) constraints, that is, constraints of
the form a1x1 + · · · + anxn # a0, where the ai are integer given values, the
xi are finite-domain integer variables, and the relation operator # belongs to
{<,>,6,>,=}. We will assume w.l.o.g that # is 6, the ai are positive and all
the domains of the variables are [0, di], since other cases can be reduced to this
one.1

Linear integer constraints appear in many combinatorial problems such as
scheduling, planning or software verification; they are also present in MaxSAT
problems [8]; or are part of some MaxSAT techniques, as in Fu & Malik algo-
rithm [17] (and some other algorithms based on it). Therefore, all approaches to
combinatorial optimization have studied how to best handle them, including for
MIP solvers, CP solvers [21], SMT solvers [15, 11], and SAT solvers [26, 6]

In this paper we examine how we can extend the state-of-the-art methods
for SAT encoding of pseudo-Boolean (PB) constraints of the form a1x1 + · · ·+
anxn # a0 where xi are Booleans, to the general linear integer case.

The method proposed here roughly consists in encoding the linear integers
constraints into Reduced Ordered Multi-Decision Diagram (MDD for short), and

1 Although replacing an equality by two inequalities substantially reduces propagation
strength.



then decomposing the MDD to SAT. There are different reasons for choosing this
approach: firstly, most state-of-the-art encoding methods define one auxiliary
variable for every different possible value of the partial sum si = a1x1 + a2x2 +
· · · + aixi. However, some values of the partial sums may be equivalent in the
constraint. For instance, if aj is even for every j > i, there is no difference
between si = a0 and si = a0 − 1. With MDDs, due to the reduction process, we
can identify these situations, and encode all these indistinguishable values with
a single variable, producing a more compact encoding.

Secondly, BDDs are one of the best methods for encoding pseudo-Boolean
constraints into SAT [3], and MDDs seem the natural tool to generalize the
pseudo-Boolean encoding. Although the resulting encoding may be exponential;
however, in real-world problems we have not found any exponential examples.

The goal of this encoding is not for use in arbitrary problems involving LI
constraints. In fact, a specific linear integer (MIP) solver will probably outper-
form any SAT encoding in problems with more LI constraints than Boolean
clauses.

Nevertheless, a fairly common kind of combinatorial problem mainly consist
of Boolean variables and clauses, but also a few integer variables and LI con-
straints. Among these problems, an important class correspond to SAT problems
with a linear integer objective function. In these cases, SAT solvers are the op-
timal tool for solving the problem, but a good encoding for the linear integer
constraints is needed to make the optimization effective. Therefore, in these
problems the decomposition presented here can make a significant difference.

Note, however, that decomposing the constraint may not always be the best
option. In some cases the encoding might produce a large number of variables and
clauses, transforming an easy problem for a CP solver into a huge SAT problem.
In some other cases, nevertheless, the auxiliary variables may give an exponential
reduction of the search space. Lazy decomposition [5, 4] is a hybrid approach
that has been successfully used to handle this issue for cardinality and pseudo-
Boolean constraints. Here, we show that it also can be applied successfully on
LI constraints.

The method proposed here uses the order encoding for representing the in-
teger variables. In some cases, however, the domains of the integer variables
are too large for order encoding. We also propose a new alternative method for
encoding linear integer constraints with the logarithmic encoding.

The contributions of this paper are:

– A new encoding (MDD) for LI constraints using MDDs that outperforms the
state-of-the-art encodings.

– An alternative encoding (BDD-Dec) for LI constraints for large constraints
or variables with huge domains.

– An improved encoding of PB constraints which share coefficients, by con-
verting these constraints to LI constraints.

– A rigorous and extensive experimental comparison of our methods with re-
spect to other decompositions to SAT and other solvers. A total of 9 meth-
ods are compared, over approximately 3000 benchmarks, both industrial and
crafted.



2 Preliminaries

2.1 SAT Solving

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x
and ¬x are positive and negative literals, respectively. The negation of a literal l,
written ¬l, denotes ¬x if l is x, and x if l is ¬x. A clause is a disjunction of literals
¬x1∨· · ·∨¬xp∨xp+1∨· · ·∨xn, sometimes written as x1∧· · ·∧xp → xp+1∨· · ·∨xn.
A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x,¬x} 6⊆ A for any
x ∈ X , i.e., no contradictory literals appear. A literal l is true in A if l ∈ A, is
false in A if ¬l ∈ A, and is undefined in A otherwise. True, false or undefined
is the polarity of the literal l. A clause C is true in A if at least one of its
literals is true in A. A formula F is true in A if all its clauses are true in A.
In that case, A is a model of F . Systems that decide whether a formula F has
any model are called SAT-solvers, and the main inference rule they implement is
unit propagation: given a CNF F and an assignment A, find a clause in F such
that all its literals are false in A except one, say l, which is undefined, add l to A
and repeat the process until reaching a fix-point. See e.g. [23] for more details.

2.2 LCG and LD Solvers

Many modern CP solvers, so called Lazy Clause Generation (LCG) solvers, in-
clude the ability to explain their propagation and generate nogoods just as in
SAT solvers. Propagation of LI constraints is well understood [21] and standard.
And adding explanation for LI constraints is also well understood [16], although
there are often a number of choices of explanation that result.

More recently, Lazy Decomposition (LD) solvers have been proposed. An LD
solver is a LCG solver that, when one complex constraint propagator is very
active (that is, is frequently asked to generate explanations), then the solver
replaces the propagator by either partially or totally decomposing the constraint
into SAT (see [5, 4] for more details). The advantage of LD solvers is that the
exposure of intermediate variables in the SAT encodings can substantially benefit
search, but it avoids the up front cost of encoding all complex constraints, only
those that are important in the solving process.

2.3 Order and Logarithmic Encoding

There are different methods for encoding integer variables into SAT (see for
instance [27, 18]). In this paper we use the order and the logarithmic encoding.

Let y be an integer variable with domain [0, d]. The order encoding [19, 7]
(sometimes called ladder or regular) introduces Boolean variables yi for 0 6
i < d. A variable yi is true iff y 6 i. The encoding also introduces the clauses
yi → yi+1 for 0 6 i < d− 1.

The logarithmic encoding introduces only log d variables yib which codify the

binary representation of the value of y, as y =
∑blog(d)c
i=0 2iyib. It is a more compact

encoding, but it usually gives poor propagation performance.



2.4 Multi Decision Diagrams

A directed acyclic graph is called an ordered Multi Decision Diagram if it satisfies
the following properties:

– It has two terminal nodes, namely T (true) and F (false).
– Each non-terminal node is labeled by an integer variable {x1, x2, · · · , xn}.

This variable is called selector variable.
– Every node labeled by xi has the same number of outgoing edges, namely
di + 1.

– If an edge connects a node with a selector variable xi and a node with a
selector variable xj , then j > i.

The MDD is quasi-reduced if no isomorphic subgraphs exist. It is reduced if,
moreover, no nodes with only one child exist. A long edge is an edge connecting
two nodes with selector variables xi and xj such that j > i+ 1. In the following
we only consider quasi-reduced ordered MDDs without long edges, and we just
refer to them as MDDs for simplicity.

An MDD represents a function

f : {0, 1, . . . , d1} × {0, 1, . . . , d2} × · · · × {0, 1, . . . , dn} → {0, 1}

in the obvious way. Moreover, given the variable ordering, there is only one MDD
representing that function. We refer to [25] for further details about MDDs.

3 Linear Integer Constraints

In this paper we consider linear integer constraints of the form a1x1 + · · · +
anxn 6 a0, where the ai are positive integer coefficients and the xi are integer
variables with domains [0, di]. Other LI constraints can be easily reduced to this
one:

a1x1 + · · ·+ anxn = a0 =⇒
{
a1x1 + · · ·+ anxn 6 a0 ∧
a1x1 + · · ·+ anxn > a0

a1x1 + · · ·+ anxn < a0 =⇒ a1x1 + · · ·+ anxn 6 a0 − 1

a1x1 + · · ·+ anxn > a0 =⇒ −a1x1 + · · ·+−anxn 6 −a0
a1x1 + · · ·+ anxn > a0 =⇒ −a1x1 + · · ·+−anxn 6 −a0 − 1

a1x1 + · · ·+ aixi + · · ·
+anxn 6 a0

when xi ∈ [l, u], l 6= 0, ai > 0

 =⇒


a1x1 + · · ·+ aix

′
i + · · ·

+anxn 6 a0 + ai × l ∧
x′i ∈ [0, u− l] ∧ x′i = xi − l

a1x1 + · · ·+ aixi + · · ·
+anxn 6 a0

when ai < 0 and xi ∈ [l, u]

 =⇒


a1x1 + · · ·+−aix′i + · · ·
+anxn 6 a0 − ai × u ∧
x′i ∈ [0, u− l] ∧ x′i = u− xi

xi ∈ [l, u], l 6= 0 ∧ x′i = xi − l
∧ xji ≡ xi 6 j for l 6 j < u

}
=⇒ xj−li ≡ x′i 6 j for 0 6 j < u− l



xi ∈ [l, u] ∧ x′i = u− xi
∧ xji ≡ xi 6 j for l 6 j < u

}
=⇒ ¬xu−j−1i ≡ x′i 6 j for 0 6 j < u− l

The goal of this paper is to find a SAT encoding for a given LI constraint.
That is, given a LI constraint C, construct an equivalent formula F such that
any model for F restricted to the variables of C is a model of C. Two extra
properties are usually sought:

– consistency checking by unit propagation or simply consistency : whenever a
partial assignment A cannot be extended to a model for C, unit propagation
on F and A produces a contradiction (a literal l and its negation ¬l);

– domain consistency (again by unit propagation): given an assignment A
that can be extended to a model of C, but such that A ∪ {x} cannot, unit
propagation on F and A produces ¬x.

4 Construction of the MDD

In this section we describe an efficient method for building MDDs. Let us fix
a LI constraint a1x1 + · · · + anxn 6 a0 and a variable ordering [x1, x2, . . . , xn].
Before explaining the algorithm, we need a preliminary definition.

Let M be the MDD of the given LI constraint and let ν be a node of M
with selector variable xi. We define the interval of ν as the set of values α such
that the MDD rooted at ν represents the LI constraint aixi + · · · + anxn 6 α.
It is easy to see that this definition corresponds in fact to an interval.

Example 1. Figure 1 contains the MDD of 3x1+2x2+5x3 6 15, where x1 ∈ [0, 4],
x2 ∈ [0, 2] and x3 ∈ [0, 3]. The root interval is [15, 15]: this means that the root
does not correspond to any constraint 3x1 + 2x2 + 5x3 6 α, apart from α = 15.
This means that this constraint is not equivalent to 3x1 + 2x2 + 5x3 6 14 or
3x1+2x2+5x3 6 16. However, the left node with selector variable x2 has interval
[15, 16]. This means that 2x2+5x3 6 15 and 2x2+5x3 6 16 are both represented
by the MDD rooted at that node. In particular, that means that 2x2 + 5x3 6 15
and 2x2 + 5x3 6 16 are two equivalent constraints. ut

The next proposition shows how to compute the intervals of every node:

Proposition 1 Let M be the MDD of a LI constraint a1x1 + · · ·+ anxn 6 a0.
Then, the following holds:

– The interval of the true node T is [0,∞).
– The interval of the false node F is (−∞,−1].
– Let ν be a node with selector variable xi and children {ν0, ν1, . . . , νdi}. Let

[βj , γj ] be the interval of νj. Then, the interval of ν is [β, γ], with

β = max{βr + rai | 0 6 r 6 di}, γ = min{γr + rai | 0 6 r 6 di}.
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Fig. 1. MDD of 3x1 + 2x2 + 5x3 6 15.

The proof of this proposition is very similar to the Proposition 7 of [3].

Example 2. Again, let us consider the constraint 3x1 + 2x2 + 5x3 6 15, whose
MDD is represented at Figure 1. By the previous Proposition, T and F have,
respectively, intervals [0,∞) and (−∞,−1]. Applying again the same proposi-
tion, we can compute the intervals of the nodes having x3 as selector variable.
For instance, the interval from the left node is

[0,∞) ∩ [5,∞) ∩ [10,∞) ∩ [15,∞) = [15,∞),

and the interval from the node having selector variable x3 in the middle is

[0,∞) ∩ [5,∞) ∩ (−∞, 9] ∩ (−∞, 14] = [5, 9].

After computing all the intervals from the nodes with selector variable x3, we
can compute the intervals of the nodes with selector variables x2 in the same
way, and, after that, we can compute the interval of the root. ut

The key point of the MDDCreate algorithm, detailed in Algorithm 1 and
Algorithm 2, is to label each node of the MDD with its interval [β, γ].

In the following, for every i ∈ {1, 2, . . . , n+ 1}, we use a set Li consisting of
pairs ([β, γ],M), whereM is the MDD of the constraint aixi + · · ·+ anxn 6 a′0
for every a′0 ∈ [β, γ] (i.e., [β, γ] is the interval of M). All these sets are kept in
a tuple L = (L1, L2, . . . , Ln+1).

Note that by definition of the MDD’s intervals, if both ([β1, γ1],M1) and
([β2, γ2],M2) belong to Li then either [β1, γ1] = [β2, γ2] or [β1, γ1]∩ [β2, γ2] = ∅.
Moreover, the first case holds if and only if M1 = M2. Therefore, Li can be
represented with a binary search tree-like data structure, where insertions and
searches can be done in logarithmic time. The function search(K,Li) searches



Algorithm 1 Procedure MDDCreate

Require: Constraint C : a1x1 + · · ·+ anxn 6 a0

Ensure: returns M the MDD of C.
1: for all i such that 1 ≤ i ≤ n do
2: Li ← ∅.
3: end for
4: Ln+1 ←

¶ (
(−∞,−1],F

)
,
(
[0,∞), T

) ©©
.

5: L ← (L1, . . . , Ln+1).
6: ([β, γ],M)←MDDConstruction(1, a1x1 + · · ·+ anxn 6 a0,L).
7: return M.

Algorithm 2 Procedure MDDConstruction

Require: i ∈ {1, 2, . . . , n+ 1}, constraint C : aixi + · · ·+ anxn 6 a′0 and tuple L
Ensure: returns [β, γ] interval of C and M its MDD
1: ([β, γ],M)← search(a′0, Li).
2: if [β, γ] 6= ∅ then
3: return ([β, γ],M).
4: else
5: for all j such that 0 ≤ j ≤ di do
6: ([βj , γj ],Mj) ← MDDConstruction(i + 1, ai+1xi+1 + · · · + anxn 6 a′0 −

jai,L).
7: end for
8: M← mdd(xi, [M0, . . . ,Mdi ]).
9: [β, γ]← [β0, γ0] ∩ [β1 + a1, γ1 + a1] ∩ · · · ∩ [βdi + diai, γdi + dia1].

10: insert(([β, γ],M), Li).
11: return ([β, γ],M).
12: end if

whether there exists a pair ([β, γ],M) ∈ Li with K ∈ [β, γ]. Such a tuple is
returned if it exists, otherwise an empty interval is returned in the first com-
ponent of the pair. Similarly, we also use function insert(([β, γ],M), Li) for
insertions. The size of the MDD in the worst case is O(na0) (exponential in the
size of the rhs coefficient) and algorithm complexity is O(nw logw) where w is
the maximum width of the MDD (w ≤ a0).

5 Encoding MDDs into CNF

In this section we generalize the encoding for monotonic BDDs described in [3] to
monotonic MDDs. The encoding assumes that the selector variables are encoded
with the ladder encoding.

Let M be an MDD with the variable ordering [x1, . . . , xn]. Let [0, di] be the
domain of the i-th variable, and let {x0i , . . . , xdi−1i } be the variables of the ladder

encoding of xi (i.e., xji is true iff xi 6 j). Let µ be the root of M, and let T
and F be respectively the true and false terminal nodes. In the following, given
a non-terminal node ν of M, we define SelVar(ν) as the selector variable of ν,
and Child(ν, j) as the j-th child of ν.



The encoding introduces the variables {zν | ν ∈M}; and the clauses

{zµ, zT , ¬zF} ∪
{
¬zν ∨ xj−1i ∨ zν′ | ν ∈M \ {T ,F},

SelVar(ν) = xi, 0 6 j 6 di, ν
′ = Child(ν, j)

}
,

where x−1i is a dummy false variable.
Notice that this encoding coincides with the BDD encoding of [3] if the MDD

is a BDD.

Theorem 2 Unit propagation on the encoding described above enforces domain
consistency (and hence also consistency). ut

The proof is very similar to the BDD case described in [3].

Example 3. Let us consider the MDD represented in Figure 1. The encoding
introduces the variables z1, z2, . . . , z11, zT , zF , one for each node of the MDD;
and the following clauses:

z1, zT , ¬zF , ¬z1 ∨ z2,

¬z1 ∨ x1 6 0 ∨ z3, ¬z1 ∨ x1 6 1 ∨ z4, ¬z1 ∨ x1 6 2 ∨ z5, ¬z1 ∨ x1 6 3 ∨ z6,

¬z2 ∨ z7, ¬z2 ∨ x2 6 0 ∨ z8, ¬z2 ∨ x2 6 1 ∨ z8, ¬z3 ∨ z8,
¬z3 ∨ x2 6 0 ∨ z8, ¬z3 ∨ x2 6 1 ∨ z9, ¬z4 ∨ z9, ¬z4 ∨ x2 6 0 ∨ z9,

¬z4 ∨ x2 6 1 ∨ z9, ¬z5 ∨ z9, ¬z5 ∨ x2 6 0 ∨ z10, ¬z5 ∨ x2 6 1 ∨ z10,

¬z6 ∨ z10, ¬z6 ∨ x2 6 0 ∨ z10, ¬z6 ∨ x2 6 1 ∨ z11, ¬z7 ∨ zT ,
¬z7 ∨ x3 6 0 ∨ zT , ¬z7 ∨ x3 6 1 ∨ zT , ¬z7 ∨ x3 6 2 ∨ zT , ¬z8 ∨ zT ,

¬z8 ∨ x3 6 0 ∨ zT , ¬z8 ∨ x3 6 1 ∨ zT , ¬z8 ∨ x3 6 2 ∨ zF , ¬z9 ∨ zT ,
¬z9 ∨ x3 6 0 ∨ zT , ¬z9 ∨ x3 6 1 ∨ zF , ¬z9 ∨ x3 6 2 ∨ zF , ¬z10 ∨ zT ,

¬z10 ∨ x3 6 0 ∨ zF , ¬z10 ∨ x3 6 1 ∨ zF , ¬z10 ∨ x3 6 2 ∨ zF , ¬z11 ∨ zF ,

¬z11 ∨ x3 6 0 ∨ zF , ¬z11 ∨ x3 6 1 ∨ zF , ¬z11 ∨ x3 6 2 ∨ zF .

Notice that some clauses are redundant. This issue is handled in Section 7.2.
ut

6 Optimization Problems

In this section we describe how to deal with combinatorial problem where we
minimize a linear integer optimization function. A similar idea is used in [14],
where the authors use BDDs for encoding problems with pseudo-Boolean ob-
jectives. Combinatorial optimization problems can be efficiently solved with a
branch-and-bound strategy. In this way, all the lemmas learned in the previ-
ous steps are reused for finding the next solutions or proving the optimality.
For implementing a branch-and-bound, we need to be able to create a decom-
position of the constraint a1x1 + · · · + anxn 6 a′0 from the decomposition of
a1x1 + · · ·+ anxn 6 a0 where a′0 < a0.

This is easy for cardinality constraints, since, when we have encoded a con-
straint x1+· · ·+xn 6 a0 with a sorting network, we can encode x1+· · ·+xn 6 a′0
by adding a single clause (see [9]).



Algorithm 3 MDD Construction: Optimization version

Require: Constraint C : a1x1 + · · ·+ anxn 6 a′0 and tuple L.
Ensure: returns M the MDD of C.
1: ([β, γ],M)←MDDConstruction(1, a1x1 + · · ·+ anxn 6 a′0,L).
2: return M.

In order to reuse the previous encodings for the MDD encoding of an LI
constraint, we have to save the tuple L used in Algorithm 1. When a new solution
of cost a′0 + 1 is found, Algorithm 3 is called.

Notice that the encoding creates at most one variable for every element of
Li ∈ L, 1 6 i 6 n. Therefore, after finding optimality, the encoding has gener-
ated at most na0 variables in total, where a0 is the cost of the first solution found.
The number of clauses generated can be bounded by na0d, where d = max{di}.

7 Improvements

In this section we describe some improvements of the method. The first im-
provement is to reorder the constraint such that a1 > a2 > · · · > an. The MDD
obtained in this way is usually smaller.

7.1 Grouping Identical Coefficients

Let us fix the LI constraint C : a1x1 + · · · + anxn 6 a0. Assume that some
coefficients are equal; for simplicity, let us assume a1 = a2 = · · · = ar. In this
case, we can define the integer variable s = x1 + · · · + xr and decompose the
constraint C ′ : a1s+ ar+1xr+1 + · · ·+ anxn 6 a0 instead of C. The domain of s
is [0, ds] with ds = min{a0/a1, d1 + · · ·+ dr}.

Notice that we do not need to encode the constraint s = x1+ · · ·+xr defining
the integer variables s, instead we can encode c ≡ s > x1 + · · ·+ xr since we are
only interested in lower bounds. The encoding of c can be done with cardinality
networks [2], which usually gives a more compact encoding than the MDD of c.

In industrial problems where constraints are not randomly generated, the
coefficients have some meaning. It may be likely, that a large LI constraint has
only a few different coefficients. In this case this technique can be very effective.

7.2 Removing Subsumed Clauses

The encoding explained at Section 5 can easily be improved by removing some
unnecessary clauses. We apply the following rule when producing the encoding:

Given a non-terminal node ν with SelVar(ν) = xi, if Child(ν, j) = Child(ν, j−
1), then the clause ¬zzν ∨xj−1i ∨ zν′ is subsumed by the clause ¬zν ∨xj−2i ∨ zν′ ;
therefore, we can remove it.

Additionally, we also improve the encoding by reinstating long edges (since
the dummy nodes used to eliminate long edges do not provide any information);
that is, we encode the reduced MDD instead of the quasi-reduced MDD.



7.3 Solution Phase Saving

In decision problems, last phase saving described in [24] has proven to be a
very effective strategy. According to this scheme, when the SAT solver makes a
decision, the variable is chosen with the same polarity as in the last assignment.

However, in optimization problems this is not the best option. As seen in [1],
a better strategy is to take the polarity that minimizes the objective function
in the variables which directly appear in the objective function, or the polarity
in the last solution in the other variables. That method, called solution phase
saving, emulates a local search: after finding a solution, the method explores the
neighbourhood of the solution in order to find a better solution nearby.

7.4 Lazy Decomposition

Lazy decomposition [5, 4] has proved to be very successful for handling cardi-
nality and pseudo-Boolean constraints. Lazy decomposition for LI constraints
implements each LI constraint as a propagator initially, and later when we see
that a constraint is generating many explanations we replace the propagator
fully or partially by a SAT decomposition. We use the approach of [4] which
fully replaces a propagator. Our strategy for when to decompose an LI con-
straint is: when the constraint has generated more explanations than half its
encoding size, or generated more than 50,000 explanations; except that we never
encode LI constraints whose encoding size is ≥ 50 million clauses.

8 Related Work and Extensions

The simplest decomposition of linear integer constraints to SAT uses binary
adders (Adder) [28]. The encoding is very compact, but it has a poor perfor-
mance in practice since information does not propagate effectively through the
encoding.

Decision diagrams methods have been widely used to handle LI constraints.
The best current method [10] (BDD) uses a logarithmic encoding of the coeffi-
cients to create a BDD of the constraint, sorting the variables in a clever way.
The encoding size is reduced to O(n log d

∑
ai), which is polynomial in the do-

main size but exponential in the coefficient size. We can improve this encoding if
we also decompose the coefficients as is done in [3]: in this way, the encoding size
is O(n2 log d log am), where am is the largest coefficient. We call this BDD-Dec.

Example 4. Consider the LI constraint 3x1+2x2+5x3 6 15 from Example 1. Af-
ter encoding the integer variables with the logarithmic encoding, the constraint
becomes the pseudo-Boolean 3x0b,1 + 6x1b,1 + 12x2b,1 + 2x0b,2 + 4x1b,2 + 5x0b,3 +

10x1b,3 6 15. Bartzis and Bultan [10] construct the BDD of the pseudo-Boolean

2x0b,2 + 3x0b,1 + 4x1b,2 + 5x0b,3 + 6x1b,1 + 10x1b,3 + 12x2b,1 6 15. Our method decom-

poses the coefficients (i.e., considers x0b,1 + 2x0b,1 instead of 3x0b,1) and builds the

resulting BDD; so we encode the constraint x0b,1 + x0b,3 + 2x0b,2 + 2x0b,1 + 2x1b,1 +

2x1b,3 + 4x1b,2 + 4x0b,3 + 4x1b,1 + 4x2b,1 + 8x1b,3 + 8x2b,1 6 15. ut



Formally, the BDD-Dec method encodes LI constraint a1x1 + · · ·+anxn 6 a0
with xi ∈ [0, di], 1 ≤ i ≤ n by first creating the PB constraint

n∑
i=1

∑
j∈0..blog2 dic,(di÷2j) mod 2=1

∑
k∈0..blog2 aic,(ai÷2k) mod 2=1

2j+k × xjb,i ≤ a0

over the logarithmic encoding variables xb and encoding this using the state-of-
the-art encoding for PB constraints given in [3].

Note however, logarithmic encoding of integers, while compact, is usually a
bad option since it significantly hampers propagation of information, leading to
poor solving performance. Neither BDD or BDD-Dec enforce consistency.

The most similar encoding to the approach we define is the support encoding
(Support) [26, 6]. While the encodings both effectively define auxiliary variables
for the values of the partial sums si = a1x1 + · · · + aixi, the support encod-
ing fails to identify which values of these partial sums are indistinguishable in
the constraint. The result is to create an encoding equivalent to a non-reduced
ordered MDD. If the MDD cannot be reduced further (for instance, if all the
coefficients are 1), the two encodings would be identical (ignoring the further
improvement discussed above). In general, however, the support encoding gen-
erates redundant variables and clauses. Another important improvement in our
encoding is to group identical coefficients (see Section 7.1).

9 Experimental Results

In this section we compare our encoding with other LI constraints encodings
and specific LI solvers. Unfortunately, we have not found in the literature a
rigorous comparison of the different approaches for solving SAT+MIP problems.
Here, we consider state-of-the-art methods from different areas and a huge set of
benchmarks (about 2,900) coming from different industrial and crafted families.

We do not expect to be the best method in all the families of the problems.
The main goals of this section are to:

– Detect the type of problems where it is worthwhile to encode an LI constraint
instead of using a specific solver.

– Decide, in these problems, which encoding is better.
– Evaluate the lazy decomposition approach with different encodings.

All experiments were performed in a 2x2GHz Intel Quad Core Xeon E5405,
with 2x6MB of Cache and 16 GB of RAM. All the benchmarks we used can
be found at www.cs.mu.oz.au/~pjs/encodeli/ in MiniZinc [22] format with
scripts to generate CNF format.

We compare our new encodings MDD and BDD-Dec with those from the
literature Adder, BDD and Support. We also consider the Gurobi mixed integer
programming solver [20] (Gurobi) and the Barcelogic SMT solver [13] (LCG). We
also consider the use of lazy decomposition [4] together with the two domain-
consistent encoding approaches: using the MDD decomposition explained here
(LD-MDD), and using the support encoding (LD-Sup).



Different values of n Different values of amax Different values of d

5 10 20 40 80 160 1 2 4 8 16 32 1 2 4 10 25 100

Adder 0.05 9.55 186 276 296 300 57.3 60.4 74.9 114 105 117 0.02 0.15 1.84 32.7 80.3 215

BDD 0.04 7.11 185 272 298 300 21.1 39.2 59.1 111 110 129 0.01 0.06 0.58 26.8 77.6 220

BDD-Dec 0.12 4.73 163 269 295 300 10.5 25.6 47.7 90.9 84.8 82.5 0.01 0.13 0.46 18.6 56.3 202

MDD 0.05 6.45 175 268 290 300 51.8 57.2 62.9 103 107 119 0.01 0.03 0.17 18.9 80.6 258

Support 0.12 16.0 197 278 300 300 53.9 78.6 90.3 142 133 145 0.02 0.07 0.57 32.8 108 272

LD-MDD 0.01 3.23 165 264 287 300 44.3 48.2 59.4 90.0 91.5 91.1 0.02 0.01 0.09 16.4 63.1 244

LD-Sup 0.01 8.44 179 270 288 300 50.3 68.7 76.6 115 108 110 0.02 0.01 0.19 21.9 82.0 254

LCG 0.01 4.87 173 265 288 300 117 97.2 88.0 118 94.0 70.6 0.02 0.01 0.13 22.9 75.3 242

Gurobi 0.01 0.09 0.02 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01

Table 1. Multiple knapsack solving average time.

The Barcelogic SAT solver was used for all the SAT-based methods; this
ensured that the lazy decomposition approaches were implemented using the
same solver. The solution phase saving policy (see Section 7.3) was used in all
SAT-based methods. Gurobi used its default settings.

9.1 Multiple Knapsack

First we consider the classic multiple knapsack problem.

Max a01x1 + a02x2 + · · · + a0nxn such that
a11x1 + a12x2 + · · · + a1nxn 6 a10
. . .
am1 x1 + am2 x2 + · · · + amn xn 6 am0 ,

where xi are integer variables with domain [0, d] and the coefficients belong to
[0, amax].

Since it only consists of linear integer constraints it is ideal for MIP solvers.
We consider this problem since it is easy to modify the parameters of the con-
straints, and, therefore, we can easily compare the encodings in different situ-
ations. More precisely, we have considered different constraint sizes, coefficient
sizes and domain sizes. In these problems, n is the number of variables, m = 20
is the number of LI constraints, d + 1 is the domain size of the variables; and
amax is the bound of the coefficients.

Table 1 contains the results on these benchmarks. For each parameter config-
uration, 100 benchmarks are considered and the average time for solving them is
reported. Timeout are considered as 300s response in the average computation.
In columns 2-7 m = 20, d = 20, amax = 10 and different values of n are taken.
Columns 8-13 consider different values of amax, with m = 20, n = 15 and d = 20.
In columns 14-19 n = 15, m = 20 and amax = 10, with different values of d. For
each group of problems, the best encoding is underlined and the best method is
bolded.

As expected Gurobi is by far the best method. SAT-based methods do not
compete, however, we can effectively compare the encodings in different situa-
tions. In general, BDD-Dec and MDD are the best encodings, MDD is specially
efficient if the domains are small and BDD-Dec in large ones. Also, notice that
lazy decomposition performs, in general, better than both the decomposition
and the propagator approaches.



15s 60s 300s 900s 3600s
Adder 0.905 0.963 0.986 0.992 0.996
BDD 0.784 0.859 0.928 0.957 0.977
BDD-Dec 0.929 0.967 0.985 0.99 0.994
MDD 0.727 0.75 0.858 0.889 0.899
Support 0.727 0.774 0.861 0.872 0.876
LD-MDD 0.918 0.982 0.992 0.994 0.996
LD-Sup 0.918 0.98 0.991 0.993 0.994
LCG 0.92 0.981 0.993 0.995 0.997
Gurobi 0.598 0.618 0.647 0.671 0.721

Table 2. Average quality from 2040 RCPSP benchmarks.

9.2 RCPSP

Resource-constrained project scheduling problem [12] (RCPSP) is possibly the
most studied scheduling problem. It consists of tasks consuming one or more
resources, precedences between some tasks, and resources. Here we consider the
case of non-preemptive tasks and renewable resources with a constant resource
capacity over the planning horizon. A solution is a schedule of all tasks so that
all precedences and resource constraints are satisfied.

Usually, the objective of RCPSP is to find a solution minimizing the makespan.
Here, however, the objective is to minimize a weighted sum of start times, i.e.,
minimize

∑
wisi, where wi is the weight of the i-th task and si is its starting

time. These weights represent the importance of the tasks: usually, a company
not only needs to finish all the tasks in the minimum time, but also wants to give
more importance to some of them. For the examples considered here, only ten
tasks have a non-zero weight, but terminal tasks (this is, tasks with no successors
with respect the precedence constraints) are never given a zero weight. Here we
have considered the 600 RCPSP problems with 120 tasks (ie, the largest ones).

The results are summarized in Table 2. Columns contain the quality average
after X seconds. Quality is computed by dividing the cost of the best known
solution by the cost of the current solution of the method; therefore, quality = 0
if no solution has been found, and quality = 1 when the best solution has been
found. Again, the best method is bolded and the best encoding is underlined.

Since in these benchmarks, the variables’ domains are very large (frequently
d > 200); the logarithmic encodings Adder and BDD-Dec are the best encod-
ings. MDD and Support have a similar performance, they are far from the best
methods. However, the best method is LCG. Both lazy decomposition methods
perform almost identically to LCG. It is clear (and well known) that MIP is not
competitive on RCPSP problems.

9.3 Graph Coloring

The classical graph coloring problem consists in, given a graph, assign to each
node a color {0, 1, . . . , c − 1} such that two nodes connected by an edge have
different colors. Usually, the problem consists in finding a solution that minimizes
the number of colors (i.e., c). In this section we have considered a variant of this
problem. Let us consider a graph that can be colored with c colors: For each
node ν of the graph, let us define an integer value aν . Now, we want to color the



15s 60s 300s 900s 3600s
Adder 0.421 0.468 0.511 0.527 0.546
BDD 0.404 0.444 0.483 0.497 0.513
BDD-Dec 0.417 0.462 0.499 0.512 0.53
MDD 0.615 0.624 0.644 0.651 0.657
Support 0.605 0.615 0.636 0.641 0.648
LD-MDD 0.616 0.621 0.64 0.642 0.648
LD-Sup 0.613 0.618 0.635 0.639 0.643
LCG 0.617 0.623 0.64 0.643 0.646
Gurobi 0.443 0.45 0.452 0.453 0.454

Table 3. Average quality from 320 graph coloring benchmarks.

graph with c colors {0, 1, . . . , c− 1} minimizing the function
∑
aνxν , where xν

is the color of the node ν.
We have considered the 80 graph coloring instances from http://mat.gsia.

cmu.edu/COLOR08/ that have less than 500 nodes. For each graph problem, we
have considered 4 different benchmarks: in the i-th one, 1 6 aν 6 3i − 2 for
i = 1, 2, 3, 4. Results are presented on Table 3 similarly to the previous section.

The best encoding in this problem is clearly MDD. The best methods are
LCG and LD-MDD and MDD. Gurobi and logarithmic methods are not a good
option in these problems.

9.4 Sport Leagues Scheduling

The last experiment considers scheduling a double round-robin sports league of
N teams. All teams meet each other once in the first N − 1 weeks and again in
the second N − 1 weeks, with exactly one match per team each week. A given
pair of teams must play at the home of one team in one half, and at the home of
the other in the other half, and such matches must be spaced at least a certain
minimal number of weeks apart. Additional constraints include, e.g., that no
team ever plays at home (or away) three times in a row, other (public order,
sportive, TV revenues) constraints, blocking given matches on given days, etc.

Additionally, the different teams can propose a set of constraints with some
importance (low, medium or high). It is desired not only to maximize the num-
ber of these constraints satisfied, but also to assure that at least some of the
constraints of every team are satisfied. More information can be found at [1].

Low-importance constraints are given a weight of 1; medium-importance,
5, and high-importance, 10. For every constraint proposed by a team i, a new
Boolean variable xi,j is created. This variable is set to true if the constraint
is violated. For every team, a pseudo-Boolean constraint

∑
j wi,jxi,j 6 Ki is

imposed. The objective function to minimize is
∑
i

∑
j wi,jxi,j . The data is based

on real-life instances.
Even though this problem only has pseudo-Boolean constraints, linear integer

constraints arise from grouping identical coefficients. We have considered 10
different problems with 20 random seeds. In all the problems, the optimal value
was found around 30. The results are shown in Table 4.

For sports league scheduling problems MDD is clearly the best encoding,
followed by BDD-Dec. MDD and LD-MDD are the best methods. Gurobi is unable
to handle these problems well (at least with the best model we could devise).



15s 60s 300s 900s 3600s
Adder 0 0 0.031 0.108 0.167
BDD 0.038 0.061 0.26 0.397 0.537
BDD-Dec 0.037 0.069 0.267 0.441 0.582
MDD 0.034 0.073 0.292 0.46 0.583
Support 0.035 0.07 0.254 0.404 0.545
LD-MDD 0.039 0.077 0.277 0.443 0.592
LD-Sup 0.035 0.066 0.269 0.417 0.555
LCG 0.023 0.063 0.159 0.287 0.421
Gurobi 0 0 0 0 0

Table 4. Average quality from 200 sport scheduling league benchmarks.

The BDD encoding for these problems is equivalent to using the BDD encod-
ing of [3] for the original pseudo-Boolean constraints. Comparing BDD and MDD
illustrates that by using LI constraint encoding we can improve one of the best
known approach for PB constraints, in cases where the PB shares coefficients.

10 Conclusion

We have introduced a new domain-consistent encoding (MDD) for linear integer
constraints. For small and medium-sized domains, this decomposition substan-
tially improves the current state-of-the-art SAT encodings for LI constraints. It
uniformly beats the only other domain consistent encoding (Support) as execu-
tion time increases. Combining this encoding with lazy decomposition, we create
a hybrid method for LI constraints which is robust across the benchmark suite
and rarely substantially bettered by any encoding or propagation method.

We have also introduced a new method (BDD-Dec) for encoding LI con-
straints based on the logarithmic decomposition of domains and coefficients, sub-
stantially improving on the previous state-of-the-art logarithmic method (BDD).
This provides a robust alternative to domain-consistent methods in problems
with large domains.

As future work, we want to combine lazy decomposition with logarithmic
methods for large-domain problems. We are also designing a lazy decomposition
solver which dynamically selects which type of encoding apply to every constraint
to decompose.
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